首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae cells possess an alkali metal cation antiporter encoded by the NHA1 gene. Nha1p is unique in the family of yeast Na+/H+ antiporters on account of its broad substrate specificity (Na+, Li+, K+) and its long C-terminus (56% of the whole protein). In order to study the role of the C-terminus in Nha1p function, we constructed a series of 13 truncated NHA1 versions ranging from the complete one (2958 nucleotides, 985 amino acids) down to the shortest version (1416 nucleotides, 472 amino acids), with only 41 amino acid residues after the last putative transmembrane domain. Truncated NHA1 versions were expressed in an S. cerevisiae alkali metal cation-sensitive strain (B31; ena1-4Delta nha1Delta). We found that the entire Nha1p C-terminus domain is not necessary for either the proper localization of the antiporter in the plasma membrane or the transport of all four substrates (we identified rubidium as the fourth Nha1p substrate). Partial truncation of the C-terminus of about 70 terminal amino acids improves the tolerance of cells to Na+, Li+ and Rb+ compared with cells expressing the complete Nha1p. The presence of the neighbouring part of the C-terminus (amino acids 883-928), rich in aspartate and glutamate residues, is necessary for the maintenance of maximum Nha1p activity towards sodium and lithium. In the case of potassium, the participation of the long C-terminus in the regulation of intracellular potassium content is demonstrated. We also present evidence that the Nha1p C-terminus is involved in the cell response to sudden changes in environmental osmolarity.  相似文献   

2.
Maintenance of cation homeostasis is essential for survival of all living organisms in their biological niches. It is also important for the survival of human pathogenic fungi in the host, where cation concentrations and pH will vary depending on different anatomical sites. However, the exact role of diverse cation transporters and ion channels in virulence of fungal pathogens remains elusive. In this study we functionally characterized ENA1 and NHA1, encoding a putative Na(+)/ATPase and Na(+)/H(+) antiporter, respectively, in Cryptococcus neoformans, a basidiomycete fungal pathogen which causes fatal meningoencephalitis. Expression of NHA1 and ENA1 is induced in response to salt and osmotic shock mainly in a Hog1-dependent manner. Phenotypic analysis of the ena1Δ, nha1Δ, and ena1Δnha1Δ mutants revealed that Ena1 controls cellular levels of toxic cations, such as Na(+) and Li(+) whereas both Ena1 and Nha1 are important for controlling less toxic K(+) ions. Under alkaline conditions, Ena1 was highly induced and required for growth in the presence of low levels of Na(+) or K(+) salt and Nha1 played a role in survival under K(+) stress. In contrast, Nha1, but not Ena1, was essential for survival at acidic conditions (pH 4.5) under high K(+) stress. In addition, Ena1 and Nha1 were required for maintenance of plasma membrane potential and stability, which appeared to modulate antifungal drug susceptibility. Perturbation of ENA1 and NHA1 enhanced capsule production and melanin synthesis. However, Nha1 was dispensable for virulence of C. neoformans although Ena1 was essential. In conclusion, Ena1 and Nha1 play redundant and discrete roles in cation homeostasis, pH regulation, membrane potential, and virulence in C. neoformans, suggesting that these transporters could be novel antifungal drug targets for treatment of cryptococcosis.  相似文献   

3.
Genes encoding the Na(+)/H(+) antiporter (Nha1p) from Candida tropicalis (C.t.), Hansenula anomala (H.a.) (also named Pichia anomala), and Aspergillus nidulans (A.n.) were cloned, and the nucleotide sequences were determined. The deduced primary sequences revealed highly conserved hydrophobic regions and rather diverse hydrophilic regions. Among the seven known Nha1p sequences, Schizosaccharomyces pombe (S.p.) Nha1p is exceptional in lacking the hydrophilic region. Within the diverse hydrophilic regions, we found six conserved regions (C1-C6). Expression of C.t. Nha1p in Saccharomyces cerevisiae (S.c.) cells lacking NHA1 and ENA1 (Na(+)-ATPase) complemented the salinity-sensitive phenotype, suggesting that C.t. Nha1p is functionally related to S.c. Nha1p. Expression of various truncated forms of the C-terminal half of S.c. and C.t. Nha1p showed essentially the same phenotype for both species: deletion of the C4-C6 region caused cell growth to be more resistant to high salinity than the wild type, suggesting an inhibitory function of these domains on the antiporter activity. However, complete loss of C1-C6 caused a severe growth defect under conditions of high salinity, suggesting a defect in antiporter activity. The DeltaC2-C6 form of C.t. Nha1p, containing only C1, restored the retarded cell growth at high salinity more than the control vector alone, but to a value lower than the wild type. These results suggest an essential role for C1 and an activating role of the C2-C3 region in the functional expression of Nha1. High expression of the DeltaC2-C6 form of S.c. Nha1p was toxic for yeast cells, although low expression was not, suggesting that the overexpression of C1 is toxic. The results in this study suggest that the diverse hydrophilic region of yeast and fungal Nha1p has six conserved domains with conserved functions in terms of expression of Nha1p activity.  相似文献   

4.
The Na+/H+ antiporter Nha1p of Saccharomyces cerevisiae plays an important role in maintaining intracellular pH and Na+ homeostasis. Nha1p has a two-domain structure composed of integral membrane and hydrophilic tail regions. Overexpression of a peptide of approximately 40 residues (C1+C2 domains) that is localized in the juxtamembrane area of its cytoplasmic tail caused cell growth retardation in highly saline conditions, possibly by decreasing Na+/H+ antiporter activity. A multicopy suppressor gene of this growth retardation was identified from a yeast genome library. The clone encodes a novel membrane protein denoted as COS3 in the genome data base. Overexpression or deletion of COS3 increases or decreases salinity-resistant cell growth, respectively. However, in nha1Delta cells, overexpression of COS3 alone did not suppress the growth retardation. Cos3p and a hydrophilic portion of Cos3p interact with the C1+C2 peptide in vitro, and Cos3p is co-precipitated with Nha1p from yeast cell extracts. Cos3p-GFP mainly resides at the vacuole, but overexpression of Nha1p caused a portion of the Cos3p-GFP proteins to shift to the cytoplasmic membrane. These observations suggest that Cos3p is a novel membrane protein that can enhance salinity-resistant cell growth by interacting with the C1+C2 domain of Nha1p and thereby possibly activating the antiporter activity of this protein.  相似文献   

5.
The Na(+)/H(+) antiporter (Nha1p) from the budding yeast Saccharomyces cerevisiae plays an important role in intracellular pH and Na(+) homeostasis. Here, we show by co-precipitation of differently tagged Nha1p proteins expressed in the same cell that the yeast Nha1p l forms an oligomer. In vitro cross-linking experiments then revealed that Nha1p-FLAG is present in the membranes as a dimer. Differently tagged Nha1p proteins were also co-precipitated from sec18-1 mutant cells in which ER-to-Golgi traffic is blocked under non-permissive temperatures, suggesting that Nha1p may already dimerize in the ER membrane. When we over-expressed a mutant Nha1p with defective antiporter activity in cells that also express the wild-type Nha1p-EGFP fusion protein, we found impaired cell growth in highly saline conditions, even though the wild-type protein was appropriately expressed and localized correctly. Co-immunoprecipitation assays then showed the inactive Nha1p-FLAG mutant interacted with the wild-type Nha1p-EGFP protein. These results support the notion that Nha1p exists in membranes as a dimer and that the interaction of its monomers is important for its antiporter activity.  相似文献   

6.
The Saccharomyces cerevisiae Na(+)/H(+) antiporter Nha1p has a two-domain structure consisting of an N-terminal integral membrane region and a C-terminal cytoplasmic region. We previously identified six distinct cytoplasmic domains (C1-C6) conserved among yeast species and here we performed detailed structure-function analysis of the C1 domain (16 residues). Deletion of the C1 domain causes extensive inhibition of cell-growth under high salinity conditions. Mutants with single residue deletions or various amino acid substitutions affecting the C1 domain were analyzed with respect to salinity-dependent growth and Nha1p localization. The C1 domain was found to consist of two subdomains: (i) The first three N-proximal residues, which in conjunction with the integral membrane region play a crucial role in the targeting of Nha1p to the cytoplasmic membrane, and (ii) the portion between Leu-439 and Thr-449, which is not required for localization, but in which four residues (Gly-440, Arg-441, His-442, and Ile-446) affect salinity-sensitive cell-growth by possibly influencing the antiporter activity. Based on the overall similarity of the two-domain structure of Nha1p to that of mammalian Na(+)/H(+) antiporters, the functional importance of domains proximal to the membrane region is discussed.  相似文献   

7.
Simón E  Barceló A  Ariño J 《FEBS letters》2003,545(2-3):239-245
The yeast Nha1 Na(+),K(+)/H(+) antiporter may play an important role in regulation of cell cycle, as high-copy expression of the NHA1 gene is able to rescue the blockage at the G(1)/S transition of cells lacking Sit4 protein phosphatase and Hal3 activities. Interestingly, this function was independent of the role of the antiporter in improving tolerance to sodium cations, it required the integrity of a relatively large region (from residues 800 to 948) of its carboxy-terminal moiety, and was not performed by the fission yeast homolog antiporter Sod2, which lacks a carboxy-terminal tail. Here we show that a hybrid protein composed of the Sod2 antiporter fused to the carboxy-terminal half of Nha1 strongly increased sodium tolerance, but did not allow growth at high potassium nor did rescue growth of the sit4 hal3 conditional mutant strain. Deletion of Nha1 residues from 800 to 849, 900 to 925 or 926 to 954 abolished the function of Nha1 in cell cycle without affecting sodium tolerance. A screening for loss-of-function mutations at the 775-980 carboxy-terminal tail of Nha1 has revealed a number of residues required for function in cell cycle, most of them clustering in two regions, from residues 869 to 876 (cluster A) and 918 to 927 (cluster B). The later is rather conserved in other related antiporters, while the former is not.  相似文献   

8.
Cytoplasmic pH and periplasmic pH of Escherichia coli cells in suspension were observed with 4-s time resolution using fluorimetry of TorA-green fluorescent protein mutant 3* (TorA-GFPmut3*) and TetR-yellow fluorescent protein. Fluorescence intensity was correlated with pH using cell suspensions containing 20 mM benzoate, which equalizes the cytoplasmic pH with the external pH. When the external pH was lowered from pH 7.5 to 5.5, the cytoplasmic pH fell within 10 to 20 s to pH 5.6 to 6.5. Rapid recovery occurred until about 30 s after HCl addition and was followed by slower recovery over the next 5 min. As a control, KCl addition had no effect on fluorescence. In the presence of 5 to 10 mM acetate or benzoate, recovery from external acidification was diminished. Addition of benzoate at pH 7.0 resulted in cytoplasmic acidification with only slow recovery. Periplasmic pH was observed using TorA-GFPmut3* exported to the periplasm through the Tat system. The periplasmic location of the fusion protein was confirmed by the observation that osmotic shock greatly decreased the periplasmic fluorescence signal by loss of the protein but had no effect on the fluorescence of the cytoplasmic protein. Based on GFPmut3* fluorescence, the pH of the periplasm equaled the external pH under all conditions tested, including rapid acid shift. Benzoate addition had no effect on periplasmic pH. The cytoplasmic pH of E. coli was measured with 4-s time resolution using a method that can be applied to any strain construct, and the periplasmic pH was measured directly for the first time.  相似文献   

9.
A screening for multicopy suppressors of the G(1)/S blockage of a conditional sit4 hal3 mutant yielded the NHA1 gene, encoding a Na(+),K(+)/H(+) antiporter, composed of a transmembrane domain and a large carboxyl-terminal tail, which has been related to cation detoxification processes. Expression of either the powerful Saccharomyces cerevisiae Ena1 Na(+)/H(+)-ATPase or the Schizosaccharomyces pombe Sod2 Na(+)/H(+) antiporter, although increasing tolerance to sodium, was unable to mimic the Nha1 function in the cell cycle. Mutation of the conserved Asp residues Asp(266)-Asp(267) selectively abolished Na(+) efflux without modifying K(+) efflux and did not affect the capacity of Nha1 to relieve the G(1) blockage. Mutagenesis analysis revealed that the region near the carboxyl-terminal end of Nha1 comprising residues 800-948 is dispensable for sodium detoxification but necessary for transport of K(+) cations. Therefore, this portion of the protein contains structural elements that selectively modulate Nha1 antiporter functions. This region is also required for Nha1 to function in the cell cycle. However, expression of the closely related Cnh1 antiporter from Candida albicans, which also contains a long carboxyl-terminal extension, although allowing efficient K(+) transport does not relieve cell cycle blockage. This indicates that although the determinants for Nha1-mediated regulation of potassium transport and the cell cycle map very closely in the protein, most probably the function of Nha1 on cell cycle is independent of its ability to extrude potassium cations.  相似文献   

10.
The Saccharomyces cerevisiae Nha1p, a plasma membrane protein belonging to the monovalent cation/proton antiporter family, plays a key role in the salt tolerance and pH regulation of cells. We examined the molecular function of Nha1p by using secretory vesicles isolated from a temperature sensitive secretory mutant, sec4-2, in vitro. The isolated secretory vesicles contained newly synthesized Nha1p en route to the plasma membrane and showed antiporter activity exchanging H+ for monovalent alkali metal cations. An amino acid substitution in Nha1p (D266N, Asp-266 to Asn) almost completely abolished the Na+/H+ but not K+/H+ antiport activity, confirming the validity of this assay system as well as the functional importance of Asp-266, especially for selectivity of substrate cations. Nha1p catalyzes transport of Na+ and K+ with similar affinity (12.7 mM and 12.4 mM), and with lower affinity for Rb+ and Li+. Nha1p activity is associated with a net charge movement across the membrane, transporting more protons per single sodium ion (i.e., electrogenic). This feature is similar to the bacterial Na+/H+ antiporters, whereas other known eukaryotic Na+/H+ antiporters are electroneutral. The ion selectivity and the stoichiometry suggest a unique physiological role of Nha1p which is distinct from that of other known Na+/H+ antiporters.  相似文献   

11.
The Saccharomyces cerevisiae Nha1p, a plasma membrane protein belonging to the monovalent cation/proton antiporter family, plays a key role in the salt tolerance and pH regulation of cells. We examined the molecular function of Nha1p by using secretory vesicles isolated from a temperature sensitive secretory mutant, sec4-2, in vitro. The isolated secretory vesicles contained newly synthesized Nha1p en route to the plasma membrane and showed antiporter activity exchanging H+ for monovalent alkali metal cations. An amino acid substitution in Nha1p (D266N, Asp-266 to Asn) almost completely abolished the Na+/H+ but not K+/H+ antiport activity, confirming the validity of this assay system as well as the functional importance of Asp-266, especially for selectivity of substrate cations. Nha1p catalyzes transport of Na+ and K+ with similar affinity (12.7 mM and 12.4 mM), and with lower affinity for Rb+ and Li+. Nha1p activity is associated with a net charge movement across the membrane, transporting more protons per single sodium ion (i.e., electrogenic). This feature is similar to the bacterial Na+/H+ antiporters, whereas other known eukaryotic Na+/H+ antiporters are electroneutral. The ion selectivity and the stoichiometry suggest a unique physiological role of Nha1p which is distinct from that of other known Na+/H+ antiporters.  相似文献   

12.
In this study, a correlation is described between low cytoplasmic pH, measured with the fluorescent probes 2[prime],7[prime]-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (acetoxymethyl ester) and bis- [3-propyl-5-oxoisoxazol-4-yl]pentamethine oxonol, and the production of secondary metabolites for several plant cell-suspension systems. Anthraquinone production in Morinda citrifolia suspensions is negligible in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D), whereas with naphthalene acetic acid (NAA) a significant accumulation is realized. NAA-grown cells showed a lower cytoplasmic pH than did 2,4-D-grown cells. Addition of 2,4-D or parachlorophenoxy acetic acid to NAA-grown cells resulted in an inhibition of anthraquinone production and an increase of the cytoplasmic pH, whereas addition of parachlorophenyl acetic acid had no effect on either parameter. Lignin production in Petunia hybrida cells could be induced by subculturing them in a medium without iron. These cells showed a lower cytoplasmic pH than control cells. Addition of Fe3+ led to a decreased lignin content and an increased cytoplasmic pH. Two cell lines of Linum flavum showed a different level of coniferin and lignin concentration in their cells. Cells that accumulated coniferin and lignin had a lower cytoplasmic pH than cells that did not accumulate these secondary metabolites. Apparently, in different species and after different kinds of treatment there is a correlation between acidification of the cytoplasm and the production of different secondary metabolites. The possible role of this acidification in secondary metabolite production is discussed.  相似文献   

13.
Papouskova K  Sychrova H 《FEBS letters》2006,580(8):1971-1976
The family of Nha antiporters mediating the efflux of alkali metal cations in exchange for protons across the plasma membrane is conserved in all yeast species. Yarrowia lipolytica is a dimorphic yeast, phylogenetically very distant from the model yeast Saccharomyces cerevisiae. A search in its sequenced genome revealed two genes (designated as YlNHA1 and YlNHA2) with homology to the S. cerevisiae NHA1 gene, which encodes a plasma membrane alkali metal cation/H+ antiporter. Upon heterologous expression of both YlNHA genes in S. cerevisiae, we showed that Y. lipolytica antiporters differ not only in length and sequence, but also in their affinity for individual substrates. While the YlNha1 protein mainly increased cell tolerance to potassium, YlNha2p displayed a remarkable transport capacity for sodium. Thus, Y. lipolytica is the first example of a yeast species with two plasma membrane alkali metal cation/H+ antiporters differing in their putative functions in cell physiology; cell detoxification vs. the maintenance of stable intracellular pH, potassium content and cell volume.  相似文献   

14.
Maintenance of intracellular K+ homeostasis is one of the crucial requisites for the survival of yeast cells. In Saccharomyces cerevisiae, the high K+ content corresponds to a steady state between simultaneous influx and efflux across the plasma membrane. One of the transporters formerly believed to extrude K+ from the yeast cells (besides Ena1-4p and Nha1p) was named Kha1p and presumed as a putative plasma membrane K+/H+ antiporter. We prepared kha1 and tok1-kha1 deletion strains in the B31 and MAB 2d background. Both the strains contain the ena1-4 and nha1 deletions; that means they lack the main active sodium and potassium efflux systems. MAB 2d has additional trk1 and trk2 deletions, i.e. is impaired in active K+ uptake as well. We performed a large physiological study with these strains to specify the phenotype of kha1 deletion. In our experiments, no difference in K+ content or efflux was observed in strains lacking the KHA1 gene compared with control strains. Two main phenotype manifestations of the kha1 deletion were growth defect on high external pH and hygromycin sensitivity. The correlation between these phenotypes and the kha1 deletion was confirmed by plasmid complementation. Fluorescence microscopy of green fluorescent protein (GFP)-tagged Kha1p showed that this antiporter is localized preferentially intracellularly (in contrast to the plasma membrane Na+/H+ antiporter Nha1p). Based on these findings, Kha1p is probably not localized in plasma membrane and does not mediate efflux of alkali metal cations from cells, but is important for the regulation of intracellular cation homeostasis and optimal pH control, similarly as the Nhx1p.  相似文献   

15.
Our previous work identified NHA1, a testis-specific sodium–hydrogen exchanger, is specifically localized on the principal piece of mouse sperm flagellum. Our subsequent study suggested that the number of newborns and fertility rate of NHA1-vaccinated female mice are significantly stepped down. In order to define the physiological function of NHA1 in spermatozoa, we generated Nha1Fx/Fx, Zp3-Cre (hereafter called Nha1 cKO) mice and found that Nha1 cKO males were viable and subfertile with reduced sperm motility. Notably, cyclic AMP (cAMP) synthesis by soluble adenylyl cyclase (sAC) was attenuated in Nha1 cKO spermatozoa and cAMP analogs restored sperm motility. Similar to Nha1 cKO males, Nha2Fx/Fx, Zp3-Cre (hereafter called Nha2 cKO) male mice were subfertile, indicating these two Nha genes may be functionally redundant. Furthermore, we demonstrated that male mice lacking Nha1 and Nha2 genes (hereafter called Nha1/2 dKO mice) were completely infertile, with severely diminished sperm motility owing to attenuated sAC-cAMP signaling. Importantly, principal piece distribution of NHA1 in spermatozoa are phylogenetically conserved in spermatogenesis. Collectively, our data revealed that NHA1 and NHA2 function as a key sodium–hydrogen exchanger responsible for sperm motility after leaving the cauda epididymidis.As many as 15% of human couples are infertile, and male infertility is about half of these cases.1 To fertilized egg, spermatozoa from the cauda epididymis must travel a long journey in the female reproductive tract to reach ampulla of uterine tube. Interestingly, in most mammalian species examined, the sperm journey experiences a natural increase in Na+/HCO3 concentration and pH value (pH<7, Na+<25 mM, HCO3<1 mM in cauda epididymis, whereas pH~7.4, Na+>100 mM, HCO3>10 mM in female reproductive tract).2, 3 It is thus clear that intracellular pH (pHi) regulation is of the utmost importance for sperm physiology, including motility, maturation and the acrosome reaction.4 The maintenance of sperm pHi is kept through the involvement of several mechanisms, among which is included the sodium (Na+)–hydrogen (H+) exchangers (NHEs).5NHEs, also known as Na+/H+ antiporters (NHAs), are integral membrane proteins that catalyze the exchange of Na+ for H+ across lipid bilayers and are ubiquitously distributed in almost all living organisms.6 The SLC9 gene family encodes NHEs and can be divided into three subgroups (reviewed in Martins et al.7). The SLC9A subgroup encompasses plasmalemmal isoforms NHE1–5 (SLC9A1–5) and the predominantly intracellular isoforms NHE6–9 (SLC9A6–9). The SLC9B subgroup consists of two recently cloned isoforms, NHA1 and NHA2 (SLC9B1 and SLC9B2, also known as NHEDC1 and NHEDC2). The SLC9C subgroup consist of a sperm-specific plasmalemmal NHE (SLC9C1, also known as sNHE) and a putative NHE, SLC9C2, for which there is currently no functional data.Four Na+/H+ exchangers (NHE1,8 NHE5,9 sNHE10 and NHA111) are reported to be expressed in spermatozoa. However, normal sperm motility is maintained in Nhe1-null mice, suggesting that Nhe1 gene is male fertility independent.12 Testis histology, sperm numbers and morphology are normal, but sNhe null males are completely infertile with severely diminished sperm motility.10 Further study suggests that cyclic AMP (cAMP) metabolism is impaired in spermatozoa lacking sNHE.13 A recent study showed that NHE8 is highly expressed in the Leydig cells and male mice lacking Nhe8 gene are infertile through its effect on modifying luteinizing hormone receptor (LHR) function.14Second messenger cAMP has been reported to be essential for sperm function, including activation of motility, hyperactivation and acrosome reaction, mainly via activation of holoenzyme protein kinase A (PKA).15 In mammalian spermatozoa, cAMP is synthesized by a soluble isoform of the adenylyl cyclase (sAC) family.16, 17 There are two alternative splicing products, which independently encode full-length sAC (sACfl) and truncated forms of sAC (sACt).18 sAC-null male mice are infertile because of a severe defect in sperm motility.19, 20 In addition, as HCO3 directly regulates sAC, this enzyme is able to translate pH changes into cAMP levels.21, 22The sperm flagellum-specific NHE identified by Liu et al.23 in our laboratory in 2010 is now classified into a new family of NHE, NHA1 (SLC9B1, also known as NHEDC1). Our subsequent study demonstrates that anti-NHA1 antibody reduced sperm motility and the rate of in vitro fertilization.23 Therefore, NHA1 is proposed to regulate sperm motility. The critical role for NHA1 in human male fertility is highlighted by the finding that NHA1 expression is either reduced or absent in patients with teratozoospermia.24In order to define the physiological function of NHA1 in spermatozoa, we generated Nha1 cKO, Nha2 cKO and Nha1/2 dKO male mice. Although single conditional knockouts for Nha1 or Nha2 were subfertile, male double knockout mice exhibited completely infertile with severely diminished sperm motility. cAMP synthesis by sAC was attenuated in cKO and dKO spermatozoa. Furthermore, the sperm motility defects could be rescued by the addition of cell-permeable cAMP analogs. In addition, the number of newborns and fertility rate of Nha1/2-vaccinated female mice were significantly stepped down, suggesting NHA1 and 2 may be an excellent target molecules for developing a novel male contraceptive.  相似文献   

16.
The vacuoles of logarithmic and stationary stage cells were compared by 31P-NMR with regard to pH, orthophosphate (Pi) content and average size of polyphosphate. The vacuoles of stationary cells had lower pH higher Pi content, and polyphosphates of longer average chain lenght, although total polyphosphate content was about the same as in logarithmic cells. The lower vacuolar pH in stationary cells was the major cause of a larger cytoplasmic-vacuolar pH gradient. Addition of NH4Cl, (NH4)2SO4, methylamine or amantadine at pH 8 to cells in either stage caused an icnrease in both cytoplasmic and vacuolar pH, with little or no change in the cytoplasmic-vacuolar pH gradient. However, the administration of ammonium salts to the cells at pH 8.0 resulted in rapid hydrolysis of the intravacuolar polyphosphate to tripolyphosphate and Pi, with attendant redistribution of Pi between the vacuolar and cytoplasmic compartments.  相似文献   

17.
The vacuoles of logarithmic and stationary stage cells were compared by 31P-NMR with regard to pH, orthophosphate (Pi) content and average size of polyphosphate. The vacuoles of stationary cells had lower pH higher Pi content, and polyphosphates of longer average chain lenght, although total polyphosphate content was about the same as in logarithmic cells. The lower vacuolar pH in stationary cells was the major cause of a larger cytoplasmic-vacuolar pH gradient. Addition of NH4Cl, (NH4)2SO4, methylamine or amantadine at pH 8 to cells in either stage caused an icnrease in both cytoplasmic and vacuolar pH, with little or no change in the cytoplasmic-vacuolar pH gradient. However, the administration of ammonium salts to the cells at pH 8.0 resulted in rapid hydrolysis of the intravacuolar polyphosphate to tripolyphosphate and Pi, with attendant redistribution of Pi between the vacuolar and cytoplasmic compartments.  相似文献   

18.
Pretreatment of rats with colchicine (3 mg/kg body weight) modified the time course of depletion of the cytoplasmic binding sites for 3H-dexamethasone after administration of prednisolone (0.5 or 1.5 mg/kg body weight). Colchicine also decreased the rate of the cytoplasmic receptor replenishment which was confirmed by application of this drug after completion of the cytoplasmic receptor translocation to nuclei (30 min after prednisolone injection). Addition of colchicine to the incubation mixture for in vitro binding of 3H-dexamethasone-labelled liver cytosol to isolated liver nuclei suspended in TKMS buffer (50 mM Tris-HCl, pH 7.5, 50 mM KCl, 5 mM MgCl2 and 250 mM sucrose) evoked no measurable changes in the rate of the nuclear binding.  相似文献   

19.
Sky1p and Ptk2p are protein kinases that regulate ion transport across the plasma membrane of Saccharomyces cerevisiae. We show here that deletion of SKY1 or PTK2 in trk1,2Delta cells increase spermine tolerance, implying Trk1,2p independent activity. Unexpectedly, trk1,2Deltasky1Delta and trk1,2Deltaptk2Delta cells display hypersensitivity to LiCl. These cells also show increased tolerance to low pH and improved growth in low K(+), as demonstrated for deletion of PMP3 in trk1,2Delta cells. We show that Sky1p and Pmp3p act in different pathways. Hypersensitivity to LiCl and improved growth in low K(+) are partly dependent on the Nha1p and Kha1p antiporters and on the Tok1p channel. Finally, Dhh1p, a RNA helicase was demonstrated to improve growth of trk1,2Deltasky1Delta cells in low K(+). Overexpression of Dhh1p improves the ability of trk1,2Delta cells to grow in low K(+) while dhh1Delta cells are sensitive to spermine and salt ions. A model that integrates these results to explain the mechanism of ion transport across the plasma membrane is proposed.  相似文献   

20.
There are three different sodium transport systems (Ena1-4p, Nha1p, Nhx1p) in Saccharomyces cerevisiae. The effect of their absence on the tolerance to alkali-metal cations and on the membrane potential was studied. All three sodium transporters were found to participate in the maintenance of Na+, Li+, K+ and Cs+ homeostasis. Measurements of the distribution of a fluorescent potentiometric probe (diS-C3(3) assay) in cell suspensions showed that the lack of all three transporters depolarizes the plasma membrane. The overexpression of the Na+,K+/H+ antiporter Nha1 resulted in the hyperpolarization of the plasma membrane and consequently increased the sensitivity to Cs+, Tl+ and hygromycin B. This is the first evidence that the activity of a Na+,K+/H+ antiporter could play a role in the homeostatic regulation of the plasma membrane potential in yeast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号