首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulatory regions of the mouse muscle creatine kinase (MCK) gene, previously discovered by analysis in cultured muscle cells, were analyzed in transgenic mice. The 206-bp MCK enhancer at nt-1256 was required for high-level expression of MCK-chloramphenicol acetyltransferase fusion genes in skeletal and cardiac muscle; however, unlike its behavior in cell culture, inclusion of the 1-kb region of DNA between the enhancer and the basal promoter produced a 100-fold increase in skeletal muscle activity. Analysis of enhancer control elements also indicated major differences between their properties in transgenic muscles and in cultured muscle cells. Transgenes in which the enhancer right E box or CArG element were mutated exhibited expression levels that were indistinguishable from the wild-type transgene. Mutation of three conserved E boxes in the MCK 1,256-bp 5' region also had no effect on transgene expression in thigh skeletal muscle expression. All these mutations significantly reduced activity in cultured skeletal myocytes. However, the enhancer AT-rich element at nt - 1195 was critical for expression in transgenic skeletal muscle. Mutation of this site reduced skeletal muscle expression to the same level as transgenes lacking the 206-bp enhancer, although mutation of the AT-rich site did not affect cardiac muscle expression. These results demonstrate clear differences between the activity of MCK regulatory regions in cultured muscles cells and in whole adult transgenic muscle. This suggests that there are alternative mechanism of regulating the MCK gene in skeletal and cardiac muscle under different physiological states.  相似文献   

3.
Muscle creatine kinase (MCK) is expressed at high levels only in skeletal and cardiac muscle tissues. Previous in vitro transfection studies of skeletal muscle myoblasts and fibroblasts had identified two MCK enhancer elements and one proximal promoter element, each of which exhibited expression only in differentiated skeletal muscle. In this study, we have identified several regions of the mouse MCK gene that are responsible for tissue-specific expression in transgenic mice. A fusion gene containing 3,300 nucleotides of MCK 5' sequence exhibited chloramphenicol acetyltransferase activity levels that were more than 10(4)-fold higher in skeletal muscle than in other, nonmuscle tissues such as kidney, liver, and spleen. Expression in cardiac muscle was also greater than in these nonmuscle tissues by 2 to 3 orders of magnitude. Progressive 5' deletions from nucleotide -3300 resulted in reduced expression of the transgene, and one of these resulted in a preferential decrease in expression in cardiac tissue relative to that in skeletal muscle. Of the two enhancer sequences analyzed, only one directed high-level expression in both skeletal and cardiac muscle. The other enhancer activated expression only in skeletal muscle. These data reveal a complex set of cis-acting sequences that have differential effects on MCK expression in skeletal and cardiac muscle.  相似文献   

4.
First-generation adenovirus vectors (AdV) have been used successfully to transfer a human dystrophin minigene to skeletal muscle of mdx mice. In most studies, strong viral promoters such as the cytomegalovirus promoter/enhancer (CMV) were used to drive dystrophin expression. More recently, a short version of the muscle creatine kinase promoter (MCK1350) has been shown to provide muscle-specific reporter gene expression after AdV-mediated gene delivery. Therefore, we generated a recombinant AdV where dystrophin expression is controlled by MCK1350 (AdVMCKdys). AdVMCKdys was injected by the intramuscular route into anterior tibialis muscle of mdx mice shortly after birth. Dystrophin expression was assessed at 20, 30, and 60 days after AdV-injection. At 20 days, muscles of AdVMCKdys-injected mdx mice showed a high number of dystrophin-positive fibers (mean: 365). At 60 days, the number of dystrophin-positive fibers was not only maintained, but increased significantly (mean: 600). In conclusion, MCK1350 allows for sustained dystrophin expression after AdV-mediated gene transfer to skeletal muscle of newborn mdx mice. In contrast to previous studies, where strong viral promoters were used, dystrophin expression driven by MCK1350 peaks at later time points. This may have implications for the future use of muscle-specific promoters for gene therapy of Duchenne muscular dystrophy.  相似文献   

5.
6.
BACKGROUND: High transgene expression is generally expected after gene transfer. However, different level, kinetics and localization of expression might be needed for relevant therapeutic applications. Former studies have compared various promoter regions driving gene expression leading to conflicting results. In the present work, two promoter families have been compared using the efficient in vivo intramuscular electrotransfer technique. METHODS: Three promoter regions were constructed by associating the strong ubiquitous cytomegalovirus (CMV) enhancer-promoter to its homologous intron A or to a heterologous intron, or to a hybrid intron. Promoter regions derived from the muscle creatine kinase (MCK) promoter were also studied. The expression of the same transgene (SeAP or neurotrophin-3) under control of these different promoters was compared after plasmid electrotransfer in mouse tibialis-cranialis skeletal muscle. RESULTS: Heterologous intron association to the CMV promoter did not modify gene expression kinetics nor increase gene expression level. Usefulness of intron A or hybrid intron association to the CMV promoter depended on the gene. The various MCK promoters drove efficient gene expression but lower than that obtained with the CMV promoter. Furthermore, peak value was reached earlier with MCK promoter regions (14 days). CONCLUSION: For applications of gene transfer restricted to skeletal muscle, the MCK promoter or a MCK promoter variant would be a promising alternative to the CMV promoter. Indeed, it has been demonstrated that the use of MCK promoter limits humoral and cell-mediated immune responses. Furthermore, the MCK promoter decreases the initial expression peak that may be detrimental, drives a sustained gene expression, and improves gene transfer safety.  相似文献   

7.
Mutations in the myostatin gene are associated with hypermuscularity, suggesting that myostatin inhibits skeletal muscle growth. We postulated that increased tissue-specific expression of myostatin protein in skeletal muscle would induce muscle loss. To investigate this hypothesis, we generated transgenic mice that overexpress myostatin protein selectively in the skeletal muscle, with or without ancillary expression in the heart, utilizing cDNA constructs in which a wild-type (MCK/Mst) or mutated muscle creatine kinase (MCK-3E/Mst) promoter was placed upstream of mouse myostatin cDNA. Transgenic mice harboring these MCK promoters linked to enhanced green fluorescent protein (EGFP) expressed the reporter protein only in skeletal and cardiac muscles (MCK) or in skeletal muscle alone (MCK-3E). Seven-week-old animals were genotyped by PCR of tail DNA or by Southern blot analysis of liver DNA. Myostatin mRNA and protein, measured by RT-PCR and Western blot, respectively, were significantly higher in gastrocnemius, quadriceps, and tibialis anterior of MCK/Mst-transgenic mice compared with wild-type mice. Male MCK/Mst-transgenic mice had 18-24% lower hind- and forelimb muscle weight and 18% reduction in quadriceps and gastrocnemius fiber cross-sectional area and myonuclear number (immunohistochemistry) than wild-type male mice. Male transgenic mice with mutated MCK-3E promoter showed similar effects on muscle mass. However, female transgenic mice with either type of MCK promoter did not differ from wild-type controls in either body weight or skeletal muscle mass. In conclusion, increased expression of myostatin in skeletal muscle is associated with lower muscle mass and decreased fiber size and myonuclear number, decreased cardiac muscle mass, and increased fat mass in male mice, consistent with its role as an inhibitor of skeletal muscle mass. The mechanism of gender specificity remains to be clarified.  相似文献   

8.
We have used transient transfections in MM14 skeletal muscle cells, newborn rat primary ventricular myocardiocytes, and nonmuscle cells to characterize regulatory elements of the mouse muscle creatine kinase (MCK) gene. Deletion analysis of MCK 5'-flanking sequence reveals a striated muscle-specific, positive regulatory region between -1256 and -1020. A 206-bp fragment from this region acts as a skeletal muscle enhancer and confers orientation-dependent activity in myocardiocytes. A 110-bp enhancer subfragment confers high-level expression in skeletal myocytes but is inactive in myocardiocytes, indicating that skeletal and cardiac muscle MCK regulatory sites are distinguishable. To further delineate muscle regulatory sequences, we tested six sites within the MCK enhancer for their functional importance. Mutations at five sites decrease expression in skeletal muscle, cardiac muscle, and nonmuscle cells. Mutations at two of these sites, Left E box and MEF2, cause similar decreases in all three cell types. Mutations at three sites have larger effects in muscle than nonmuscle cells; an A/T-rich site mutation has a pronounced effect in both striated muscle types, mutations at the MEF1 (Right E-box) site are relatively specific to expression in skeletal muscle, and mutations at the CArG site are relatively specific to expression in cardiac muscle. Changes at the AP2 site tend to increase expression in muscle cells but decrease it in nonmuscle cells. In contrast to reports involving cotransfection of 10T1/2 cells with plasmids expressing the myogenic determination factor MyoD, we show that the skeletal myocyte activity of multimerized MEF1 sites is 30-fold lower than that of the 206-bp enhancer. Thus, MyoD binding sites alone are not sufficient for high-level expression in skeletal myocytes containing endogenous levels of MyoD and other myogenic determination factors.  相似文献   

9.
The muscle creatine kinase (MCK) gene is expressed at high levels only in differentiated skeletal and cardiac muscle. The activity of the cloned enhancer–promoter has previously been shown to be dependent on the Trex element which is specifically bound by a yet unidentified nuclear factor, TrexBF. We have further characterized the function of the Trex site by comparing wild-type and Trex-mutated MCK transgenes in five mouse skeletal muscles: quadriceps, extensor digitorum longus (EDL), soleus, diaphragm, and distal tongue, as well as in heart ventricular muscle. Several types of statistical analysis including analysis of variance (ANOVA) and rank sum tests were used to compare expression between muscle types and between constructs. Upon mutation of the Trex site, median transgene expression levels decreased 3- to 120-fold in the muscles examined, with statistically significant differences in all muscles except the EDL. Expression in the largely slow soleus muscle was more affected than in the EDL, and expression in the distal tongue and diaphragm muscles was affected more than in soleus. Median expression of the transgene in ventricle decreased about 18-fold upon Trex mutation. Transfections into neonatal rat myocardiocytes confirmed the importance of the Trex site for MCK enhancer activity in heart muscle, but the effect is larger in transgenic mice than in cultured cells.  相似文献   

10.
11.
We evaluated various constructs to obtain cell-specific expression of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) gene in cardiac myocytes after cDNA transfer by means of transfections or infections with adenovirus vectors. Expression of exogenous enhanced green fluorescent protein (EGFP) and SERCA genes was studied in cultured chicken embryo and neonatal rat cardiac myocytes, skeletal and smooth muscle cells, fibroblasts, and hepatocytes. Whereas the cytomegalovirus (CMV) promoter yielded high levels of protein expression in all cells studied, cardiac troponin T (cTnT) promoter segments demonstrated high specificity for cardiac myocytes. Their efficiency for protein expression was lower than that of the CMV promoter, but higher than that of cardiac myosin light chain or -myosin heavy chain promoter segments. A double virus system for Cre-dependent expression under control of the CMV promoter and Cre expression under control of a cardiac-specific promoter yielded high protein levels in cardiac myocytes, but only partial cell specificity due to significant Cre expression in hepatocytes. Specific intracellular targeting of gene products was demonstrated in situ by specific immunostaining of exogenous SERCA1 and endogenous SERCA2 and comparative fluorescence microscopy. The -374 cTnT promoter segment was the most advantageous of the promoters studied, producing cell-specific SERCA expression and a definite increase over endogenous Ca2+-ATPase activity as well as faster removal of cytosolic calcium after membrane excitation. We conclude that analysis of promoter efficiency and cell specificity is of definite advantage when cell-specific expression of exogenous SERCA is wanted in cardiac myocytes after cDNA delivery to mixed cell populations. cardiac myocytes; cell-specific expression; adenovirus vectors; calcium transport  相似文献   

12.
13.
14.
15.
16.
17.
PI3K/AKT信号通路调控Myogenin和MCK基因的表达   总被引:1,自引:0,他引:1  
李晶  张云生  李宁  胡晓湘  石国庆  刘守仁  柳楠 《遗传》2013,35(5):637-642
骨骼肌分化过程受多个信号通路调控, PI3K/AKT信号通路是其中最重要的信号转导通路之一。PI3K/AKT信号通路可以调控骨骼肌分化, 但在染色质水平上的调控机制还不是很清楚。文章以小鼠成肌细胞(C2C12)为研究材料, 采用免疫印迹、染色质免疫共沉淀(Chromatin immunoprecipitation, ChIP)、定量PCR (Q-PCR)的方法研究PI3K/AKT信号通路调控Myogenin和MCK基因的表达。研究发现, C2C12细胞分化过程中添加PI3K/AKT信号通路激活剂处理24 h, Myogenin和MCK蛋白表达水平显著升高, 组蛋白H3K27me3去甲基化酶UTX的表达也升高, H3K27me3在Myogenin基因启动子区和MCK基因启动子及增强子区的富集与对照组相比显著降低。用PI3K/AKT信号通路抑制剂处理, 结果相反。因此, PI3K/AKT信号通路可能通过调控组蛋白去甲基化酶UTX的表达活性改变靶基因的H3K27me3的富集进而调控骨骼肌分化。  相似文献   

18.
The AAV9 capsid displays a high natural affinity for the heart following a single intravenous (IV) administration in both newborn and adult mice. It also results in substantial albeit relatively lower expression levels in many other tissues. To increase the overall safety of this gene delivery method we sought to identify which one of a group of promoters is able to confer the highest level of cardiac specific expression and concurrently, which is able to provide a broad biodistribution of expression across both cardiac and skeletal muscle. The in vivo behavior of five different promoters was compared: CMV, desmin (Des), alpha-myosin heavy chain (α-MHC), myosin light chain 2 (MLC-2) and cardiac troponin C (cTnC). Following IV administration to newborn mice, LacZ expression was measured by enzyme activity assays. Results showed that rAAV2/9-mediated gene delivery using the α-MHC promoter is effective for focal transgene expression in the heart and the Des promoter is highly suitable for achieving gene expression in cardiac and skeletal muscle following systemic vector administration. Importantly, these promoters provide an added layer of control over transgene activity following systemic gene delivery.  相似文献   

19.
20.
Chimeric genes composed of the human cardiac actin promoter driving the Escherichia coli lacZ reporter gene were constructed, transfected, and stably integrated into genomes of P19 embryonal carcinoma cells. The transfected constructs were expressed actively in cardiac myocytes formed following dimethyl sulfoxide (DMSO)-induced cell differentiation but poorly in undifferentiated cultures and in cultures treated with retinoic acid to develop into derivatives of the neuroectoderm. A number of deletions of the promoter were constructed and tested. Three regions required for efficient expression in P19-derived cardiac muscle were identified, each containing sequences referred to as CArG boxes (CC[AT-rich]6GG). This analysis indicated that regulatory sequences important for expression in cardiac muscle were present upstream of the core promoter identified previously by transient assays in skeletal myoblasts. Expression of the cardiac actin promoter was enhanced 10-fold in undifferentiated P19 cells in the presence of the myoD protein. The promoter regions important for expression in P19-derived cardiocytes were similar to those important for myoD-induced enhancement, a result we interpret to be consistent with the idea that cardiac muscle might contain a myoD-like activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号