首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Basic fibroblast growth factor (bFGF), a potent inducer of angiogenesis in vivo, stimulates the production of both urokinase- and tissue-type plasminogen activators (PAs) in cultured bovine capillary endothelial cells. The observed increase in proteolytic activity induced by bFGF was effectively diminished by picogram amounts of transforming growth factor beta (TGF beta), but could not be abolished by increasing the amount of TGF beta. However, the inhibition by TGF beta was greatly enhanced if the cells were pretreated with TGF beta before addition of bFGF. After prolonged incubation of cultures treated simultaneously with bFGF and TGF beta, the inhibitory effect of TGF beta diminished and the stimulatory effect of the added bFGF dominated as assayed by PA levels. TGF beta did not alter the receptor binding of labeled bFGF, nor did a 6-h pretreatment with TGF beta reduce the amount of bFGF bound. The major difference between the effects of bFGF and TGF beta was that while bFGF effectively enhanced PA activity expressed by the cells, TGF beta decreased the amounts of both cell-associated and secreted PA activity by decreasing enzyme production. Both bFGF and TGF beta increased the secretion of the endothelial-type plasminogen activator inhibitor.  相似文献   

2.
Transforming growth factor-beta (TGF beta) is a regulator of cellular proliferation which can alter the proteolytic activity of cultured cells by enhancing the secretion of endothelial type plasminogen activator inhibitor and affecting the secretion of plasminogen activators (PAs) in cultured fibroblastic cells. We used the TGF beta- responsive malignant human lung adenocarcinoma cell line A549 to study the relationships between the known TGF beta-induced growth inhibition and the effects of TGF beta on the secretion of PA activity by A549 cells. PA activity was quantitated by caseinolysis assays, and characterized by urokinase mRNA analysis, immunoprecipitation, and zymography assays. PA-inhibitor production was observed in autoradiograms of SDS-polyacrylamide gels and reverse zymography assays. It was found that TGF beta enhanced the production of PA activity by these cells, in accordance with an enhancement of urokinase mRNA levels. A concomitant stimulation of type 1 PA-inhibitor production was also observed in A549 cells in response to TGF beta. In contrast to the observations of A549 cells, TGF beta caused a decrease in the expression of both urokinase and the tissue-type PA mRNA in human embryonic WI-38 lung fibroblasts indicating opposite regulation of the expression of PAs in these cells. The results suggest that TGF beta may play a role in the regulation of the invasive, proteolytically active phenotype of certain lung carcinoma cells.  相似文献   

3.
We have previously described a factor(s) produced by 8387 fibrosarcoma cells, which can affect plasminogen activator (PA) activity of cultured cells. Since then, transforming growth factor-beta (TGF beta) has been established as a major growth factor/growth inhibitor that regulates both the expression and activity of PAs and their endothelial-type inhibitor (PAI-1). The present study was undertaken to characterize the 8387 fibrosarcoma cell-derived factor(s) and to investigate its relationships to TGF beta by analysis of modulation of PA activity and cell growth. The fibrosarcoma cell-derived proteins were partially purified from serum-free conditioned culture medium using Bio-Gel P-10 chromatography. Two separate fractions with apparent molecular weights of 16,000 and 12,000 contained activities that both decreased the secretion of PA activity by human lung fibroblasts and inhibited the soft agar growth of A549 lung adenocarcinoma cells. Both factors affected similarly the production of urokinase-type PA and PAI-1 in various cell lines and enhanced anchorage-independent growth of murine AKR-2B fibroblasts. The effects of these factors thus resembled those of TGF beta. The immunological relationships between the Mr 16,000 and Mr 12,000 factors and TGF beta were therefore studied using neutralizing anti-TGF beta antibodies. The TGF beta antibodies efficiently inhibited the effects of the Mr 16,000 factor but not those of the Mr 12,000 factor in cell culture assays. The results suggest that 8387 fibrosarcoma cells produce two major growth inhibitors, one of which is closely related to TGF beta.  相似文献   

4.
Adult human skin fibroblasts were used as a model to study the effects of transforming growth factor beta (TGFβ) on the secreted plasminogen activator (PA) activity of cultured cells. TGFβ, at nanogram concentrations, enhanced the secretion of pro-PA from two fibroblast strains in a time- and dose-dependent manner. The induced enzymatic activity was inhibited by anti-urokinase antibodies and it co-migrated with purified urokinase in polyacrylamide gels. The secretion of PA activity was abolished when cycloheximide (0.1 μg/ml) was added to the cultures. The activity was thus dependent on protein synthesis rather than just on direct activation of a plasminogen proactivator. TGFβ had only a slight mitogenic effect on the test cells. Epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and insulin were ineffective alone in inducing PA. Insulin, on the contrary, had an inhibitory effect on the TGFβ-induced PA activity. In addition to its effects on the secretion of PA, TGFβ enhanced the production of a proteinase inhibitor by these cells. The results suggest a role for TGFβ in the regulation of PA activity and pericellular proteolysis in fibroblastic cells.  相似文献   

5.
《The Journal of cell biology》1986,103(6):2403-2410
Cultured human embryonic lung fibroblasts were used as a model to study the effects of transforming growth factor-beta (TGF beta) on the plasminogen activator (PA) activity released by nontumorigenic cells into the culture medium. The cells were exposed to TGF beta under serum- free conditions, and the changes in PA activity and protein metabolism were analyzed by caseinolysis-in-agar assays, zymography, and polypeptide analysis. Treatment of the cells with TGF beta caused a significant decrease in the PA activity of the culture medium as analyzed by the caseinolysis-in-agar assays. The quantitatively most prominent effect of TGF beta on confluent cultures of cells was the induction of an Mr 47,000 protein, as detected by metabolic labeling. The Mr 47,000 protein was a PA inhibitor as judged by reverse zymography. It was antigenically related to a PA inhibitor secreted by HT-1080 tumor cells as demonstrated with monoclonal antibodies. The induced Mr 47,000 inhibitor was deposited into the growth substratum of the cells, as detected by metabolic labeling, immunoblotting analysis, and reverse zymography assays of extracellular matrix preparations. TGF beta also decreased the amounts of urokinase-type and tissue-type PAs accumulated in the conditioned medium, as detected by zymography. Epidermal growth factor antagonized the inhibitory effects of TGF beta by enhancing the amounts of the PAs. These results indicate that growth factors modulate the proteolytic balance of cultured cells by altering the amounts of PAs and their inhibitors.  相似文献   

6.
Transforming growth factor beta (TGF beta) treatment of rat osteoblast-rich calvarial cells or of the clonal osteogenic sarcoma cells, UMR 106-01, resulted in dose-dependent inhibition of plasminogen activator (PA) activity, and increased production of 3.2 kb mRNA and protein for PA inhibitor -1 (PAI-1). Although tissue-type PA (tPA) protein was not measured, TGF beta did not influence production of mRNA for tPA. Production of 2.3 kb mRNA for urokinase-type PA (uPA) was also increased by TGF beta in a dose-dependent manner. The effects of TGF beta on synthesis of mRNA for PAI-1 and uPA were maintained when protein synthesis was inhibited, and were abolished by inhibition of RNA synthesis. Although uPA had not been detected previously as a product of rat osteoblasts, treatment of lysates of osteoblast-like cells with plasmin yielded a band of PA activity on reverse fibrin autography, corresponding to a low Mr form of uPA. Untreated conditioned media from normal osteoblasts or UMR 106-01 cells contained no significant TGF beta activity, but activity could be detected in acidified medium. Treatment of conditioned media with plasmin resulted in activation of approximately 50% of the TGF beta detectable in acidified media. The results identify several effects of TGF beta on the PA-PA inhibitor system in osteoblasts. Net regulation of tPA activity through the stimulatory actions of several calciotropic hormones and the promotion of PAI-1 formation by TGF beta could determine the amount of osteoblast-derived TGF beta activated locally in bone. Stimulation of osteoblast production of mRNA for uPA could reflect effects on the synthesis of sc-uPA, a precursor for the active form of the enzyme.  相似文献   

7.
Osteoblasts secrete transforming growth factor beta (TGFβ) as a biologically inert, latent complex that must be dissociated before the growth factor can exert its effects. We have examined the production and proteolytic activation of latent TGFβ (LTGFβ) by clonal UMR 106-01 rat osteosarcoma cells and neonatal mouse calvarial (MC) osteoblast-like cells in vitro. Synthetic bPTH-(1–34) increased the activity of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PA) in cell lysates (CL) of UMR 106-01 cells. The concentration of active TGFβ in serum-free CM from cultures treated with bPTH-(1–34) and plasminogen was significantly greater than in CM from untreated controls and cultures treated with either bPTH-(1–34) or plasminogen alone. This effect occurred at concentrations of PTH-(1–34) that increased PA activity and was prevented by aprotinin, an inhibitor of plasmin activity. Treatment with bPTH-(1–34) had no effect on the concentration of TGFβ in acid-activated samples of CM. Functional consequences of proteolytically activated TGFβ was examined in primary cultures of neonatal MC osteoblast-like cells. Human platelet TGFβ1 caused a dose-dependent increase in the migration of these cells in an in vitro wound healing assay. Cell migration was also stimulated in cultures treated with bPTH-(1–34) and plasminogen together. This effect was blocked by an anti-TGFβ1 antibody. The results of these studies demonstrate that (1) LTGFβ secreted by osteoblasts in vitro is activated under conditions where the plasmin activity in the cultures is increased, and (2) the TGFβ generated by plasmin-mediated proteolysis is biologically active. We suggest that the local concentration of TGFβ in bone may be controlled by the osteoblast-associated plasminogen activator/plasmin system. Furthermore, since several calciotropic factors influence osteoblast PA activity, this system may have an important role in mediating their anabolic and/or catabolic effects. © 1993 Wiley-Liss, Inc.  相似文献   

8.
The human tumor cell line HT-1080 was used as a model system to study the effects of transforming growth factor-beta (TGF beta) on polypeptide synthesis and proteolytic activity of malignant cells. Confluent cultures were exposed to TGF beta under serum-free conditions, and alterations in the production of proteins were examined by metabolic labeling and polypeptide analysis. TGF beta induced the synthesis and secretion of the Mr 47,000 endothelial type plasminogen activator inhibitor (PAI-1) as shown by reverse zymography, immunblotting, and immunoprecipitation analyses. TGF beta-induced PAI-1 was rapidly deposited in the growth substratum of the cells as shown by metabolic labeling and extraction of the cultures with sodium deoxycholate. Using pulse-chase experiments, we found a relatively fast turnover of substratum-associated PAI-1. Exogenously added urokinase released PAI-1 from the substratum even in the presence of the plasmin inhibitor aprotinin, suggesting a direct effect of urokinase. Immunoreactive complexes of higher molecular weight were subsequently detected in the medium. Epidermal growth factor, transforming growth factor-alpha, platelet-derived growth factor, and insulin did not elicit similar effects on the amount of PAI-1. TGF beta also inhibited the anchorage-independent growth of HT-1080 cells at the same concentrations at which it induced PAI-1. These results indicate that TGF beta can modulate the extracellular proteolytic activity of cultured cells by enhancing the secretion and deposition of PAI-1 into their microenvironment. It remains to be established whether TGF beta inhibition of anchorage-independent growth of these cells is associated with the induction of PAI-1.  相似文献   

9.
Liver cells are considered the principal source of plasma vitronectin. The human hepatoma cell line HepG2 produces vitronectin into its culture medium. In the current work we have analyzed the regulation of vitronectin by transforming growth factor-beta 1 (TGF beta 1) in this hepatoma cell line by Northern hybridization, polypeptide and immunoprecipitation analyses and compared the response to another TGF beta-regulated gene, plasminogen activator inhibitor (PAI-1). Rabbit antibodies raised against human plasma-derived vitronectin were used in immunodetection. Polypeptide and immunoprecipitation analyses of the medium and cells, as well as immunoblotting analysis of the cells and their extracellular matrices, indicated enhanced TGF beta 1-induced production and extracellular deposition of vitronectin. Accordingly, TGF beta 1 enhanced the expression of vitronectin mRNA at picomolar concentrations (2-20 ng/ml) as shown by Northern hybridization analysis. Comparison of the temporal TGF beta induction profiles of vitronectin and PAI-1 mRNAs showed that vitronectin was induced more slowly but the vitronectin mRNAs persisted longer. In addition, platelet-derived and epidermal growth factors had an effect on vitronectin expression, but it was of lower magnitude. TGF beta 1 enhanced the expression of PAI-1 but, unlike previous reports, epidermal growth factor did not have any notable effect on PAI-1 in these cells. The results indicate that TGF beta 1 is an efficient regulator of the production of vitronectin by HepG2 cells and that PAI-1 and vitronectin are not coordinately regulated. In addition, with affinity purified antibodies to vitronectin receptor, we observed strong enhancement of the alpha subunit of the receptor in response to TGF beta 1. These effects of TGF beta are probably involved in various processes of the liver where matrix induction and controlled pericellular proteolysis is needed, as in tissue repair.  相似文献   

10.
Transforming growth factor-beta (TGF beta) is a growth modulator that stimulates the growth of fibroblastic cells but inhibits the growth of cells of epithelial origin. TGF beta also influences the production of extracellular matrix proteins, and of proteases and the type 1 plasminogen activator inhibitor (PAI-1) by cultured cells. TGF beta appears also to have various immunoregulatory effects, suppressing both T- and B-cell activities. It has been proposed that it might increase the expression of interleukin-1 (IL-1) mRNA in cultured human monocytes, thus potentiating immune functions. To analyze the role of TGF beta in IL-1 production we have now quantitated the effect of this factor on the production of biologically active IL-1 as well as IL-1 beta mRNA expression. The effect of TGF beta on IL-1 production optimally activated with bacterial lipopolysaccharide (LPS) was also studied. It was found that IL-1 activity and mRNA levels were rapidly elevated by LPS but not by TGF beta. Culture fluids from monocytes treated with TGF beta alone or with TGF beta plus LPS inhibited the proliferation of the test thymocytes. After gel filtration, the media from TGF beta-treated cultures showed no activity in the molecular weight area of IL-1 (approx. 15 kD), while the supernatants from TGF beta plus LPS-induced cells contained IL-1 activity in these fractions, the magnitude of which was, however, at the same level as in the culture fluids derived from cells stimulated with LPS alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Transforming growth factor beta 1 (TGF beta 1) has important effects on expression of the IgA isotype. TGF beta 1 alone, or in combination with IL-5 or IL-2 increases IgA secretion by populations of LPS-activated surface IgA negative (sIgA-) spleen B cells, while concurrently decreasing IgM and IgG secretion. The present study demonstrates the activity of TGF beta 1 as an IgA isotype switch factor at the clonal level. Stimulation of LPS-activated sIgA- spleen B cell populations with TGF beta 1, or a combination of TGF beta 1 and IL-2, resulted in a significant increase in total numbers of IgA secreting cells, and this increase ultimately was paralleled by an increase in total IgA secretion. Using limiting dilution analysis, TGF beta 1 was shown to increase the frequency of IgA secreting B cell clones, by approximately 20-fold. This was not accompanied by increased numbers of IgA secreting cells/clone. In contrast, IL-2 does not have activity as an IgA switch factor, but does increase IgA production by B cells already committed to secrete that isotype. Cell cycle inhibitors such as thymidine and hydroxyurea also selectively increased numbers of IgA secreting cells and total IgA secretion among populations of LPS-activated sIgA- spleen B cells. This suggests the IgA enhancing activity of TGF beta 1 may, in part, be related to its ability to inhibit cell growth.  相似文献   

12.
Incubations of rat anterior pituitary cells with transforming growth factor (TGF)-beta 1 for 48 hr suppressed the secretion of basal prolactin (PRL) in a dose-dependent manner (ED50, 100 pg/ml). Activin, a gonadal hormone processing cysteine distribution similar to TGF beta, also suppressed basal PRL secretion, but it was less effective (ED50, 4 mg/ml). Treatment with TGF beta 1 significantly suppressed basal PRL secretion from the pituitary after 24 hr and up to 72 hr of incubation. TGF beta 1 also inhibited thyrotropin-releasing hormone-mediated PRL secretion and activin inhibited thyrotropin-releasing hormone-mediated PRL secretion slightly, but significantly. In addition, we also measured the secretion of growth hormone by cultured pituitary cells treated with TGF beta 1 or activin for 24 to 72 hr. TGF beta 1 and activin showed an opposite effect on growth hormone secretion; TGF beta stimulated and activin inhibited basal secretion of growth hormone. These results suggest that TGF beta 1 is a potent inhibitor of basal secretion of PRL by the pituitary, and both TGF beta 1 and activin play a multifunctional role in basal secretion of pituitary hormones.  相似文献   

13.
Phenotypic transformation of normal rat kidney (NRK) cells requires the concerted action of multiple polypeptide growth factors. Serum-deprived NRK cells cultured in the presence of epidermal growth factor (EGF) become density-inhibited at confluence, but they can be restimulated by a number of defined polypeptide growth factors, resulting in phenotypic cellular transformation. Kinetic data show that restimulation by transforming growth factor beta (TGF-beta) and retinoic acid is delayed when compared to induction by platelet-derived growth factor (PDGF), indicating that both TGF beta and retinoic acid may exert their growth-stimulating action by an indirect mechanism. Northern blot analysis shows that NRK cells express the genes for various polypeptide growth factors, including TGF beta 1, PDGF A-chain and basic fibroblast growth factor, but that the levels of expression are not affected by TGF beta or retinoic acid treatment. NRK cells also secrete low amounts of a PDGF-like growth factor into their extracellular medium, but the levels of secretion are insufficient to induce mitogenic stimulation and are unaffected by agents inducing phenotypic transformation. In combination with studies on the effects of anti-PDGF antibodies, it is concluded that phenotypic transformation of NRK cells by TGF beta and retinoic acid is not the result of enhanced production of a PDGF-like growth factor.  相似文献   

14.
15.
Transforming growth factor beta (TGF beta) influences the growth and differentiation of a wide variety of nonneuronal cells (nnc) during embryogenesis and in response to wounding. In the present study TGF beta 1 and TGF beta 2 were examined for their neurotrophic actions on neonatal rat dorsal root ganglion (DRG) neurons with ganglionic nnc in dissociated cultures. TGF beta 1 and TGF beta 2 each increased both neuronal survival and levels of the peptide neurotransmitter substance P (SP) expressed per neuron as well as per culture. TGF beta 1 was maximally effective at a concentration of 40 pM, whereas TGF beta 2 was about 10-fold less potent. Survival effects promoted by simultaneous treatment with both factors were not additive. TGF beta 1 also changed the morphology and distribution of DRG nnc which resulted in clustering of DRG neurons on top of the nnc. Cotreatment of the cultures with two different anti-nerve growth factor (NGF) antibodies eliminated the neurotrophic effects of TGF beta 1. However, treatment with TGF beta 1 did not alter NGF mRNA expression in the cultures nor did it change the amount of NGF in the medium. Further, TGF beta 1 greatly enhanced survival effects and SP stimulation promoted by exogenous NGF at concentrations up to 100 ng/ml. The neurotrophic effects of TGF beta 1 were significantly attenuated by decreasing the proportion of the ganglionic nnc, suggesting a role for these cells in mediating TGF beta 1 action on the neurons. It is hypothesized that the neurotrophic activity of TGF beta depended upon the presence of molecules immunologically related to NGF and that the effects of TGF beta were synergistic with NGF. These observations suggest that TGF beta may play a role in the differentiation and regeneration of DRG neurons in vivo.  相似文献   

16.
Transforming growth factor beta (TGF beta) has potent immunoregulatory effects acting on both T and B cells. It strongly inhibits secretion of IgG and IgM in human and murine B cell cultures, but has been shown to have an enhancing effect on IgA production in the mouse. We have studied the effect of TGF beta on the production of IgA in human lymphocyte cultures. The addition of TGF beta to pokeweed-stimulated peripheral blood lymphocytes resulted in a suppression of IgA production of both subclasses, similar in magnitude to the suppression of IgG and IgM production. Membrane IgA expression was not increased by culturing tonsillar lymphocytes with TGF beta. In conclusion, we find no evidence for a selective enhancing effect of TGF beta on IgA synthesis in humans, in contrast to the findings reported in mice.  相似文献   

17.
The effects of transforming growth factor beta (TGF beta) on parathyroid hormone (PTH)-responsive adenylate cyclase were examined in clonal rat osteosarcoma cells (UMR-106) with the osteoblast phenotype. Purified TGF beta incubated with UMR-106 cells for 48 hr produced a concentration-dependent increase in PTH stimulation of adenylate cyclase, with maximal increase in PTH response (37%) occurring at 1 ng/ml TGF beta. TGF beta also enhanced receptor-mediated activation of adenylate cyclase by isoproterenol and prostaglandin E2 (PGE2) and nonreceptor-mediated enzyme activation by cholera toxin and forskolin. In cells in which PTH-stimulated adenylate cyclase activity was augmented by treatment with pertussis toxin, the incremental increase in PTH response produced by TGF beta was reduced by 33%. However, TGF beta neither mimicked nor altered the ability of pertussis toxin to catalyze the ADP-ribosylation of a 41,000-Da protein, presumably the alpha subunit of the inhibitory guanine nucleotide-binding regulatory component (Gi) of adenylate cyclase, in cholate-extracted UMR-106 cell membranes. TGF beta also had no effect on the levels of alpha or beta subunits of Gi, as assessed by immunotransfer blotting. In time course studies, brief (less than or equal to 30 min) exposure of cells to TGF beta during early culture was sufficient to increase PTH response but only after exposed cells were subsequently allowed to grow for prolonged periods. TGF beta enhancement of PTH and isoproterenol responses was blocked by prior treatment of cells with cycloheximide but not indomethacin. The results suggest that TGF beta enhances PTH response in osteoblast-like cells by action(s) exerted at nonreceptor components of adenylate cyclase. The effect of TGF beta may involve Gi, although in a manner unrelated to either pertussis toxin-catalyzed ADP-ribosylation of the alpha subunit of Gi or changes in levels of Gi subunits. The regulatory action of TGF beta on adenylate cyclase is likely to be mediated by the rapid generation of cellular signals excluding prostaglandins, followed by a prolonged sequence of events involving protein synthesis. These observations suggest a mechanism by which TGF beta may regulate osteoblast responses to systemic hormones.  相似文献   

18.
19.
The effects of the polyamines putrescine (PUT), spermidine (SPD), and spermidine (SPM) on the secretion of plasminogen activator (PA) and plasminogen activator inhibitor (PAI) were evaluated using cultured bovine aortic endothelial cells. All three polyamines enhanced PA secretion in a time- and dose-dependent manner, with a potency rank order of SPM greater than SPD greater than PUT. The PA stimulation required both RNA and protein synthesis, as evidenced by inhibition of polyamine-induced PA secretion by actinomycin D and cycloheximide. The inhibitors of polyamine biosynthesis methylglyoxal bis-(guanylhydrazone) (MGBG) and dl-(difluoromethyl) ornithine (DFMO) alone did not affect basal or polyamine-induced PA secretion, with the exception that MGBG reduced the effect of PUT. Polyamine-treated cells enhanced secretions of both tissue-type and urokinase-type PA. The results of the present study suggest that polyamines may play a role in the regulation of PA synthesis and secretion and that this function can be modified under pathophysiological conditions affecting cellular and tissue levels of polyamines.  相似文献   

20.
By cDNA cloning and differential screening, five genes that are regulated by transforming growth factor beta (TGF beta) in mink lung epithelial cells were identified. A novel membrane protein gene, TI 1, was identified which was downregulated by TGF beta and serum in quiescent cells. In actively growing cells, the TI 1 gene is rapidly and transiently induced by TGF beta, and it is overexpressed in the presence of protein synthesis inhibitors. It appears to be related to a family of transmembrane glycoproteins that are expressed on lymphocytes and tumor cells. The four other genes were all induced by TGF beta and correspond to the genes of collagen alpha type I, fibronectin, plasminogen activator inhibitor 1, and the monocyte chemotactic cell-activating factor (JE gene) previously shown to be TGF beta regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号