首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three cDNA from the pyloric ceca of the starfish Asterina pectinifera, (namely, cDNA 1, 2, and 3), encoding phospholipase A2 (PLA2), were isolated and sequenced. These cDNAs were composed of 415 bp with an open reading frame of 414 bp at nucleotide positions 1–414, which encodes 138 amino acids including N-terminal Met derived from the PCR primer. The amino acid sequence deduced from the cDNA 1 was completely consistent with the sequence determined with the starfish PLA2 protein, while those deduced from cDNA 2 and cDNA 3 differed at one and twelve amino acid residual positions, respectively, from the sequence of the PLA2 protein, suggesting the presence of multiple forms in the starfish PLA2. All of the sequences deduced from cDNA 1, 2, and 3 required two amino acid deletions in pancreatic loop region, and sixteen insertions and three deletions in β-wing region when aligned with the sequence of mammalian pancreatic PLA2. In phylogenetic tree, the starfish PLA2 should be classified into an independent group, but hardly to the established groups IA and IB. The characteristic structure in the pancreatic loop and β-wing regions may account for the specific properties of the starfish PLA2, e.g. the higher activity and characteristic substrate specificity compared with commercially available PLA2 from porcine pancreas.  相似文献   

2.
The PLA2 and crotapotin subunits of crotoxin from Crotalus durissus cascavella venom were purified by a combination of HPLC molecular exclusion (Protein Pack 300SW column) and reverse-phase HPLC (RP-HPLC). Tricine SDS—PAGE showed that the PLA2 and crotapotins migrated as single bands with estimated molecular masses of 15 and 9 kDa, respectively. The amino acid composition of the PLA2 showed the presence of 14 half-cysteines and a high content of basic residues (Lys, Arg, His), whereas the crotapotins were rich in hydrophobic, negatively charged residues and half-cysteines. The PLA2 showed allosteric behavior, with maximal activity at pH 8.3 and 35–40°C. The C. d. cascavella PLA2 required Ca2+ for activity, but was inhibited by Cu2+ and Zn2+ and by Cu2+ and Mg2+ in the presence and absence of Ca2+, respectively. Crotapotin (F3) and heparin inhibited the catalytic activity of the PLA2 by acting as allosteric inhibitors.  相似文献   

3.
The PLA2 and crotapotin subunits of crotoxin from Crotalus durissus cascavella venom were purified by a combination of high-performance liquid chromatography (HPLC) molecular exclusion (Protein Pack 300SW column) and reverse-phase HPLC (RP-HPLC). Tricine SDS-PAGE showed that the PLA2 and crotapotins migrated as single bands with estimated molecular masses of 15 and 9 kDa, respectively. The amino acid composition of the PLA2 showed the presence of 14 half-cysteines and a high content of basic residues (Lys, Arg, His), whereas the crotapotins were rich in hydrophobic, negatively charged residues and half-cysteines. The PLA2 showed allosteric behavior, with maximal activity at pH 8.3 and 35–40°C. C. d. cascavella PLA2 required Ca2+ for activity but was inhibited by Cu2+ and Zn2+ and by Cu2+ and Mg2+ in the presence and absence of Ca2+, respectively. Crotapotin (F3) and heparin inhibited the catalytic activity of the PLA2 by acting as allosteric inhibitors.  相似文献   

4.
A new Phospholipase A2 (PLA2) from Micrurus dumerilii carinicauda venom was isolated and its primary structure determined. This new PLA2 showed a low enzymatic activity when compared with other PLA2s and it is moderately basic with an isoelectric point of 8.0. Its amino acid sequence showed the presence of 120 amino acid residues and its sequence was: NLIQFLNMIQCTTPGREPLVAFANYGCYCGRGGSGTPVDELDRCCQVHDNCYDTAKKVFGCSPYFTMYSYDCSEGKLTCKDNNTKCKAAVCNCDRTAALCFAKAPYNDKNYKIDLTKRCQ. The structural model of MIDCA1, when compared with other strong neurotoxic PLA2s, such as Naja naja, showed significant differences in the β-wing and neurotoxic sites, despite the high level of amino acid sequence similarity. These observations indicate a dissociation between the biological and catalytic activity of this new PLA2, supporting the view that other regions of the protein are involved in the biological effects.  相似文献   

5.
Chronic lithium administration decreases the turnover of arachidonic acid (AA) in several brain phospholipids. This suggests that lithium may attenuate phospholipase A2 (PLA2) activity in brain. We now report effects of chronic lithium treatment on PLA2 activity in postnuclear supernatant from rat brain: Enzyme activity was determined by two assay methods, radiometric and fluorometric, and measured the release of the fatty acid on the second acyl position (sn2) from choline and ethanolamine phospholipids. PLA2 activity in brain postnuclear supernatant from rats chronically treated with lithium in the diet was significantly decreased (20–50%) when compared with controls. In vehicle or lithium-treated rats, PLA2 activity was not significantly augmented or attenuated by the addition of calcium chelators, divalent cations or LiCl supplementation (1.0 mM) to postnuclear supernatant. These results suggest that a major therapeutic effect of lithium is to attenuate brain PLA2 activity involved in signal transduction.  相似文献   

6.
Summary Pinocytosis induced by Na+ was assayed by phase contrast microscopy in 8–12 days starvedAmoeba proteus. These cultures were inactive with respect to calcium-dependent Na+-induced pinocytosis, but treatment with amino acid methyl and ethyl esters increased their capacity for pinocytosis. Besides promoting pinocytosis these compounds also stimulated calcium-sensitive secretion of lysosomal enzymes from normal, 2–3 days starved, cells. Only uncharged 1-forms of the amino acid esters were effective. Also other lysosomotropic compounds including monodansylcadaverine, glycine-phenylalanine-2-naphthylamide, NH4Cl, and the ionophores monensin and A23187 activated starved cells. The effect of these agents (except A23187) was inhibited by the drug dantrolene suggesting that activation is a consequence of release of Ca2+ from intracellular stores. Several of the lysosomotropic agents also lost their activating effect in the presence of phospholipase A2 (PLA2) inhibitors. To investigate whether or not PLA2 activity in the cell culture could imitate the effect of the lysosomotropic agents, we incubated starved cells with snake venom PLA2s. These enzymes caused rapid, dantrolene-sensitive activation of the cells. Measurement of endogenous PLA2in normal cells revealed significant cellular activity but no significant secretion of the enzyme into the culture medium was observed. Together the studies with enzyme inhibitors and dantrolene suggest that the process by which lysosomotropic agents affect pinocytosis involves activation of PLA2 and release of Ca2+ from intracellular stores.Abbreviations AnBOMe amino-n-butyric acid methylester - Et ethylester - GPN glycine-1-phenylalanine-2-naphthylamide - MDC monodansylcadaverine - MDTC monodansylthiacadaverine - Me methylester - pBPB p-bromo phenacylbromide - PLA2 phospholipase A2  相似文献   

7.
Myometrium obtained from pregnant ewes (30-80 days gestation) contains a factor which inhibits phospholipase A2 (PLA2) activity. The activity of this moiety was assessed using an in vitro porcine pancreatic PLA2 assay system. Inhibitory activity was associated with a 35-45000 dalton molecular weight fraction, heat-labile, sensitive to protease degradation and did not partition into organic solvents. These data are indicative that PLA2-inhibitory activity resides in a protein moiety. Dixon-plot analysis of myometrial-inhibitory activity was indicative that the inhibition of PLA2 activity was of a non-competitive nature (Ki = 4.1 +/- 0.7 micrograms/ml, ca 118 nmol/l). Myometrial phospholipase-inhibitory protein(s) may be involved in the suppression of eicosanoid biosynthesis by the uterine tissues throughout gestation thus inhibiting uterine contractile activity.  相似文献   

8.
Summary Phospholipase A2 (PLA2) was extracted from liver microsomal membranes of both 5 and 20°C-acclimated rainbow trout (Salmo gairdneri), using the non-ionic detergent, Triton X-100. Further purification was achieved by precipitation with 35–65% ammonium sulfate followed by gel filtration chromatography in the presence of 0.1% Triton X-100 on Sephadex G-200. These procedures resulted in a 30-fold purification and the removal of all traces of phospholipid from the enzyme of both warm-and cold-acclimated trout. Column elution profiles were similar for both acclimation groups, yielding a molecular weight estimate for the trout liver enzyme of 73,000. Comparisons of activity levels and kinetic parameters of PLA2 from warm-and cold-acclimated fish, indicated that compensation for temperature at nonsaturating substrate concentrations was an attribute of both the particulate (microsomal) enzyme and the lipid-free protein. Cold acclimation resulted in higher activity belowV max due primarily to decreased apparentK m values. These adaptations to temperature could not be attributed to the interaction of the enzyme with the membrane lipids, but were due to qualitative changes in the enzyme that resulted from acclimation. Other adaptive qualities of PLA2, such as reducedK m in response to acute decreases in temperature in warm-acclimated fish, were only apparent in particulate preparations, and thus were a function of the protein-lipid complex. These data suggest that an acclimation-induced increase in the activity of PLA2 may result in the activation of a deacylation-reacylation cycle at cold temperatures.Abbreviations PAGE polyacrylamide gel electrophoresis - PC phosphatidylcholine - PLA 2 phospholipase A2 - SDS sodium dodecylsulfate  相似文献   

9.
When growth-phase cell suspension cultures of Capsicum annuum were treated with cellulase-elicitor preparation at 3 μg/ml, the level of capsidiol was transiently increased in the culture media rather than in the cells reaching its maximum approx 24 h after treatment. With methyl jasmonate it took 18 h. Elicitor treatment doubled phospholiphase A2 (PLA2) activity but simultaneous treatment with aristolochic acid, a PLA2 inhibitor, inhibited sesquiterpenoid accumulation as well as PLA2 activity. Mastoparan, a G protein activator, treatment also increased PLA2 activity and capsidiol production. Taken together, the present study shows that induction of capsidiol production in the C. annuum is mediated by PLA2 activation.  相似文献   

10.
We here demonstrate the presence of a plasma membrane-associated phospholipase A2 (EC 3.1.1.4; PLA2) activity in spinach (Spinacia oleracea) leaves. The pH profile of the spinach plasma membrane PLA2 activity revealed two peaks, one at pH 4.4 and one at pH 5.5. The activity at pH 5.5 had an absolute requirement of Ca2+, with full enzyme activity at 10 μmol/L Ca2+. The Ca2+-dependent PLA2 activity was both heat sensitive and stimulated by diacylglycerol, whereas ATP completely inhibited the activity. Thus, the spinach plasma membrane contains a Ca2+-dependent PLA2 activity, which has not previously been characterised in plants. Cold acclimation of spinach resulted in a 2.2-fold higher plasma membrane PLA2 activity whereas the plasma membrane phospholipase D activity remained unaffected. Taken together, our data suggest a role of PLA2 in cold acclimation in plants.  相似文献   

11.
Only in recent years have phospholipase A2 enzymes (PLA2s) emerged as cancer targets. In this work, we report the first detection of elevated PLA2 activities in plasma from patients with colorectal, lung, pancreatic, and bladder cancers as compared to healthy controls. Independent sets of clinical plasma samples were obtained from two different sites. The first set was from patients with colorectal cancer (CRC; n = 38) and healthy controls (n = 77). The second set was from patients with lung (n = 95), bladder (n = 31), or pancreatic cancers (n = 38), and healthy controls (n = 79). PLA2 activities were analyzed by a validated quantitative fluorescent assay method and subtype PLA2 activities were defined in the presence of selective inhibitors. The natural PLA2 activity, as well as each subtype of PLA2 activity was elevated in each cancer group as compared to healthy controls. PLA2 activities were increased in late stage vs. early stage cases in CRC. PLA2 activities were not influenced by sex, smoking, alcohol consumption, or body-mass index (BMI). Samples from the two independent sites confirmed the results. Plasma PLA2 activities had approximately 70% specificity and sensitivity to detect cancer. The marker and targeting values of PLA2 activity have been suggested.  相似文献   

12.
We report on phospholipase A2 (PLA2) activity in homogenates prepared from fat bodies of the tobacco hornworm Manduca sexta. PLA2 activity is responsible for hydrolyzing fatty acids from the sn-2 position of phospholipids. The rate of hydrolysis increased with increasing homogenate protein concentration up to ~? 320 μg protein/ml reaction volume. Higher protein concentrations did not appreciably increase the rate of PLA2 activity. As seen in some, but not all PLA2s from mammalian sources, hydrolyzing activity increased linearly with time. The fat body activity was sensitive to pH (optimal activity at pH 8–9) and temperature (optimal activity at ~?40°C). The activity was associated with fat body rather than hemolymph, because no activity was detected in cell-free serum. The fat body PLA2 activity differs from the majority of PLA2s with respect to calcium requirements. Whereas most PLA2s are calcium-independent. A few others are known to require submicromolar calcium concentrations. The fat body activity appears to be calcium independent. These data show that a PLA2 activity that can hydrolyze arachidonic acid from the sn-2 position of phospholipids is associated with the tobacco hornworm fat body. The biological significance of this activity relates to biosynthesis of eicosanoids. Pharmacological inhibition of PLA2 impairs the ability of this insect to respond to bacterial infections. Since the impairment can be reversed by treatment with exogenous arachidonic acid, the PLA2 activity may be an important step in eicosanoid biosynthesis. © 1993 Wiley-Liss, Inc.  相似文献   

13.

Background

The monocled cobra (Naja kaouthia) is responsible for snakebite fatality in Indian subcontinent and in south-western China. Phospholipase A2 (PLA2; EC 3.1.1.4) is one of the toxic components of snake venom. The present study explores the mechanism and rationale(s) for the differences in anticoagulant potency of two acidic PLA2 isoenzymes, Nk-PLA2α (13463.91 Da) and Nk-PLA2β (13282.38 Da) purified from the venom of N. kaouthia.

Principal Findings

By LC-MS/MS analysis, these PLA2s showed highest similarity (23.5% sequence coverage) with PLA2 III isolated from monocled cobra venom. The catalytic activity of Nk-PLA2β exceeds that of Nk-PLA2α. Heparin differentially regulated the catalytic and anticoagulant activities of these Nk-PLA2 isoenzymes. The anticoagulant potency of Nk-PLA2α was comparable to commercial anticoagulants warfarin, and heparin/antithrombin-III albeit Nk-PLA2β demonstrated highest anticoagulant activity. The anticoagulant action of these PLA2s was partially contributed by a small but specific hydrolysis of plasma phospholipids. The strong anticoagulant effect of Nk-PLA2α and Nk-PLA2β was achieved via preferential, non-enzymatic inhibition of FXa (Ki = 43 nM) and thrombin (Ki = 8.3 nM), respectively. Kinetics study suggests that the Nk-PLA2 isoenzymes inhibit their “pharmacological target(s)” by uncompetitive mechanism without the requirement of phospholipids/Ca2+. The anticoagulant potency of Nk-PLA2β which is higher than that of Nk-PLA2α is corroborated by its superior catalytic activity, its higher capacity for binding to phosphatidylcholine, and its greater strength of thrombin inhibition. These PLA2 isoenzymes thus have evolved to affect haemostasis by different mechanisms. The Nk-PLA2β partially inhibited the thrombin-induced aggregation of mammalian platelets suggesting its therapeutic application in the prevention of unwanted clot formation.

Conclusion/Significance

In order to develop peptide-based superior anticoagulant therapeutics, future application of Nk-PLA2α and Nk-PLA2β for the treatment and/or prevention of cardiovascular disorders are proposed.  相似文献   

14.
First generation chemokine ligand-Shiga A1 (SA1) fusion proteins (leukocyte population modulators, LPMs) were previously only obtained in small quantities due to the ribosomal inactivating protein properties of the SA1 moiety which inhibits protein synthesis in host cells. We therefore employed 4-aminopyrazolo[3,4-d]-pyrimidine, an inhibitor of Shiga A1, to allow the growth of these cells prior to induction and during the expression phase post-induction with IPTG. Scale-up allowed the production of gram quantities of clinical grade material of the lead candidate, OPL–CCL2–LPM. A manufacturing cell bank was established and used to produce OPL–CCL2–LPM in a fed-batch fermentation process. Induction of the expression of OPL–CCL2–LPM led to the production of 22.47 mg/L per OD600 unit. The LPM was purified from inclusion bodies using solubilization, renaturation, refolding and chromatography steps. The identity and purity of the OPL–CCL2–LPM was determined using several analytical techniques. The product retained the ability of the SA1 moiety to inhibit protein synthesis as measured in a rabbit reticulocyte lysate cell-free protein synthesis assay and was cytotoxic to target cells. Binding studies established that the protein exerts its effects via CCR2, the cognate receptor for CCL2. Clinical trials in inflammatory nephropathies are planned.  相似文献   

15.
Two different immobilisation techniques for lipases were investigated: adsorption on to Accurel EP-100 and deposition on to Celite. The specific activities were in the same order of magnitude, 2.9 (mol min–1 mg protein) when Celite was used as support and 2.3 (mol min–1 mg–1 protein) when Accurel EP-100 was used as support, even if the amount of lipase loaded differed by 2 orders of magnitude. Immobilisation on Accurel EP-100 was the preferred technique since 40–100 times more protein can be loaded/per g carrier, thus yielding a more active catalyst. The water activity profiles in lipase catalysed esterification were influenced by the amount of protein adsorbed to Accurel EP-100. Higher protein loading (40 mg g–1) resulted in a bell-shaped water activity profile with highest specific activity (6.1 mol min–1 mg–1 protein) at a w=0.11, while an enzyme preparation with low protein loading (4 mg g–1) showed highest specific activity at a w=0.75.  相似文献   

16.
Recently we have identified a protein fraction (55–63 K) from male and testosterone-exposed female mouse genital tract, which stimulates phospholipase A2 (PLA2) and induces masculine differentiation in an undifferentiated mouse genital explant, suggesting a role of this protein in the action of testosterone. In the current study we have further investigated the role of this protein by determining whether anti-masculinizing agents, namely, estradiol and cyproterone acetate, have any effect on the production of this protein. The results described here indicate that a protein fraction containing PLA2 stimulatory activity was present in both control male and estradiol- or cyproterone acetate-exposed male fetal genital tract. However the specific activity of the PLA2-stimulatory protein was significantly higher in the control males than in the experimental males. We did not find any major difference in the behavior of this protein fraction in various chromatographic steps except that in CM-sepharose column; the PLA2-stimulatory activity from the male preparation was eluted in two overlapping peaks with 0.3 and 0.25 M NaCl and that from the treated males was eluted only with 0.25 M NaCl. The SDS-gel analysis of this protein fraction revealed a doublet band (55 and 63 K) in control samples and primarily a 63 K band in experimental samples. The protein fraction from all these sources showed a significant difference in their biological activity. The control male preparation induced Wolffian duct whereas the estradiol sample was completely ineffective and the cyproterone acetate sample was partially effective in inducing Wolffian duct. Thus, it appears that the protein fraction has a role in the masculinizing action of testosterone.  相似文献   

17.
Embryonic implantation is a complex process in which both maternal andembryonic signals are involved. In the present study, we evaluated changes in uterine prostaglandins production and nitric oxide synthase (NOS) activity during the course of early pregnancy and their interaction during implantation in rats. Uterine phospholipase A2 (PLA2) activity is increased on days 5 (day of ovoimplantation) and 6, compared to preimplantation days (3 and 4). This enhanced activity might be responsible for the observed increase in uterine PGE and PGF production observed on day 5 of pregnancy, which induces endometrial vascular permeability and decidualization. When embryo access to the uterus is impaired, the increase of PG production is suppressed. During postimplantation, PGE levels return to preimplantation values, while PGF decreased with respect to preimplantation values. Uterine NOS activity is also increased on day 4 and reaches a maximum on day 5, with a profile similar to PGE and PGF Dexamethasone administered in vivo decreased uterine NOS activity on day 4 of pregnancy but not on day 5, suggesting the presence of at least two types of NOS enzymes in the early days of pregnancy. A competitive inhibitor of NOS, L-NAME (600 and 1000 μM) induced a decrease in PGE and PGF production in uterine tissue on day 5 of pregnancy. These results suggest the existence of a physiologically relevant nitridergic system which modulates prostaglandin production in the rat uterus during embryonic implantation.  相似文献   

18.
Summary The three-dimensional structure of porcine pancreatic PLA2 (PLA2), present in a 40 kDa ternary complex with micelles and a competitive inhibitor, has been determined using multidimensional heteronuclear NMR spectroscopy. The structure of the protein (124 residues) is based on 1854 constraints, comprising 1792 distance and 62 torsion angle constraints. A total of 18 structures was calculated using a combined approach of distance geometry and restrained molecular dynamics. The atomic rms distribution about the mean coordinate positions for residues 1–62 and 72–124 is 0.75±0.09 Å for the backbone atoms and 1.14±0.10 Å for all atoms. The rms difference between the averaged minimized NMR structures of the free PLA2 and PLA2 in the ternary complex is 3.5 Å for the backbone atoms and 4.0 Å for all atoms. Large differences occur for the calcium-binding loop and the surface loop from residues 62 through 72. The most important difference is found for the first three residues of the N-terminal -helix. Whereas free in solution Ala1, Leu2 and Trp3 are disordered, with the -amino group of Ala1 pointing out into the solvent, in the ternary complex these residues have an -helical conformation with the -amino group buried inside the protein. As a consequence, the important conserved hydrogen bonding network which is also seen in the crystal structures is present only in the ternary complex, but not in free PLA2. Thus, the NMR structure of the N-terminal region (as well as the calcium-binding loop and the surface loop) of PLA2 in the ternary complex resembles that of the crystal structure. Comparison of the NMR structures of the free enzyme and the enzyme in the ternary complex indicates that conformational changes play a role in the interfacial activation of PLA2.  相似文献   

19.
Phospholipase A2 (PLA2) activity has been shown to be involved in the sperm acrosome reaction (AR), but the molecular identity of PLA2 isoforms has remained elusive. Here, we have tested the role of two intracellular (iPLA2β and cytosolic PLA2α) and one secreted (group X) PLA2s in spontaneous and progesterone (P4)-induced AR by using a set of specific inhibitors and knock-out mice. iPLA2β is critical for spontaneous AR, whereas both iPLA2β and group X secreted PLA2 are involved in P4-induced AR. Cytosolic PLA2α is dispensable in both types of AR. P4-induced AR spreads over 30 min in the mouse, and kinetic analyses suggest the presence of different sperm subpopulations, using distinct PLA2 pathways to achieve AR. At low P4 concentration (2 μm), sperm undergoing early AR (0–5 min post-P4) rely on iPLA2β, whereas sperm undergoing late AR (20–30 min post-P4) rely on group X secreted PLA2. Moreover, the role of PLA2s in AR depends on P4 concentration, with the PLA2s being key actors at low physiological P4 concentrations (≤2 μm) but not at higher P4 concentrations (∼10 μm).  相似文献   

20.
On the hypothesis that prostaglandins and other eicosanoids mediate nodulation responses to bacterial infections in insects, we describe an intracellular phospholipase A2 (PLA2) in homogenates prepared from hemocytes collected from the tobacco hornworm, Manduca sexta. PLA2 hydrolyzes fatty acids from the sn-2 position of phospholipids. Some PLA2s are thought to be the first and rate-limiting step in biosynthesis of prostaglandins and other eicosanoids. The hemocyte PLA2 activity was sensitive to hemocyte homogenate protein concentration (up to 250 μg protein/reaction), pH (optimal activity at pH 8.0), and the presence of a Ca2+ chelator. Like PLA2s from mammalian sources, the hemocyte PLA2 was inhibited by the phospholipid analog oleyoxyethyl phosphorylcholine. Whereas most intracellular PLA2s require Ca2+ for catalytic activity, some PLA2s, including the hemocyte enzyme, are Ca2+-independent. The hemocyte PLA2 exhibited a preference for arachidonyl-associated substrate over palmitoyl-associated substrate. These findings show that M. sexta hemocytes express a PLA2 that shows a marked preference for hydrolyzing arachidonic acid from phospholipids. The biological significance of this enzyme relates to cellular immune responses to bacterial infections. The hemocyte PLA2 may be the first biochemical step in synthesis of the eicosanoids that mediate cellular immunity in insects. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号