首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Proteins with ultra-fast folding/unfolding kinetics are excellent candidates for study by molecular dynamics. Here, we describe such simulations of a three helix bundle protein, the engrailed homeodomain (En-HD), which folds via the diffusion-collision model. The unfolding pathway of En-HD was characterized by seven simulations of the protein and 12 simulations of its helical fragments yielding over 1.1 micros of simulation time in water. Various conformational states along the unfolding pathway were identified. There is the compact native-like transition state, a U-shaped helical intermediate and an unfolded state with dynamic helical segments. Each of these states is in good agreement with experimental data. Examining these states as well as the transitions between them, we find the role of long-range tertiary contacts, specifically salt-bridges, important in the folding/unfolding pathway. In the folding direction, charged residues form long-range tertiary contacts before the hydrophobic core is formed. The formation of HII is assisted by a specific salt-bridge and by non-specific (fluctuating) tertiary contacts, which we call contact-assisted helix formation. Salt-bridges persist as the protein approaches the transition state, stabilizing HII until the hydrophobic core is formed. To complement this information, simulations of fragments of En-HD illustrate the helical propensities of the individual segments. By thermal denaturation, HII proved to be the least stable helix, unfolding in less than 450 ps at high temperature. We observed the low helical propensity of C-terminal residues from HIII in fragment simulations which, when compared to En-HD unfolding simulations, link the unraveling of HIII to the initial event that drives the unfolding of En-HD.  相似文献   

2.
Human upstream binding factor (hUBF) HMG Box‐5 is a highly conserved protein domain, containing 84 amino acids and belonging to the family of the nonspecific DNA‐binding HMG boxes. Its native structure adopts a twisted L shape, which consists of three α‐helices and two hydrophobic cores: the major wing and the minor wing. In this article, we report a reversible three‐state thermal unfolding equilibrium of hUBF HMG Box‐5, which is investigated by differential scanning calorimetry (DSC), circular dichroism spectroscopy, fluorescence spectroscopy, and NMR spectroscopy. DSC data show that Box‐5 unfolds reversibly in two separate stages. Spectroscopic analyses suggest that different structural elements exhibit noncooperative transitions during the unfolding process and that the major form of the Box‐5 thermal intermediate ensemble at 55°C shows partially unfolded characteristics. Compared with previous thermal stability studies of other boxes, it appears that Box‐5 possesses a more stable major wing and two well separated subdomains. NMR chemical shift index and sequential 1HNi1HNi+1 NOE analyses indicate that helices 1 and 2 are native‐like in the thermal intermediate ensemble, while helix 3 is partially unfolded. Detailed NMR relaxation dynamics are compared between the native state and the intermediate ensemble. Our results implicate a fluid helix‐turn‐helix folding model of Box‐5, where helices 1 and 2 potentially form the helix 1‐turn‐helix 2 motif in the intermediate, while helix 3 is consolidated only as two hydrophobic cores form to stabilize the native structure. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The amyloid beta peptide (Abeta), composed of 40 or 42 amino acids, is a critical component in the etiology of the neurodegenerative Alzheimer disease. Abeta is prone to aggregate and forms amyloid fibrils progressively both in vitro and in vivo. To understand the process of amyloidogenesis, it is pivotal to examine the initial stages of the folding process. We examined the equilibrium folding properties, assembly states, and stabilities of the early folding stages of Abeta40 and Abeta42 prior to fibril formation. We found that Abeta40 and Abeta42 have different conformations and assembly states upon refolding from their unfolded ensembles. Abeta40 is predominantly an unstable and collapsed monomeric species, whereas Abeta42 populates a stable structured trimeric or tetrameric species at concentrations above approximately 12.5 microm. Thermodynamic analysis showed that the free energies of Abeta40 monomer and Abeta42 trimer/tetramer are approximately 1.1 and approximately 15/ approximately 22 kcal/mol, respectively. The early aggregation stages of Abeta40 and Abeta42 contain different solvent-exposed hydrophobic surfaces that are located at the sequences flanking its protease-resistant segment. The amyloidogenic folded structure of Abeta is important for the formation of spherical beta oligomeric species. However, beta oligomers are not an obligatory intermediate in the process of fibril formation because oligomerization is inhibited at concentrations of urea that have no effect on fibril formation. The distinct initial folding properties of Abeta40 and Abeta42 may play an important role in the higher aggregation potential and pathological significance of Abeta42.  相似文献   

4.
The peptide TGAAKAVALVL from glyceraldehyde-3-phosphate dehydrogenase adopts a helical conformation in the crystal structure and is a site for two hydrated helical segments, which are thought to be helical folding intermediates. Overlapping sequences of four to five residues from the peptide, sample both helical and strand conformations in known protein structures, which are dissimilar to glyceraldehyde-3-phosphate dehydrogenase suggesting that the peptide may have a structural ambivalence. Molecular dynamics simulations of the peptide sequence performed for a total simulation time of 1.2 micros, starting from the various initial conformations using GROMOS96 force field under NVT conditions, show that the peptide samples a large number of conformational forms with transitions from alpha-helix to beta-hairpin and vice versa. The peptide, therefore, displays a structural ambivalence. The mechanism from alpha-helix to beta-hairpin transition and vice versa reveals that the compact bends and turns conformational forms mediate such conformational transitions. These compact structures including helices and hairpins have similar hydrophobic radius of gyration (Rgh) values suggesting that similar hydrophobic interactions govern these conformational forms. The distribution of conformational energies is Gaussian with helix sampling lowest energy followed by the hairpins and coil. The lowest potential energy of the full helix may enable the peptide to take up helical conformation in the crystal structure of the glyceraldehyde-3-phosphate dehydrogenase, even though the peptide has a preference for hairpin too. The relevance of folding and unfolding events observed in our simulations to hydrophobic collapse model of protein folding are discussed.  相似文献   

5.
Both folded and unfolded conformations should be observed for a protein at its melting temperature (T(m)), where DeltaG between these states is zero. In an all-atom molecular dynamics simulation of chymotrypsin inhibitor 2 (CI2) at its experimental T(m), the protein rapidly loses its low-temperature native structure; it then unfolds before refolding to a stable, native-like conformation. The initial unfolding follows the unfolding pathway described previously for higher-temperature simulations: the hydrophobic core is disrupted, the beta-sheet pulls apart and the alpha-helix unravels. The unfolded state reached under these conditions maintains a kernel of structure in the form of a non-native hydrophobic cluster. Refolding simply reverses this path, the side-chain interactions shift, the helix refolds, and the native packing and hydrogen bonds are recovered. The end result of this refolding is not the initial crystal structure; it contains the proper topology and the majority of the native contacts, but the structure is expanded and the contacts are long. We believe this to be the native state at elevated temperature, and the change in volume and contact lengths is consistent with experimental studies of other native proteins at elevated temperature and the chemical denaturant equivalent of T(m).  相似文献   

6.
We have performed molecular dynamics simulations on a set of nine unfolded conformations of the fastest-folding protein yet discovered, a variant of the villin headpiece subdomain (HP-35 NleNle). The simulations were generated using a new distributed computing method, yielding hundreds of trajectories each on a time scale comparable to the experimental folding time, despite the large (10,000 atom) size of the simulation system. This strategy eliminates the need to assume a two-state kinetic model or to build a Markov state model. The relaxation to the folded state at 300 K from the unfolded configurations (generated by simulation at 373 K) was monitored by a method intended to reflect the experimental observable (quenching of tryptophan by histidine). We also monitored the relaxation to the native state by directly comparing structural snapshots with the native state. The rate of relaxation to the native state and the number of resolvable kinetic time scales both depend upon starting structure. Moreover, starting structures with folding rates most similar to experiment show some native-like structure in the N-terminal helix (helix 1) and the phenylalanine residues constituting the hydrophobic core, suggesting that these elements may exist in the experimentally relevant unfolded state. Our large-scale simulation data reveal kinetic complexity not resolved in the experimental data. Based on these findings, we propose additional experiments to further probe the kinetics of villin folding.  相似文献   

7.
The structure of the first significant transition state on the unfolding pathway of barnase has been analysed in detail by protein engineering methods. Over 50 mutations placed strategically over the whole protein have been used as probes to report on the local structure in the transition state. Several different probes for many regions of the protein give consistent results as do multiple probes at the same site. The overall consistency of phi values indicates that the mutations have not produced changes in the protein that significantly alter the transition state for unfolding. A fine-structure analysis of interactions has also been conducted by removing different parts of the same side-chains. Many of the results of simple mutations fall nicely into the two clear-cut cases of phi = 1 or 0, indicating that the local noncovalent bonds are either fully broken or fully made in the transition state. Much of the structure of barnase in the transition state for unfolding is very similar to that in the folded protein. Both major alpha-helices fray at the N terminus. The last two turns in helix1 are certainly intact, as is the C terminus of helix2. The general picture of the beta-sheet is that the three central beta-strands are completely intact while the two edge beta-strands are mainly present but certainly weakened. The first five residues of the protein unwind but the C terminus remains folded. Three of the five loops are unfolded. The edges of the main hydrophobic core (core1) are significantly weakened, however, and their breaking appears partly rate determining. The centre of the small hydrophobic core3 remains intact. Core2 is completely disrupted. The first events in unfolding are thus: the unfolding of several loops, the unwinding of the helices from the N termini, and the weakening and disruption of the hydrophobic cores. The values of phi are found to be substantially the same under conditions that favour folding as under conditions that are highly denaturing, and so the structure of the unfolding transition state is substantially the same in water as in the presence of denaturant. The structure of the final kinetically significant transition state for refolding is identical to that for unfolding. The final events in refolding are, accordingly, the consolidation of the hydrophobic cores, the closing of many loops and the capping of the N termini of the helices.  相似文献   

8.
Aggregation of Cu, Zn superoxide dismutase (SOD1) is often found in amyotrophic lateral sclerosis patients. The fibrillar aggregates formed by wild type and various disease-associated mutants have recently been found to have distinct cores and morphologies. Previous computational and experimental studies of wild-type SOD1 suggest that the apo-monomer, highly aggregation prone, displays substantial local unfolding dynamics. The residual folded structure of locally unfolded apoSOD1 corresponds to peptide segments forming the aggregation core as identified by a combination of proteolysis and mass spectroscopy. Therefore, we hypothesize that the destabilization of apoSOD1 caused by various mutations leads to distinct local unfolding dynamics. The partially unfolded structure, exposing the hydrophobic core and backbone hydrogen bond donors and acceptors, is prone to aggregate. The peptide segments in the residual folded structures form the "building block" for aggregation, which in turn determines the morphology of the aggregates. To test this hypothesis, we apply a multiscale simulation approach to study the aggregation of three typical SOD1 variants: wild type, G37R, and I149T. Each of these SOD1 variants has distinct peptide segments forming the core structure and features different aggregate morphologies. We perform atomistic molecular dynamics simulations to study the conformational dynamics of apoSOD1 monomer and coarse-grained molecular dynamics simulations to study the aggregation of partially unfolded SOD1 monomers. Our computational studies of monomer local unfolding and the aggregation of different SOD1 variants are consistent with experiments, supporting the hypothesis of the formation of aggregation "building blocks" via apo-monomer local unfolding as the mechanism of SOD1 fibrillar aggregation.  相似文献   

9.
FHA domains adopt a beta-sandwich fold with 11 strands. The first evidence of partially unfolded forms of a beta-sandwich is derived from native-state hydrogen exchange (NHX) of the forkhead-associated (FHA) domain from kinase-associated protein phosphatase from Arabidopsis. The folding kinetics of this FHA domain indicate that EX2 behavior prevails at pH 6.3. In the chevron plot, rollover in the folding arm and bends in the unfolding arm suggest folding intermediates. NHX of this FHA domain suggests a core of six most stable beta-strands and two loops, characterized by rare global unfolding events. Flanking this stable core are beta-strands and recognition loops with less stability, termed subglobal motifs. These suggest partially unfolded forms (near-native intermediates) with two levels of stability. The spatial separation of the subglobal motifs on the flanks suggests possible parallelism in their folding as additional beta-strands align with the stable core of six strands. Intermediates may contribute to differences in stabilities and m-values suggested by NHX or kinetics relative to chemical denaturation. Residual structure in the unfolded regime is suggested by superprotection of beta-strand 6 and by GdmCl-dependence of adjustments in amide NMR spectra and residual optical signal. The global folding stability depends strongly on pH, with at least 3 kcal/mol more stability at pH 7.3 than at pH 6.3. This FHA domain is hypothesized to fold progressively with initial hydrophobic collapse of its stable six-stranded core followed by addition of less stable flanking beta-strands and ordering of recognition loops.  相似文献   

10.
The folding and solution conformation of penicillin G acylase   总被引:1,自引:0,他引:1  
The solution conformation properties of penicillin G acylase (EC 3.5.1.11) have been characterised by near- and far-ultraviolet circular dichroism, steady-state and time-resolved fluorescence spectroscopy and differential sedimentation velocity. The enzyme (86 kDa) was found to be spherical and stable unfolding over a narrow range of urea concentrations in an apparently cooperative fashion with a mid-point of 4.5 M urea. Separation of its constituent alpha and beta peptides (23.8 kDa and 62.2 kDa, respectively) was accompanied by loss of enzyme activity and unfolding, the kinetics of unfolding being highly dependent upon urea concentration. Urea gradient gel electrophoresis showed that the separated beta peptide aggregates over a wide range of urea concentrations but that the alpha peptide refolds reversibly to a compact state. Physical studies showed that the refolded alpha peptide has a compact but asymmetric structure with more alpha helix than the native enzyme, but is more sensitive to denaturant. The latter is suggested to be due to a hydrophobic patch detected by 8-anilino-1-naphthalene sulfonic acid binding and which is normally covered by the beta peptide in the native enzyme. The results of these investigations indicate that the alpha peptide constitutes a folding domain and suggest that it plays a key role in folding of the precursor for penicillin acylase.  相似文献   

11.
Jas GS  Kuczera K 《Biophysical journal》2004,87(6):3786-3798
We have performed experimental measurements and computer simulations of the equilibrium structure and folding of a 21-residue alpha-helical heteropeptide. Far ultraviolet circular dichroism spectroscopy is used to identify the presence of helical structure and to measure the thermal unfolding curve. The observed melting temperature is 296 K, with a folding enthalpy of -11.6 kcal/mol and entropy of -39.6 cal/(mol K). Our simulations involve 45 ns of replica-exchange molecular dynamics of the peptide, using eight replicas at temperatures between 280 and 450 K, and the program CHARMM with a continuum solvent model. In a 30-ns simulation started from a helical structure, conformational equilibrium at all temperatures was reached after 15 ns. This simulation was used to calculate the peptide melting curve, predicting a folding transition with a melting temperature in the 330-350 K range, enthalpy change of -10 kcal/mol, and entropy change of -30 cal/(mol K). The simulation results were also used to analyze the peptide structural fluctuations and the free-energy surface of helix unfolding. In a separate 15-ns replica-exchange molecular dynamics simulation started from the extended structure, the helical conformation was first attained after approximately 2.8 ns, and equilibrium was reached after 10 ns of simulation. These results showed a sequential folding process with a systematic increase in the number of hydrogen bonds until the helical state is reached, and confirmed that the alpha-helical state is the global free-energy minimum for the peptide at low temperatures.  相似文献   

12.
Tang Y  Goger MJ  Raleigh DP 《Biochemistry》2006,45(22):6940-6946
The villin headpiece subdomain (HP36) is the smallest naturally occurring protein that folds cooperatively. The protein folds on a microsecond time scale. Its small size and very rapid folding have made it a popular target for biophysical studies of protein folding. Temperature-dependent one-dimensional (1D) NMR studies of the full-length protein together with CD and 1D NMR studies of the 21-residue peptide fragment (HP21) derived from HP36 have shown that there is significant structure in the unfolded state of HP36 and have demonstrated that HP21 is a good model of these interactions. Here, we characterized the model peptide HP21 in detail by two-dimensional NMR. Strongly upfield shifted C(alpha) protons, the magnitude of the 3J(NH,alpha) coupling constants, and the pattern of backbone-backbone and backbone-side chain NOEs indicate that the ensemble of structures populated by HP21 contains alpha-helical structure and native as well as non-native hydrophobic contacts. The hydrogen-bonded secondary structure inferred from the NOEs is, however, not sufficient to confer significant protection against amide H-D exchange. These studies indicate that there is significant secondary structure and hydrophobic clustering in the unfolded state of HP36. The implications for the folding of HP36 are discussed.  相似文献   

13.
Unfolding domains of recombinant fusion alpha alpha-tropomyosin.   总被引:1,自引:1,他引:0       下载免费PDF全文
The thermal unfolding of the coiled-coil alpha-helix of recombinant alpha alpha-tropomyosin from rat striated muscle containing an additional 80-residue peptide of influenza virus NS1 protein at the N-terminus (fusion-tropomyosin) was studied with circular dichroism and fluorescence techniques. Fusion-tropomyosin unfolded in four cooperative transitions: (1) a pretransition starting at 35 degrees C involving the middle of the molecule; (2) a major transition at 46 degrees C involving no more than 36% of the helix from the C-terminus; (3) a major transition at 56 degrees C involving about 46% of the helix from the N-terminus; and (4) a transition from the nonhelical fusion domain at about 70 degrees C. Rabbit skeletal muscle tropomyosin, which lacks the fusion peptide but has the same tropomyosin sequence, does not exhibit the 56 degrees C or 70 degrees C transition. The very stable fusion unfolding domain of fusion-tropomyosin, which appears in electron micrographs as a globular structural domain at one end of the tropomyosin rod, acts as a cross-link to stabilize the adjacent N-terminal domain. The least stable middle of the molecule, when unfolded, acts as a boundary to allow the independent unfolding of the C-terminal domain at 46 degrees C from the stabilized N-terminal unfolding domain at 56 degrees C. Thus, strong localized interchain interactions in coiled-coil molecules can increase the stability of neighboring domains.  相似文献   

14.
Liu CP  Li ZY  Huang GC  Perrett S  Zhou JM 《Biochimie》2005,87(11):1023-1031
Trigger factor (TF) is an important catalyst of nascent peptide folding and possesses both peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities. TF has a modular structure, containing three domains with distinct structural and functional properties. The guanidine hydrochloride (GuHCl) induced unfolding of TF was investigated by monitoring Trp fluorescence, far-UV CD, second-derivative UV absorption, enzymatic and chaperone activities, chemical crosslinking and binding of the hydrophobic dye, 1-anilinonaphthalene-8-sulfonate (ANS); and was compared to the urea induced unfolding. The native state of TF was found to bind ANS in 1:1 stoichiometry with a K(d) of 84 microM. A native-like state, N', is stable around 0.5 M GuHCl, and shows increased ANS binding, while retaining PPIase activity and most secondary and tertiary structure, but loses chaperone and dimerization activities, consistent with slight conformational rearrangement. A compact denatured state, I, is populated around 1.0 M GuHCl, is inactive and does not show significant binding to ANS. The data suggest that TF unfolds in a stepwise manner, consistent with its modular structure. The ability of TF to undergo structural rearrangement to maintain enzymatic activity while reducing chaperone and dimerization abilities may be related to the physiological function of TF.  相似文献   

15.
The folding of polypeptides associated with biomembranes is a ubiquitous phenomenon, yet the thermodynamics underlying the process are poorly understood. In the present work we examine the unfolding of a series of alpha-helical amphipathic membrane-associated peptides using guanidine hydrochloride as a denaturant. The peptides are based on the class A amphipathic helix motif, and each contains a single tryptophan at sequence position 2, 3, 7, 12, or 14. The isothermal unfolding process was monitored by circular dichroism ellipticity at 222 nm to monitor changes in the helical structure of the peptide. Tryptophan fluorescence was used to probe the local changes in the environment about the indole fluorophore. The unfolding curves generated from the two experimental techniques for each peptide-lipid complex were non-coincidental, suggesting the presence of stable intermediate(s) in the unfolding. A three-state model could adequately account for the data and yielded parameters which were consistent with the presence of a partially folded intermediate structure which (i) is closer in Gibb's free energy to the folded state than the unfolded state and (ii) retains much of the interfacial and amphipathic character of the folded state. Denaturant-induced peptide dissociation from the peptide-lipid complexes was found to be negligible as confirmed by size exclusion chromatography. The results are compared with related thermodynamic data and discussed in terms of current models of peptide folding at membrane interfaces.  相似文献   

16.
Yoda T  Sugita Y  Okamoto Y 《Proteins》2007,66(4):846-859
G-peptide is a 16-residue peptide of the C-terminal end of streptococcal protein G B1 domain, which is known to fold into a specific beta-hairpin within 6 micros. Here, we study molecular mechanism on the stability and folding of G-peptide by performing a multicanonical replica-exchange (MUCAREM) molecular dynamics simulation with explicit solvent. Unlike the preceding simulations of the same peptide, the simulation was started from an unfolded conformation without any experimental information on the native conformation. In the 278-ns trajectory, we observed three independent folding events. Thus MUCAREM can be estimated to accelerate the folding reaction more than 60 times than the conventional molecular dynamics simulations. The free-energy landscape of the peptide at room temperature shows that there are three essential subevents in the folding pathway to construct the native-like beta-hairpin conformation: (i) a hydrophobic collapse of the peptide occurs with the side-chain contacts between Tyr45 and Phe52, (ii) then, the native-like turn is formed accompanying with the hydrogen-bonded network around the turn region, and (iii) finally, the rest of the backbone hydrogen bonds are formed. A number of stable native hydrogen bonds are formed cooperatively during the second stage, suggesting the importance of the formation of the specific turn structure. This is also supported by the accumulation of the nonnative conformations only with the hydrophobic cluster around Tyr45 and Phe52. These simulation results are consistent with high phi-values of the turn region observed by experiment.  相似文献   

17.
Highly fluorinated analogs of hydrophobic amino acids are well known to increase the stability of proteins toward thermal unfolding and chemical denaturation, but there is very little data on the structural consequences of fluorination. We have determined the structures and folding energies of three variants of a de novo designed 4‐helix bundle protein whose hydrophobic cores contain either hexafluoroleucine (hFLeu) or t‐butylalanine (tBAla). Although the buried hydrophobic surface area is the same for all three proteins, the incorporation of tBAla causes a rearrangement of the core packing, resulting in the formation of a destabilizing hydrophobic cavity at the center of the protein. In contrast, incorporation of hFLeu, causes no changes in core packing with respect to the structure of the nonfluorinated parent protein which contains only leucine in the core. These results support the idea that fluorinated residues are especially effective at stabilizing proteins because they closely mimic the shape of the natural residues they replace while increasing buried hydrophobic surface area.  相似文献   

18.
The two polypeptide chains of the erythroid spectrin heterodimer contain between them 36 structural repeating modules, which can function as independently folding units. We have expressed all 36 and determined their thermal stabilities. These vary widely, with unfolding transition mid-points (T(m)) ranging from 21 to 72 degrees C. Eight of the isolated repeats are largely unfolded at physiological temperature. Constructs comprising two or more adjacent repeats show inter-repeat coupling with coupling free energies of several kcal mol(-1). Constructs comprising five successive repeats from the beta-chain displayed cooperativity and strong temperature dependence in forced unfolding by atomic force microscopy. Analysis of aligned sequences and molecular modeling suggests that high stability is conferred by large hydrophobic side chains at position e of the heptad hydrophobic repeats in the first helix of the three-helix bundle that makes up each repeat. This inference was borne out by the properties of mutants in which the critical residues have been replaced. The marginal stability of the tertiary structure at several points in the spectrin chains is moderated by energetic coupling with adjoining structural elements but may be expected to permit adaptation of the membrane to the large distortions that the red cell experiences in the circulation.  相似文献   

19.
The role of the secondary structure in the folding mechanism of dihydrofolate reductase from Escherichia coli was probed by studying the effects of amino acid replacements in two alpha helices and two strands of the central beta sheet on the folding and stability. The effects on stability could be qualitatively understood in terms of the X-ray structure for the wild-type protein by invoking electrostatic, hydrophobic, or hydrogen-bonding interactions. Kinetic studies focused on the two slow reactions that are thought to reflect the unfolding/refolding of two stable native conformers to/from their respective folding intermediates [Touchette, N. A., Perry, K. M., & Matthews, C. R. (1986) Biochemistry 25, 5445-5452]. Replacements at three different positions in helix alpha B selectively alter the relaxation time for unfolding while a single replacement in helix alpha C selectively alters the relaxation time for refolding. This behavior is characteristic of mutations that change the stability of the protein but do not affect the rate-limiting step. In striking contrast, replacements in strands beta F and beta G can affect both unfolding and refolding relaxation times. This behavior shows that these mutations alter the rate-limiting step in these native-to-intermediate folding reactions. It is proposed that the intermediates have an incorrectly formed beta sheet whose maturation to the structure found in the native conformation is one of the slow steps in folding.  相似文献   

20.
Despite its small size, chicken villin headpiece subdomain HP36 folds into the native structure with a stable hydrophobic core within several microseconds. How such a small protein keeps up its conformational stability and fast folding in solution is an important issue for understanding molecular mechanisms of protein folding. In this study, we performed multicanonical replica-exchange simulations of HP36 in explicit water, starting from a fully extended conformation. We observed at least five events of HP36 folding into nativelike conformations. The smallest backbone root mean-square deviation from the crystal structure was 1.1 Å. In the nativelike conformations, the stably formed hydrophobic core was fully dehydrated. Statistical analyses of the simulation trajectories show the following sequential events in folding of HP36: 1), Helix 3 is formed at the earliest stage; 2), the backbone and the side chains near the loop between Helices 2 and 3 take nativelike conformations; and 3), the side-chain packing at the hydrophobic core and the dehydration of the core side chains take place simultaneously at the later stage of folding. This sequence suggests that the initial folding nucleus is not necessarily the same as the hydrophobic core, consistent with a recent experimental ϕ-value analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号