首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pretreatment of mouse brain membranes with arachidonic acid (AA) and related unsaturated fatty acids at 30 degrees C for 10 min decreased basal activity and isoproterenol/guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)- and forskolin-stimulated activities of adenylyl cyclase to a level less than 5% of control. The presence of the carboxyl group on the fatty acids was essential for the inhibition, because no such inhibition was found with ethyl arachidonate or AA attached to diacylglycerols and phospholipids. The AA-mediated inhibition was observed when the activity was measured in the presence of Mn2+ or forskolin and was insensitive to pertussis toxin or guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS), indicating a mechanism independent of GTP-binding proteins. In addition, the fact that stimulators of the adenylyl cyclase catalytic unit, ATP, GTP gamma S and forskolin, when present during pretreatment, attenuate the inhibitory effect of AA may suggest that the catalytic unit is a target of AA. Bovine serum albumin suppressed the inhibition when present in the mixtures for pretreatment, but could not restore the adenylyl cyclase activity that had been reduced by AA, indicating an irreversible inhibition by AA. The effect of AA was found to be additive to P-site-mediated inhibition. The present study suggests the existence of another mechanism of regulation of adenylyl cyclase by unsaturated fatty acids.  相似文献   

2.
The stable nucleotide analog guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) was found to be a very potent activator of 5-lipoxygenase in cell-free preparations from rat polymorphonuclear (PMN) leukocytes, causing a 10-fold stimulation of arachidonic acid oxidation at concentrations as low as 0.5-1 microM. The enhancement of enzyme activity was not directly related to G protein activation since the effect of GTP gamma S could not be abolished by GDP nor replaced by GTP or guanylyl-imidodiphosphate (up to 100 microM). Furthermore, other phosphorothioate analogs, such as guanosine 5'-O-(2-thiodiphosphate), adenosine 5'-O-(3-thiotriphosphate), adenosine 5'-O-(2-thiodiphosphate), and adenosine 5'-O-thiomonophosphate all stimulated 5-lipoxygenase activity at concentrations of 10 microM or lower. This effect could not be detected with any of the corresponding nucleoside phosphate derivatives. The stimulation of 5-lipoxygenase activity by nucleoside phosphorothioates was observed under conditions where the reaction is highly dependent on exogenous hydroperoxides, such as in the presence of beta-mercaptoethanol or using enzyme preparations pretreated with sodium borohydride or glutathione peroxidase. GTP gamma S stimulated arachidonic acid oxidation by 5-lipoxygenase to the same extent as the activating hydroperoxides but had no effect on the reaction measured in the presence of optimal concentrations of 13-hydroperoxyoctadecadienoic acid (1-5 microM). Finally, sodium thiophosphate, but not sodium phosphate, markedly stimulated 5-lipoxygenase activity with properties similar to those of GTP gamma S. These results indicate that GTP gamma S and other phosphorothioate derivatives have redox properties that can contribute to increase 5-lipoxygenase activity by replacing the effect of hydroperoxides.  相似文献   

3.
4.
The stereochemical course of the reaction catalyzed by the soluble form of bovine lung guanylate cyclase has been investigated using [alpha-18O]guanosine 5'-triphosphate (Rp diastereomer) and guanosine 5'-O-(1-thiotriphosphate) (Sp diastereomer) as substrates. The product from the 3-thiomorpholino-1',1'-dioxide sydnonimine-stimulated enzymatic cyclization of [alpha-18O] guanosine 5'-triphosphate was esterified with diazomethane. 31P NMR analysis of the triesters indicated that all of the 18O label was present in the axial position. Guanosine 5'-O-(1-thiotriphosphate) (Sp diastereomer) was cyclized under stimulated and basal enzyme activities and, in both cases, the Rp diastereomer of guanosine 3',5'-cyclic phosphorothioate was formed. This was determined by direct comparison with material synthesized chemically from guanosine 5'-phosphorothioate. The results from these experiments show that the reaction catalyzed by guanylate cyclase proceeds with inversion of configuration at phosphorus and this indicates that the reaction proceeds by way of a single direct displacement reaction.  相似文献   

5.
Phosphatidylinositol (PI) kinase and PI phosphate (PIP) kinase activities were measured in postmortem samples of brain tissue from patients with Alzheimer's disease and nondemented control subjects. A membrane-free cytosolic fraction from four neocortical locations, with exogenous inositol lipids as the substrate, was used. Tissue from patients with Alzheimer's disease was characterized by reduced PIP formation; the reduction was 50% in prefrontal cortex, temporal cortex, and parietal cortex and 40% in precentral gyrus. In contrast, no alterations were found in PI bisphosphate formation in these four neocortical locations. The specific changes in PI kinase but not PIP kinase activity suggest that the findings may have functional relevance to the involvement of brain membrane processes in Alzheimer's disease.  相似文献   

6.
The effect of guanine nucleotides on platelet and calf brain cytosolic phospholipase C was examined in the absence of membranes or detergents in an assay using labeled lipid vesicles. Guanine nucleotides stimulate hydrolysis of [3H]phosphatidylinositol 4,5-bisphosphate [( 3H]PtdIns-4,5-P2) catalyzed both by enzyme from human platelets and by partially purified enzyme from calf brain. Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) was the most potent guanine nucleotide with a half-maximal stimulation at 1-10 microM, followed by guanosine 5'-(beta, gamma-imido)triphosphate greater than GTP greater than GDP = guanosine 5'-O-(2-thiodiphosphate). Guanosine 5'-O-(2-thiodiphosphate) was able to reverse the GTP gamma S-mediated stimulation. NaF also stimulated phospholipase C activity, further implying a role for a guanine nucleotide-binding protein. In the presence of GTP gamma S, the enzyme cleaved PtdIns-4,5-P2 at higher pH values, and the need for calcium ions was reduced 100-fold. The stimulation of PtdIns-4,5-P2 hydrolysis by GTP gamma S ranged from 2 to 25-fold under various conditions, whereas hydrolysis of [3H]phosphatidylinositol was only slightly affected by guanine nucleotides. We propose that a soluble guanine nucleotide-dependent protein activates phospholipase C to hydrolyze its initial substrate in the sequence of phosphoinositide-derived messenger generation.  相似文献   

7.
M H Lee  R S Goody  T Nowak 《Biochemistry》1985,24(26):7594-7602
The interactions of nucleotides with phosphoenolpyruvate carboxykinase were studied by using the stereospecific thiophosphate analogues of GDP and GTP. The metal ion dependent stereoselectivity of these analogues was determined by using steady-state kinetics. The RP and SP isomers of guanosine 5'-O-(1-thiodiphosphate) (GDP alpha S) were substrates with low turnover, and a small preference for the RP isomer was observed. Neither the enzyme-metal nor the nucleotide-metal complex elicited any substantial change in the selectivity. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) exhibited no substrate activity for the enzyme, regardless of the cations. This nucleotide was a competitive inhibitor against GDP, however. Both RP and SP diastereomers of guanosine 5'-O-(1-thiotriphosphate) (GTP alpha S) were good substrates for phosphoenolpyruvate carboxykinase; in several cases, depending upon the cation, kcat and/or Vm/Km for the RP isomer is greater than for the substrate GTP. The enzyme-metal complex but not the nucleotide-metal complex affects the relative Km and the Vmax values. In contrast, guanosine 5'-O-(2-thiotriphosphate) (GTP beta S) (SP) is a much better substrate (greater than 50 times) than is GTP beta S (RP). The metal ions have little effect on the selectivity. These results suggest a specific interaction of the beta-phosphate of the nucleotide with the protein. The analogue guanosine 5'-O-(3-thiotriphosphate) (GPT gamma S) serves as a substrate to yield GDP and thiophosphoenolpyruvate. The latter was detected by 31P NMR and was shown to slowly hydrolyze to form phosphoenolpyruvate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A significant increase of guanylylimidodiphosphate (GppNHp)-, fluoride-, and forskolin-stimulated adenylyl cyclase was observed in synaptic membrane preparations from rat cerebral cortex subsequent to chronic electroconvulsive shock (ECS) treatment. This effect required at least five treatments over a course of 10 days. The inhibition of adenylyl cyclase induced by GppNHp was not affected by these treatments. The dissociation constant (KD) and maximal binding for the photoaffinity GTP analog, [32P]P3-(4-azidoanilido)-P1-5'-GTP [( 32P]AAGTP), to each of the synaptic membrane G proteins also were unchanged after ECS treatment. Nonetheless, the transfer of [32P]AAGTP from Gi to Gs, which we suggest is indicative of the coupling between Gs and the adenylyl cyclase catalytic moiety, was accelerated by chronic ECS treatment but not by acute or sham treatment. Furthermore, chemical uncoupling of Gs from adenylyl cyclase rendered membranes from treated animals indistinguishable from controls. Finally, in all cases tested, membranes prepared from animals subjected to chronic treatment with amitriptyline or iprindole showed similar changes in the Gs-mediated activation of adenylyl cyclase. Acute treatments produced effects similar to controls, and liver and kidney membranes from animals receiving chronic treatment showed no changes in adenylyl cyclase despite the marked changes seen in brain. These results suggest that chronic administration of ECS enhances coupling between Gs and adenylyl cyclase enzyme and modifies interactions between Gs and Gi.  相似文献   

9.
The kinetics of "P"-site-mediated inhibition of adenylyl cyclase was studied with the detergent-solubilized enzyme from rat brain. Mn2(+)-activated adenylyl cyclase exhibited typical noncompetitive inhibition by 2'-d3'-AMP or 2',5'-dideoxyadenosine (2',5'-ddAdo). However, enzyme that was preactivated with guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) or proteolytically with ninhibin (+ GTP gamma S) exhibited apparently uncompetitive inhibition with either 2'-d3'-AMP or 2',5'-ddAdo and with either MgATP or MgApp(NH)p (adenosine 5'-(beta gamma-imino)triphosphate) as substrate. Inhibition increased with increasing substrate concentration, consistent with distinct domains for catalysis and the P-site and the formation of a 2'-d3'-AMP.C.MgATP complex. This conclusion was supported by the kinetics of product inhibition. For both cAMP and inorganic pyrophosphate (MgPPi) inhibition was mixed, suggesting that product release is likely random sequential. Although MgPPi enhanced inhibition in the presence of P-site agonist, it did not affect the dissociation constant for P-site agonist. The uncompetitive character of P-site-mediated inhibition and the independence of inhibition by MgPPi and P-site agonist imply that the P-site binding domain is distinct from the substrate binding domain. Given the structural requirements for catalysis and for P-site-mediated inhibition, these domains would be expected to be homologous. Sensitivity to P-site-mediated inhibition was also dependent on the structure of ATP, with the following IC50 values for 2'-d3'-AMP: ATP approximately 2'-dATP (approximately 1 microM); adenosine 5'-O-(3-thiotriphosphate) (approximately 5 microM); App(NH)p (approximately 30 microM); adenosine 5'-(beta gamma-methylene)triphosphate (approximately 300 microM). The differing effectiveness of the ATP analogs to support P-site inhibition was not due to their binding at the P-site. This effect of substrate was also observed with the platelet enzyme and was independent of the means by which the enzyme was activated, whether by Mn2+ or proteolytically by ninhibin/GTP gamma S, suggesting it is a general characteristic of P-site-mediated inhibition. The data suggest a structure for activated adenylyl cyclase such that one nucleotide binding domain, selective for ATP vis-à-vis other ATP analogs, allosterically modulates a proximate P-site domain.  相似文献   

10.
In the present studies, we have investigated the effect of angiotensin II (AII) on guanine nucleotide regulatory protein (G protein) expression and functions in A10 smooth muscle cells. AII treatment of A10 cells enhanced the levels of inhibitory guanine nucleotide regulatory protein (Gi) as well as Gi mRNA and not of stimulatory guanine nucleotide regulatory protein (Gs) in a concentration-dependent manner as determined by immunoblot and Northern blot analysis, respectively. AII-evoked increased expression of Gialpha-2 and Gialpha-3 was inhibited by actinomycin D treatment (RNA synthesis inhibitor). The increased expression of Gialpha-2 and Gialpha-3 by AII was not reflected in functions, because the GTPgammaS-mediated inhibition of forskolin-stimulated adenylyl cyclase and the receptor-mediated inhibition of adenylyl cyclase by AII and C-ANP4-23 [des(Gln18, Ser19, Gln20, Leu21, Gly22) ANP4-23-NH2] were not augmented but attenuated in AII-treated A10 cells. The attenuation was prevented by staurosporine (a protein kinase C inhibitor) treatment. On the other hand, AII treatment did not affect the expression and functions of stimulatory guanine nucleotide regulatory protein (Gs), however, the stimulatory effects of 5'-O-(3-thiotriphosphate), isoproterenol, and N-ethylcarboxamide adenosine (NECA) on adenylyl cyclase activity were inhibited to various degrees by AII treatment. Staurosporine reversed the AII-evoked attenuation of isoproterenol- and NECA-stimulated enzyme activity. From these results, it can be suggested that AII, whose levels are increased in hypertension, may be one of the possible contributing factors responsible for exhibiting an enhanced expression of Gi protein in hypertension.  相似文献   

11.
B D Gehm  D G Mc Connell 《Biochemistry》1990,29(23):5447-5452
Preparations of rod outer segments from cattle retinas contained soluble and particulate phospholipase C activities which hydrolyzed phosphatidylinositol 4,5-bisphosphate (PIP2) and the other phosphoinositides. Ca2+ was required for PIP2 hydrolysis, but high (greater than 300 microM) concentrations were inhibitory. Mg2+ and spermine at low concentrations stimulated the particulate activity but inhibited the soluble. Mn2+ inhibited both. High (greater than 100 microM) concentrations of the nonhydrolyzable GTP analogue guanylyl beta,gamma-methylenediphosphonate inhibited PIP2 hydrolysis by both the soluble and particulate activities, but guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), fluoride, and cholera and pertussis toxins were without effect. Overall phospholipase C activity in ROS was unaffected by light. Evidence was found for multiple forms of the enzyme, requiring isolation and separate characterization before ruling out regulation by light or G-protein.  相似文献   

12.
1. A comparison was made between adrenergic receptor binding properties and catecholamine-stimulated adenylyl cyclase activity in cardiac membrane fractions from the rat and the marmoset monkey. 2. [125I]HEAT and [125I]ICYP were used to determine respectively, the alpha- and beta-adrenergic receptor binding in cardiac membrane fractions. 3. Greatest adrenergic receptor density and degree of specific binding was evident using membranes sedimenting between 6000 and 46,000 g. 4. In rat heart, the ratio of beta- to alpha-adrenergic receptors was 57:43, while for the marmoset this ratio was 92:8. 5. Basal, isoproterenol, sodium fluoride and forskolin-stimulated adenylyl cyclase activities in the rat and marmoset monkey were investigated in several different cardiac membrane fractions. 6. The highest-fold stimulation of adenylyl cyclase activity was present in membranes sedimenting between 0 and 500 g. 7. Adenylyl cyclase activities were higher in the marmoset heart membrane preparations, however the rat heart adenylyl cyclase exhibited greater sensitivity to isoproterenol; ED50 3.8 X 10(-7) M compared with 7.5 X 10(-7) M for the marmoset. 8. Differences between rat and marmoset catecholamine-sensitive adenylyl cyclase activity were apparent when a variety of adrenergic agonists and antagonists were tested. 9. In the marmoset but not the rat, adrenergic antagonists alone stimulated basal adenylyl cyclase activity. 10. Differences in the activation of cardiac adenylyl cyclase by GTP and GMP-PNP were also evident between the rat and the marmoset monkey, particularly with regard to basal and isoproterenol-stimulated activity.  相似文献   

13.
Membranes of Dictyostelium discoideum cells were incubated under phosphorylation conditions and washed, and the effects on cAMP binding to chemotactic receptors in the absence and presence of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) were investigated. Most experiments were done with adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), which is a good substrate for many kinases, but the product, protein phosphorothioate, is not easily hydrolyzed by phosphatases. Pretreatment of membranes under phosphorylating conditions with MgATP gamma S alters the site heterogeneity of the cAMP-binding forms, without a significant effect on the total number of binding sites. A similar effect was induced by GTP gamma S under nonphosphorylation conditions. The effects of MgATP gamma S were rapid (t1/2 = 1 min), irreversible, and not induced by Mg2+ or ATP gamma S alone or by magnesium adenylyl imidodiphosphate and magnesium adenylyl (beta, gamma-methylene)diphosphate. MgATP induced a smaller inhibition than MgATP gamma S, which was potentiated by the addition of exogenous cAMP-dependent protein kinase. The effect of MgATP was rapidly reversible; reversibility was reduced by the phosphatase inhibitor NaF. These results suggest that the effects of MgATP gamma S are mediated by an endogenous protein kinase. The major 35S-thiophosphorylated band detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was a protein with Mr = 36,000. The phosphorylation of a protein with the molecular weight of the cAMP receptor (Mr = 40,000-45,000) was not observed.  相似文献   

14.
Regulation of adenylate cyclase coincident with transformation of chicken embryo fibroblasts by Rous sarcoma virus is manifest as a 10-50% decrease in basal, Mg2+-, and forskolin-stimulated activities; activities elicited by fluoride and guanosine 5'-O-(3-thiotriphosphate) are unaltered. The level of the catalytic component of adenylate cyclase, assessed with activated stimulatory guanine nucleotide-binding protein (Gs), increases approximately 1.5-fold. The level of the beta subunit common to Gs and the inhibitory regulatory protein assessed by enzyme-linked immunotransfer blotting, increases 2.7-fold. The isoelectric behavior of the beta subunit is unaltered. The amount of radiolabel incorporated into the alpha subunit of Gs (Mr = 45,000) upon incubation of membranes with 32P-labeled NAD and cholera toxin increases 3-fold upon transformation. Detergent extracts prepared from membranes of untransformed and transformed fibroblasts nevertheless exhibit equivalent abilities to reconstitute fluoride-stimulated activities to membranes of the cyc-variant of mouse S49 lymphoma cells. Islet-activating protein catalyzes incorporation of radiolabel from 32P-labeled NAD into 39,000- and 41,000-dalton proteins; the extent of radiolabel incorporation does not change upon transformation. Modest alterations in the isoelectric behaviors of substrates for cholera toxin and islet-activating protein occur.  相似文献   

15.
Stimulation of P2-purinergic receptors by ATP resulted in activation of phosphorylase, which was associated with marked production of inositol trisphosphate (Ins-P3), in rat hepatocytes. ATP also inhibited forskolin-induced accumulation of cAMP in the presence of a phosphodiesterase inhibitor. On the contrary, adenosine or AMP never inhibited the cAMP accumulation, but increased hepatocyte cAMP; the stimulation was antagonized by a methylxanthine. Thus, P1-purinergic receptors are linked to adenylate cyclase in a stimulatory fashion in hepatocytes. Various kinds of purine nucleotides stimulating P2-receptors can be divided into two groups on the basis of their relative abilities to stimulate Ins-P3 production and to inhibit cAMP accumulation; the first group including adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), ADP, 5-adenylyl imidodiphosphate, GTP, and guanosine 5'-O-(3-thiotriphosphate) has an efficacy similar to that of ATP, and the second group of nucleotides including alpha, beta-methyleneadenosine 5'-triphosphate, beta, gamma-methyleneadenosine 5'-triphosphate (App(CH)2)p), and GDP exerts considerable inhibitory effects on cAMP accumulation, but only slight effects on inositol lipid metabolism. Treatment of hepatocytes with islet-activating protein, pertussis toxin, blocked the nucleotide-induced inhibition of cAMP accumulation, but exerted only a small effect on Ins-P3 production. In membranes prepared from hepatocytes, forskolin-stimulated adenylate cyclase was inhibited by GTP. This GTP-induced inhibition of the enzyme was susceptible to islet-activating protein and dependent on the concentration of ATP (or its derivatives, ATP gamma S or App(CH2)p). It is concluded that there are two types of P2-purinergic receptors: one is linked to adenylate cyclase via an inhibitory guanine nucleotide regulatory protein (Gi) and the other is linked to phospholipase C.  相似文献   

16.
We demonstrated recently that purified preparations of Gs, the stimulatory G protein of adenylyl cyclase, can stabilize Ca2+ channels in inside-out cardiac ventricle membrane patches stimulated prior to excision by the beta-adrenergic agonist isoprenaline or by the dihydropyridine agonist Bay K 8644 and that such preparations of Gs can restore activity to spontaneously inactivated cardiac Ca2+ channels incorporated into planar lipid bilayers (Yatani, A., Codina, J., Reeves, J.P., Birnbaumer, L., and Brown, A.M. (1987) Science 238, 1288-1292). To test whether these effects represented true stimulation and to further identify the G protein responsible, we incorporated skeletal muscle T-tubule membranes into lipid bilayers and studied the response of their Ca2+ channels to G proteins, specifically Gs, and manipulations known to be specific for Gs. In contrast to cardiac channels, incorporated T-tubule Ca2+ channels exhibit stable average activities over prolonged periods of time (up to 20 min at room temperature), allowing assessment of possible effects of G proteins under steady-state assay conditions. We report that exogenously added human erythrocyte GTP gamma S (guanosine 5'-O-(3-thiotriphosphate]-activated Gs (Gs) or its resolved GTP gamma S-activated alpha subunit (alpha s) stimulate T-tubule Ca2+ channels by factors of 2-3 in the presence of Bay K 8644, and of 10-20 in the absence of Bay K 8644 and that they do so in a manner that is independent of concurrent or previous phosphorylation by cAMP-dependent protein kinase. Activation of purified Gs by cholera toxin increases both its adenylyl cyclase stimulatory and its Ca2+ channel stimulatory effects. Ca2+ channels previously stimulated by the combined actions of Bay K 8644 and cAMP-dependent protein kinase still respond to Gs. We conclude that the responses seen are due to Gs rather than a contaminant, that the effect on Ca2+ channel activity is that of a true stimulation, akin to that on adenylyl cyclase, and show that a given G protein may regulate more than one effector system.  相似文献   

17.
The influence of detergents on fluoride- and vanadate-stimulated adenylate cyclases was investigated with enzyme from liver and adipocyte plasma membranes. Stimulation of the adipocyte cyclase by Na3VO4 was maximal (sixfold) at 3 mM, was not additive with fluoride stimulation, and was readily reversed by washing of the membranes. Vanadate stimulation of the hepatic cyclase was specifically blocked by catechol, which had no effect on basal activity or on fluoride- or glucagon-stimulated activities. The hepatic enzyme, stimulated by fluoride ion, guanyl-5'-yl-(beta,gamma-imino)diphosphate (GPP(NH)P), or GPP(NH)P and glucagon, was inhibited by vanadate with 50% inhibition seen with 2 to 6 mM vanadate. The fluoride-activated adipocyte adenylate cyclase was inhibited by guanosine 5'-O-(3-thio-triphosphate) (GTP gamma S) more potently than by GPP(NH)P, with 50% inhibition being seen with 10 nM GTP gamma S or 100 nM GPP(NH)P. These nucleotides also inhibited the vanadate-stimulated enzyme, but with one-third the potency seen with the fluoride-activated cyclase. Dispersion of the adipocyte cyclase by Lubrol-PX into a 30,000g supernatant fraction caused no change in activation of the enzyme by fluoride, but reduced vanadate-stimulated activity 80%. By comparison, this treatment enhanced stimulation by GPP(NH)P twofold and by GTP gamma S threefold. More importantly, perhaps, the treatment with detergent blocked inhibition of the basal enzyme by GTP, blocked inhibition of fluoride- and vanadate-stimulated cyclases by GTP, GPP(NH)P, or GTP gamma S, and rendered vanadate-stimulated activity sensitive to enhancement by guanine nucleotides. The data indicate differences in the actions of vanadate and fluoride, made evident by the influence of guanine nucleotides and detergent treatment. The observations would be consistent with the idea that the effects of vandate may be due to the formation of GDP X V on the enzyme. The data strongly suggest that treatment of adenylate cyclase with Lubrol-PX causes a functional blockade in the guanine nucleotide-dependent inhibitory regulation (mediated by Ni), thereby allowing activation by the stimulatory guanine nucleotide-dependent regulatory component (Ns).  相似文献   

18.
NADPH oxidase in membranes of undifferentiated and dimethylsulphoxide-differentiated HL-60 cells was activated by arachidonic acid (AA) in the presence of Mg2+ and a cytosolic cofactor (CF) found in differentiated HL-60 cells. Basal superoxide (O2-) formation was enhanced several-fold by addition of the stable GTP-analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), prior to AA and was completely prevented by that of GDP. Basal and GTP gamma S-stimulated O2- formation was terminated by GDP. In the presence of Mg2+ or EDTA, basal O2- formation ceased after 25 or 10 min, respectively, and was reinitiated by GTP gamma S or GTP gamma S plus Mg2+. Albumin terminated O2- formation, which was reactivated by AA in the presence of GTP gamma S. Our results show that (1) activation of NADPH oxidase in HL-60 membranes is dependent on endogenous GTP, Mg2+, AA and CF, which is induced during myeloid differentiation, and that (2) NADPH oxidase activation is a reversible process modulated by exogenous guanine nucleotides at various stages of activity of NADPH oxidase. We suggest crucial roles of guanine nucleotide-binding proteins in the activation, deactivation and reactivation of the enzyme.  相似文献   

19.
The five muscarinic acetylcholine receptors (M1–M5) are differentially expressed in the brain. M2 and M4 are coupled to inhibition of stimulated adenylyl cyclase, while M1, M3 and M5 are mainly coupled to the phosphoinositide pathway. We studied the muscarinic receptor regulation of adenylyl cyclase activity in the rat hippocampus, compared to the striatum and amygdala. Basal and forskolin-stimulated adenylyl cyclase activity was higher in the striatum but the muscarinic inhibition was much lower. Highly selective muscarinic toxins MT1 and MT2—affinity order M1 ≥ M4 >> others—and MT3—highly selective M4 antagonist—did not show significant effects on basal or forskolin-stimulated cyclic AMP production but, like scopolamine, counteracted oxotremorine inhibition. Since MTs have negligible affinity for M2, M4 would be the main subtype responsible for muscarinic inhibition of forskolin-stimulated enzyme. Dopamine stimulated a small fraction of the enzyme (3.1% in striatum, 1.3% in the hippocampus). Since MT3 fully blocked muscarinic inhibition of dopamine-stimulated enzyme, M4 receptor would be responsible for this regulation. Diana Jerusalinsky and Edgar Kornisiuk contributed equally to this paper.  相似文献   

20.
We isolated a cDNA encoding an orphan G protein-coupled receptor, TGR7, which has been recently reported to correspond to MrgD. To search for ligands for TGR7, we screened a series of small molecule compounds by detecting the Ca2+ influx in Chinese hamster ovary cells expressing TGR7. Through this screening, we found that beta-alanine at micromolar doses specifically evoked Ca2+ influx in cells expressing human, rat, or mouse TGR7. A structural analogue, gamma-aminobutyric acid, weakly stimulated cells expressing human or rat TGR7, but another analogue, glycine, did not. In addition, beta-alanine decreased forskolin-stimulated cAMP production in cells expressing TGR7, suggesting that TGR7 couples with G proteins Gq and Gi. In guanosine 5'-O-3-thiotriphosphate binding assays conducted using a membrane fraction of cells expressing TGR7, beta-alanine specifically increased the binding of guanosine 5'-O-3-thiotriphosphate. When a fusion protein composed of TGR7 and green fluorescent protein was expressed in cells, it localized at the plasma membrane but internalized into the cytoplasm after treatment with beta-alanine. In addition, we found that beta-[3H]alanine more efficiently bound to TGR7-expressing cells than to control cells. From these results, we concluded that TGR7 functioned as a specific membrane receptor for beta-alanine. Quantitative PCR analysis revealed that TGR7 mRNA was predominantly expressed in the dorsal root ganglia in rats. By in situ hybridization and immunostaining, we confirmed that TGR7 mRNA was co-expressed in the small diameter neurons with P2X3 and VR1, both in rat and monkey dorsal root ganglia. Our results suggest that TGR7 participates in the modulation of neuropathic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号