首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Werner Kunz 《Chromosoma》1967,21(4):446-462
Isolated unfixed chromosomes from the oocytes of several grasshopper species, of Gryllus domesticus, and of two cockroaches have been investigated under phase contrast. As demonstrated previously in Locusta migratoria (Kunz, 1967), these chromosomes resemble the lampbrush chromosomes in amphibian oocytes. From these the lateral loops of the orthopteran chromosomes differ in that they are only one third as long (Fig. 3). The distinctness of chromomeres and chiasmata is considerably lower than that in amphibian oocytes (Fig. 4). — Besides the lampbrush chromosomes the oocyte nuclei of Orthoptera contain several hundred spheres or granules which are thought to be the multiple nucleoli (Fig. 6). In young oocytes, these nucleoli are vacuolated spheroids aggregated compactly in the center of the nucleus (Fig. 7). In the oocyte of the cricket, this center contains Feulgen-positive material which disappears in the early growth period when the nucleoli transform from solid structures to several hundred spheres. In oocytes of an intermediate size, both in the grasshoppers and Gryllus such spheroids are present. In the larger mature oocytes these spheres are localized peripherally around the nuclear envelope (Decticus; Fig. 10b), or the become extended into beaded ring forms (Gryllus; Fig. 12), or these rings are opened, stretched and connected in a row to form long “pearl-string” threads (Locusta, Acrida, Homorocoryphus). The spheroids around the nuclear envelope of Decticus look very similar to the solid and spheroidal nucleoli in young oocytes of the axolotl (Callan, 1966). The beaded rings of Gryllus resemble the ring-shaped nucleoli in the amphibian oocytes during their intermediate growing phase. — Following Keyl's (1966) hypothesis for the construction of replication units, these different appearances of multiple nucleoli are proposed to be results of a similar mode of extra-replication, but of different arrangement. In the case of Gryllus and Decticus the nucleolar DNA Anlagen are set free from the chromosomes, but they remain attached one behind the other in Locusta and some other grasshoppers.  相似文献   

2.
In panoistic ovaries (without nurse cells) there are three predominating structures: lampbrush chromosomes, multiple nucleoli, and the hitherto undescribed endobody (Binnenkörper). Nucleoli are always multiple during the growth period of the oocyte of panoistic ovaries. This is true even in the case of Blattella which seems to possess only one big nucleolus, if examined in the light microscope (cf. Figs. 2 and 14b).—In the meroistic type of ovary (with nurse cells) the development of nucleoli and lampbrush chromosomes in the oocyte is very reduced. Only in the early growth stages of the oocyte the chromosomes despiralisize in a speciesspecific degree before they condense to a karyosphere (Pigs. 8, 9). On the other hand the endobody is bigger in the meroistic than in the panoistic ovary (Figs. 5, 8,14). — Lampbrush chromosomes and multiple nucleoli are sites of a very intensive RNA-synthesis (Fig. 1). The nucleoli are built up by granules measuring 125 Å in diameter (Figs. 15, 16). In the endobody, no RNA-metabolism could be demonstrated (Figs, 1a, b, 8c). The endobody is very homogeneous in electron microscope pictures and clearly distinct from the granular nucleoli (Fig. 17). The labelling pattern after incubation with 3H-amino acids suggests a permanent exchange of protein molecules between the karyoplasm and the endobody. — In the meroistic type of ovary the oocyte obtains RNA from the nurse cells, and RNA-synthesis in the oocyte nucleus is decreased in the same measure as its chromosomes are condensed. — The water-beetles Dytiscus and Acilius possess extra-DNA and deviate from the rule of restricted RNA-synthesis in the oocyte nucleus of the meroistic ovary albeit their chromosomes form a karyosphere too (Fig. 11) and RNA streams also from the nurse chamber into the ooplasm (Fig. 10). The extra-DNA resolves itselve into a network of fine fibrils no longer stainable by the Feulgen reaction. True multiple nucleoli develop on the fibrils suggesting the extra-DNA contains a huge mass of nucleolus organizers. The case of Dytiscus is very similar to the development of the multiple nucleoli in Gryllus.  相似文献   

3.
Werner Kunz 《Chromosoma》1969,26(1):41-75
The early stages of female and male germ cells have been investigated in Feulgen squash preparations, in unfixed state with phase contrast optics and in the electron microscope. The DNA axes of the ring-shaped multiple nucleoli in the growing oocytes of Gryllus arise from compact DNA bodies which are found in oogonia of young larvae and in oocytes prior to the growth period. The nuclei of the early oogonia contain several little DNA bodies whereas young oocytes at leptotene, zygotene and pachytene have only one body which is bigger than at earlier stages (Pig. 3). At metaphase and anaphase during oogonial mitosis the DNA body has a filamentous shape distinguishable from the compact chromosomes (Fig. 5). In oogonia as well as at leptotene and zygotene stages, nucleoli are produced in the peripheral, uncoiled parts of each DNA body whereas the compact interior is completely free of nucleolar material (Figs. 4, 12). At pachytene, the whole DNA body begins to despiralize, and single DNA strands are released into the nucleoplasm. These strands form hundreds of multiple nucleoli which finally are dispersed in the germinal vesicle (Fig. 11). — Incorporation studies with radio-active thymidine have shown that DNA synthesis in the DNA body is not synchronous with the S-phase of the chromosomes (Fig. 7). — The DNA body is an own formation distinct from the sex chromosomes (in contrast to the opinion of Sotelo and Wettstein, 1964). Although the positive heteropycnotic X-chromosome in the germ cells of the male cricket is very similar to the DNA body of the female (Fig. 8), there is no regular contact between sex chromosome and nucleolus neither in spermatogonia nor in spermatocytes (Figs. 9, 14). In all probability, the site of the nucleolar organizer is autosomal. — It is suggested that the amplification of the nucleolar genes in Gryllus oocytes results in an accumulation of ribosomal RNA for use during the early cleavage stages of the embryo  相似文献   

4.
The genes of rRNA in the nucleolar organizer region (NOR) are inactivated in the oocytes of adult birds despite the functioning of lampbrush chromosomes. The nucleolus is not formed during all stages of the oocyte development. On the other hand, two morphological forms of oocytes differing by the presence of nucleolus in the germinal vesicle are described in the ovaries of juvenile birds. The activation and function of the ribosomal genes in avian oogenesis is still vague. In this work, the NOR activation in chicken (Gallus gallus domesticus) oocytes is confirmed with the help of fluorescence immunohistochemistry (antibodies against nucleophosmin, fibrillarin, and UBF1) and in situ nucleic acid hybridization (FISH with the probe to ITS1 in pre-rRNA). It is demonstrated that the nucleolus in the oocytes at the lampbrush stage in the chicken ovaries is fragmented after complete inactivation of the ribosome genes: the nucleolar fragments contain fibrillarin but do not contain pre-rRNA molecule. The utility of the ovary 3D reconstruction using serial histological sections for quantification of sex cell population heterogeneity in the ovaries of juvenile birds is demonstrated. The obtained results improve the current insight into the functional NOR state in the oocytes of juvenile female birds and contribute to the concept of diversity in the scenarios of gametogenesis.  相似文献   

5.
Holocentric chromosomes have evolved in various plant and animal taxa, which suggests they may confer a selective advantage in certain conditions, yet their adaptive potential has scarcely been studied. One of the reasons may reside in our insufficient knowledge of the phylogenetic distribution of holocentric chromosomes across eukaryotic phylogeny. In the present study, we focused on Droseraceae, a carnivorous plant family with an unknown chromosomal structure in monotypic genera Dionaea and Aldrovanda, and a closely related monotypic family Drosophyllaceae. We used flow cytometry to detect holocentric chromosomes by measuring changes in the ratio of the number of G2 nuclei to the number of G1 nuclei in response to gamma irradiation and determined chromosomal structures in Aldrovanda vesiculosa, Dionaea muscipula, Drosera tokaiensis, and Drosera ultramafica from Droseraceae and Drosophyllum lusitanicum from Drosophyllaceae. We confirmed monocentric chromosomes in D. lusitanicum and detected holocentric chromosomes in all four Droseraceae. Our novel finding of holocentric chromosomes in monotypic genera Aldrovanda and Dionaea suggests that all Droseraceae may be holocentric, but to confirm that further research is needed due to previously reported conflicting results in Drosera rotundifolia.  相似文献   

6.
7.
The karyotypes in spermatogonial and leukocyte metaphases of the toads Bufo bufo, B. viridis and B. calamita (all 2n=22) were analysed and the DNA content of colchicine treated and Feulgen stained spermatogonial metaphase chromosomes measured microspectrophotometrically. The toad species possess similar karyotypes, but the chromosomes of B. bufo are somewhat longer than the chromosomes of B. viridis and B. calamita. All chromosomes of B. bufo contain significantly more than, but in no case twice as much DNA as their homologues in the other two species. Eight chromosomes of B. bufo contain 30–40%, three about 50% more DNA than their homologues in B. viridis. Exactly the same DNA-differences between both sets of chromosomes were found in B. bufo × B. viridis hybrids. Significant differences in the DNA amount of B. viridis and B. calamita exist only between the large chromosomes of these species. The ratio of the total DNA amount of the genomes in the three species is 1.49∶1.07∶1. These DNA-differences between the three toad species are confirmed by microspectrophotometric DNA measurements of their erythrocyte nuclei. It is supposed that these interspecific differences in DNA content of the toads are not a consequence of differential polyteny but are caused during the evolution process by local increase in DNA in all chromosomes of B. bufo and in the large chromosomes of B. viridis.  相似文献   

8.
The karyotypes of the toad Bufo marinus L. (2n=22) and the frogs Limnodynastes tasmaniensis Gthr. (2n=24), Rana temporaria L., R. esculenta L. (both 2n=26) and R. arvalis Nills. (2n=24) were analysed in colchicine treated leukocyte and spermatogonial metaphases and/or embryonic and larval mitoses. The DNA content of Feulgen stained erythrocyte nuclei was measured microspectrophotometrically. Heteromorphic sex chromosomes are absent in all species. L. tasmaniensis has the lowest DNA content among these species. The south American toad B. marinus shows a karyotype similar to the other known toad species and contains the same amount of DNA as the European species B. calamita with the lowest DNA amount among the European toads. In southern German populations of R. temporaria besides animals with the “standard”-karyotype (2n=26) individuals with 1 or 2, in rare cases with 3 or 4 supernumerary chromosomes have been found. The supernumeraries are heterochromatic and smaller than the smallest chromosome of the “standard”-karyotype. If only 1 or 2 supernumerary chromosomes are present, they seem to show normal mendelian inheritance as a rule. The observation of a few tadpoles with intraindividual different numbers of supernumeraries points to the occurrence of unequal distribution of these chromosomes in individuals containing a higher number of supernumerary chromosomes. The karyotype of R. esculenta is very similar to the “standard”-karyotype of R. temporaria, but the chromosomes of R. esculenta are somewhat longer than those of R. temporaria. R. esculenta contains about 54% more DNA than R. temporaria in the erythrocyte nuclei, so that it must be assumed that all chromosomes of R. esculenta contain more DNA than their homologues in R. temporaria. R. arvalis possesses about 28% more DNA than R. temporaria. It is supposed that these interspecific differences in DNA content of the Rana species — as observed earlier in Bufo species — are not a consequence of differential polyteny but are caused during evolutionary processes by local increase in DNA in the chromosomes of R. esculenta and R. arvalis.  相似文献   

9.
Molecular Conformation of GABA   总被引:1,自引:0,他引:1  
CURTIS et al.1,2 have described evidence suggesting that the alkaloid bicuculline is a specific antagonist to the action of γ-aminobutyric acid (GABA), a possible inhibitory transmitter in the mammalian brain3,4. By considering structural models, they suggested3 as a stereochemical basis for this antagonism a geometrical configuration in which the N and Ol=C1—O2 of GABA is isosteric with the N and C2—Cl—Ol in bicuculline (Fig. 1a and b). An alternative configuration of GABA, which would give a greater degree of stereochemical similarity to bicuculline, is depicted in Fig. 1c. In both molecules the N is now seen to be isosterically related to Ol=Cl—O2 and located at an angle of about 40° to the plane of the O=Cl—O group viewed towards C2 (Fig. 2). In contrast to Curtis's suggestion, there is now not only geometrical congruence but also identical matching of atomic species.  相似文献   

10.
Fifty-five specimens of Steindachneridion melanodermatum were analyzed using molecular and conventional cytogenetic tools. Two polymorphisms were found: one involving the length of nucleolar organizer regions and another involving two submetacentric chromosomes previously identified as sex chromosomes. The polymorphism was confirmed by homogeneity between male and female karyotypes. Nucleotide sequencing and physical chromosome mapping were also used to identify and characterize one class of repetitive DNA, named SmAluI-Rex3. Based on the results and literature the present study offers an update of the occurrence of sex chromosome system in this species.  相似文献   

11.
THE human C group chromosomes have been difficult to study because they have rather similar morphology. Application of the quinacrine fluorescent staining technique developed by Caspersson et al.1 now allows the identification of individual chromosomes and of the chromosome segments involved in translocations because the fluorescent patterns are not altered by the translocation2–4. We have reported the value of this technique in analysing abnormalities of the D4 and G3 groups. We report here a variety of structural changes of C group chromosomes which have been characterized in this way, as well as the terminal DNA replication pattern of the C group chromosomes.  相似文献   

12.
In the present study, the chromosomal mechanisms of nucleolar dominance were analyzed in the hybrid lineage “Piaupara,” which resulted from crossing the Leporinus macrocephalus female (Piauçu) and L. elongatus male (Piapara) fish. The analyses demonstrated that, in the hybrid, the nucleolar region inherited from L. elongatus presented higher activity, with expression in 100% of the cells, whereas the nucleolar region from L. macrocephalus appeared active at a frequency of 11.6%. The FISH technique with an 18S probe showed that the ribosomal DNA of the nucleolar region was not lost in the hybrid, and the results therefore demonstrated invariable marks in two chromosomes, each originating from one parent. An interesting difference between the nucleolar regions of the parental species was the association of the NOR with heterochromatic blocks (repetitive DNA) in L. elongatus, which could act as a determinative element in the establishment of this process.  相似文献   

13.
A FISH with a probe for telomeric and rDNA repeats and immunofluorescence with ANA CREST and antibodies to nucleolae protein B23 were used to study the three-dimensional (3D) organization of fibroblast interphase nuclei in two shrew twin species, Sorex granarius and Sorex araneus, of the Cordon race. Karyotypes of these species are composed of nearly identical chromosomal arms and differ in the number of their metacentrics and the structures of their terminal chromosome regions. In the short arms of S. granarius, 32 of the acrocentrics have large telomeres that contain an average of 218 kb telomere repeats, which alternate with ribosomal repeats. These regions also contain active nucleolar organizing regions (NORs). In contrast, in active NORs in S. araneus are localized at the terminal regions of 8 chromosomal arms (Zhdanova et al., 2005; 2007b). Here, we show that associations of chromosomes by telomeres and the contact of a part of the telomere clusters with the inner nuclear membrane and nucleolus characterize the interphase nuclei of both Sorex granarius and Sorex araneus. We also reveal the partial colocalization of telomere and ribosomal clusters and the spatial proximity of centomeric and telomeric regions in the interphase nuclei of S. granarius. It appears that only ribosomal clusters containing a sufficient number of active ribosomal genes exhibit a connection with the nucleolus. Nucleolus disassembly during the fibroblastís transition to mitosis and the role of the B23 protein in this process have been studied.  相似文献   

14.
Wheat-Dasypyrum villosum translocations were induced in the progeny of the amphiploid Triticum durum-D. villosum (AABBVV) by pollen irradiation. The rearranged V genome chromosomes were characterized by genomic/fluorescence in situ hybridization (GISH/FISH) and molecular markers. Twenty wheat-D. villosum translocation chromosomes were selected, including four centric, seven large segments, and nine small segments in a Chinese Spring (CS) background. The four centric translocations were subsequently identified by GISH/FISH and by molecular markers specific to chromosome arms of the Triticeae linkage groups. They were T5DL.4VL, T4BL.7VS, and T4BS.7VL as well as the compensating translocation T7AL.7VS. Using a combination of previously developed V chromosome alterations, 52 translocations or deletions that divided V chromosomes into 42 bins were employed for deletion mapping of molecular markers specific to D. villosum in a wheat background. Ninety-five expressed sequence tag (EST)-sequence-tagged site (STS) and seven SSR markers that were previously reported, as well as 72 STS markers screened in the present study, were physically allocated into 37 of 42 chromosome bins of D. villosum. Multiple loci of EST-STS markers were also mapped using CS nullisomic tetrasomic (NT) and ditelosomic (DT) genetic stocks. Most EST-STS homoeoloci were located on homoeologous chromosomes, suggesting a high degree of homology between the genomes of D. villosum and wheat. Four 4VL-specific markers detected homoeoloci on group 7 chromosomes of wheat, indicating that chromosome 4V of D. villosum shows some affinity to both wheat homoeologous groups 4 and 7. This is the first physical map of D. villosum, which will provide insight into the V genome for molecular breeding.  相似文献   

15.
16.
Changes in the nuclear structures and their participation in RNA synthesis in the growing oocytes were followed in two species of beetles Blaps lethifera and Gnaptor spinimanus. In the oocytes of both the species, the chromosomes join into the karyosphere following the short-term lampbrush stage. A large capsule appears around the karayosphere which consists of the fibrous substance, granules and karyosphere nucleoli. The latter form in the karyosphere and contain RNP but they are not true nucleoli since they do not include 3H-uridine. RNA synthesis on the chromosomes, active at the lampbrush stage, falls markedly following their joining into the karyosphere. The oocyte nuclei of these beetles are, thus, characterized by the absence of RNA synthesizing nucleolar system and, as compared with the trophocytes, by the low level of RNA synthesis on the chromosomes.  相似文献   

17.
Molecular genetic polymorphism in three species and four subspecies of crested wheatgrass, Agropyron, was studied using 56K diversity array technology (DArT), and the results confirmed with four selected SNP Amplifluor markers. In total, 82 accessions from three species—A. desertorum, A. fragile, and two subspecies of A. cristatum (ssp. cristatum and ssp. pectinatum)—were collected from various regions of Kazakhstan or ordered from Genebank in Russia, for morphological taxonomy and molecular phylogenetic analyses. In the DArT clone analysis, two Agropyron species with narrow linear spikes, A. fragile and A. desertorum, were found to be genetically similar and fell within a single clade (A). Both species share similar eco-geographical origins. All samples of A. cristatum including the two subspecies, ssp. pectinatum and ssp. cristatum, which have short broad spikes, were interspersed within two other clades, B and C, more genetically distanced from the other species. Four SNP Amplifluor markers developed for genetic fragments on different chromosomes confirmed the distinction between the studied species. These results, derived from multiple molecular markers, suggest that the morphological taxonomy of these Agropyron species should be re-considered carefully in the future.  相似文献   

18.
Repetitive DNA sequences have been widely used in cytogenetic analyses. The use of gene sequences with a low-copy-number, however, is little explored especially in plants. To date, the karyotype details in Brachiaria spp. are limited to the location of rDNA sites. The challenge lies in developing new probes based on incomplete sequencing data for the genus or complete sequencing of related species, since there are no model species with a sequenced genome in Brachiaria spp. The present study aimed at the physical location of conserved genes in chromosomes of Brachiaria ruziziensis, Brachiaria brizantha, and Brachiaria decumbens using RNAseq data, as well as sequences of Setaria italica and Sorghum bicolor through the fluorescent in situ hybridization technique. Five out of approximately 90 selected sequences generated clusters in the chromosomes of the species of Brachiaria studied. We identified genes in synteny with 5S and 45S rDNA sites, which contributed to the identification of chromosome pairs carrying these genes. In some cases, the species of Brachiaria evaluated had syntenic segments conserved across the chromosomes. The use of genomic sequencing data is essential for the enhancement of cytogenetic analyses.  相似文献   

19.
20.
Heteropeza pygmaea (syn. Oligarces paradoxus) can reproduce as larvae by paedogenesis or as imagines (Fig. 1). The eggs of imagines may develop after fertilization or parthenogenetically. The fertilized eggs give rise to female larvae, which develop into mother-larvae with female offspring (Weibchenmütter). Only a few of the larvae which hatch from unfertilized eggs become motherlarvae with female offspring; the others die. Spermatogenesis is aberrant, as it is in all gall midges studied to date. The primary spermatocyte contains 53 or 63 chromosomes. The meiotic divisions give rise to two sperms each of which contains only 7 chromosomes (Figs. 5–11). The eggs of the imago are composed of the oocyte and the nurse-cell chamber. In addition to the oocyte nucleus and the nurse-cell nuclei there are three other nuclei in the eggs (Figs. 15–17). They are called small nuclei (kleine Kerne). In prometaphase stages of the first cleavage division it could be seen that these nuclei contain about 10 chromosomes. Therefore it is assumed that these nuclei originate from the soma of the mother-larva. The chromosome number of the primary oocyte is approximately 66. The oocyte completes two meiotic divisions. The reduced egg nucleus contains approximately 33 chromosomes. The polar body-nuclei degenerate during the first cleavage divisions. The fertilized egg contains 2–3 sperms. The primary cleavage nucleus is formed by the egg nucleus and usually all of the sperm nuclei and the small nuclei (Figs. 21–29). The most frequent chromosome numbers in the primary cleavage nuclei are about 77 and 67. The first and the second cleavage divisions are normal. A first elimination occurs in the 3rd, 4th, and 5th cleavage division (Fig. 30). All except 6 chromosomes are eliminated from the future somatic nuclei. Following a second elimination (Figs. 33, 34), the future somatic nuclei contain 5 chromosomes. No elimination occurs in the divisions of the germ line nucleus. In eggs which develop parthenogenetically the primary cleavage nucleus is formed by the egg nucleus and 2–3 small nuclei. It's chromosome number is therefore about 53 or 63. After two eliminations, which are similar to the ones which occur in fertilized eggs, the soma contains 5 chromosomes. The somatic nuclei of male larvae which arrise by paedogenesis contain 5 chromosomes; while the somatic nuclei of female larvae of paedogenetic origin contain 10 chromosomes. It was therefore assumed earlier that sex was determined by haploidy or diploidy. But the above results show that larvae from fertilized as well as from unfertilized eggs of imagines have 5 chromosomes in the soma, but are females, and the female paedogenetic offspring of larvae from unfertilized eggs have either 5 or 10 chromosomes in their somatic cells. Therefore sex determination is not by haploidy-diploidy but by some other, unknown, mechanism. The cytological events associated with paedogenetic, bisexual, and parthenogenetic reproduction in Heteropeza pygmaea are compared (Fig. 37). The occurrence and meaning of the small nuclei which are found in the eggs of most gall midges are discussed. It has been shown here that these nuclei function to restore the chromosome number in fertilized eggs; it is suggested that they function similarity in certain other gall midges. Consideration of the mode of restoration of the germ-line chromosome number leads to the conclusion that in Heteropeza few, if any, of the chromosomes are limited to the germ-line, i.e. can never occur in somatic cells (p. 124).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号