首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Many studies have been conducted over the last few decades to understand better the functions of IRF3 and IRF7 in antiviral immune responses. However, the precise underlying molecular mechanism of IRF1-mediated immune response remains largely unknown. Recent studies indicate that IRF1 exerts strong antiviral activities against several viral infections through diverse mechanisms, both in IFN-dependent and IFN-independent manners. Nevertheless, the efficacy and kinetics of inducing IFNs and ISGs remain unknown. Here we summarize the recent advances in IRF1 research and highlight its potential roles in initiating IFN immune responses and subsequent IRF1-triggering antiviral responses. Challenges regarding the IFN positive feedback mediated by IRF7 during infection will be discussed; this classical loop may also be mediated in part by IRF1. Therefore, we propose a revised model that may help decipher the functional roles of IRF1 in antiviral immunity.  相似文献   

3.
Komuro A  Bamming D  Horvath CM 《Cytokine》2008,43(3):350-358
The recent, rapid progress in our understanding of cytoplasmic RNA-mediated antiviral innate immune signaling was initiated by the discovery of retinoic acid-inducible gene I (RIG-I) as a sensor of viral RNA. It is now widely recognized that RIG-I and related RNA helicases, melanoma differentiation-associated gene-5 (MDA5) and laboratory of genetics and physiology-2 (LGP2), can initiate and/or regulate RNA and virus-mediated type I IFN production and antiviral responses. As with other cytokine systems, production of type I IFN is a transient process, and can be hazardous to the host if unregulated, resulting in chronic cellular toxicity or inflammatory and autoimmune diseases. In addition, the RIG-I-like receptor (RLR) system is a fundamental target for virus-encoded immune suppression, with many indirect and direct examples of interference described. In this article, we review the current understanding of endogenous negative regulation in RLR signaling and explore direct inhibition of RLR signaling by viruses as a host immune evasion strategy.  相似文献   

4.
Formation of microRNA (miRNA) requires an RNaseIII domain-containing protein, termed DICER-1 in animals and DICER-LIKE1 (DCL1) in plants, to catalyze processing of an RNA precursor with a fold-back structure. Loss-of-function dcl1 mutants of Arabidopsis have low levels of miRNA and exhibit a range of developmental phenotypes in vegetative, reproductive, and embryonic tissues. In this paper, we show that DCL1 mRNA occurs in multiple forms, including truncated molecules that result from aberrant pre-mRNA processing. Both full-length and truncated forms accumulated to relatively low levels in plants containing a functional DCL1 gene. However, in dcl1 mutant plants, dcl1 RNA forms accumulated to levels several-fold higher than those in DCL1 plants. Elevated levels of DCL1 RNAs were also detected in miRNA-defective hen1 mutant plants and in plants expressing a virus-encoded suppressor of RNA silencing (P1/HC-Pro), which inhibits miRNA-guided degradation of target mRNAs. A miRNA (miR162) target sequence was predicted near the middle of DCL1 mRNA, and a DCL1-derived RNA with the properties of a miR162-guided cleavage product was identified and mapped. These results indicate that DCL1 mRNA is subject to negative feedback regulation through the activity of a miRNA.  相似文献   

5.
BACKGROUND: The importance of endogenous antagonists in intracellular signal transduction pathways is becoming increasingly recognized. There is evidence in cultured mammalian cells that Pyst1/MKP3, a dual specificity protein phosphatase, specifically binds to and inactivates ERK1/2 mitogen-activated protein kinases (MAPKs). High-level Pyst1/Mkp3 expression has recently been found at many sites of known FGF signaling in mouse embryos, but the significance of this association and its function are not known. RESULTS: We have cloned chicken Pyst1/Mkp3 and show that high-level expression in neural plate correlates with active MAPK. We show that FGF signaling regulates Pyst1 expression in developing neural plate and limb bud by ablating and/or transplanting tissue sources of FGFs and by applying FGF protein or a specific FGFR inhibitor (SU5402). We further show by applying a specific MAP kinase kinase inhibitor (PD184352) that Pyst1 expression is regulated via the MAPK cascade. Overexpression of Pyst1 in chick embryos reduces levels of activated MAPK in neural plate and alters its morphology and retards limb bud outgrowth. CONCLUSIONS: Pyst1 is an inducible antagonist of FGF signaling in embryos and acts in a negative feedback loop to regulate the activity of MAPK. Our results demonstrate both the importance of MAPK signaling in neural induction and limb bud outgrowth and the critical role played by dual specificity MAP kinase phosphatases in regulating developmental outcomes in vertebrates.  相似文献   

6.
7.
Negative regulation of NF-kappaB signaling by PIAS1   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

8.
9.
Inflammasomes are multiprotein complexes that serve as a platform for caspase-1 activation and interleukin-1β (IL-1β) maturation as well as pyroptosis. Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied. NLRP3 inflammasome is triggered by a variety of stimuli, including infection, tissue damage and metabolic dysregulation, and then activated through an integrated cellular signal. Many regulatory mechanisms have been identifi ed to attenuate NLRP3 inflammasome signaling at multiple steps. Here, we review the developments in the negative regulation of NLRP3 inflammasome that protect host from inflammatory damage.  相似文献   

10.
11.
L-fucose, a monosaccharide widely distributed in eukaryotes and certain bacteria, is a determinant of many functional glycans that play central roles in numerous biological processes. The molecular mechanism, however, by which fucosylation mediates these processes remains largely elusive. To study how changes in fucosylation impact embryonic development, we up-regulated N-linked fucosylation via over-expression of a key GDP-Fucose transporter, Slc35c1, in zebrafish. We show that Slc35c1 overexpression causes elevated N-linked fucosylation and disrupts embryonic patterning in a transporter activity dependent manner. We demonstrate that patterning defects associated with enhanced N-linked fucosylation are due to diminished canonical Wnt signaling. Chimeric analyses demonstrate that elevated Slc35c1 expression in receiving cells decreases the signaling range of Wnt8a during zebrafish embryogenesis. Moreover, we provide biochemical evidence that this decrease is associated with reduced Wnt8 ligand and elevated Lrp6 coreceptor, which we show are both substrates for N-linked fucosylation in zebrafish embryos. Strikingly, slc35c1 expression is regulated by canonical Wnt signaling. These results suggest that Wnt limits its own signaling activity in part via up-regulation of a transporter, slc35c1 that promotes terminal fucosylation and thereby limits Wnt activity.  相似文献   

12.
13.
Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1) is an important component in the stress-activated protein kinase pathway. Glutathione S-transferase Mu 1-1 (GST M1-1) has now been shown to inhibit the stimulation of MEKK1 activity induced by cellular stresses such as UV and hydrogen peroxide. GST M1-1 inhibited MEKK1 activation in a manner independent of its glutathione-conjugating catalytic activity. In vitro binding and kinase assays revealed that GST M1-1 directly bound MEKK1 and inhibited its kinase activity. Co-immunoprecipitation analysis showed a physical association between endogenous GST M1-1 and endogenous MEKK1 in L929 cells. Overexpressed GST M1-1 interfered with the binding of MEKK1 to SEK1 in transfected HEK293 cells. Furthermore, GST M1-1 suppressed MEKK1-mediated apoptosis. Taken together, our results suggest that GST M1-1 functions as a negative regulator of MEKK1.  相似文献   

14.
TLR信号是生物体重要的病原体模式识别信号,在免疫识别和炎症反应中具有重要作用,其信号异常会导致许多免疫和炎症相关疾病的发生,因此探讨和明确TLR信号通路的调控机制具有非常重要的意义。近年来研究发现,作为重要的基因表达调控的小分子RNA,微RNA(microRNA,miRNA)能与TLR信号通路中众多靶基因mRNA的3’UTR区结合,从而抑制翻译过程或降解mRNA来发挥负性调控作用。本文就miRNA对TLR信号通路中的一些受体、信号分子、调节因子和细胞因子的负性调控作用方面进行阐述。  相似文献   

15.
Kim MJ  Chae JS  Kim KJ  Hwang SG  Yoon KW  Kim EK  Yun HJ  Cho JH  Kim J  Kim BW  Kim HC  Kang SS  Lang F  Cho SG  Choi EJ 《The EMBO journal》2007,26(13):3075-3085
Serum- and glucocorticoid-inducible protein kinase 1 (SGK1) has been implicated in diverse cellular activities including the promotion of cell survival. The molecular mechanism of the role of SGK1 in protection against cellular stress has remained unclear, however. We have now shown that SGK1 inhibits the activation of SEK1 and thereby negatively regulates the JNK signaling pathway. SGK1 was found to physically associate with SEK1 in intact cells. Furthermore, activated SGK1 mediated the phosphorylation of SEK1 on serine 78, resulting in inhibition of the binding of SEK1 to JNK1, as well as to MEKK1. Replacement of serine 78 of SEK1 with alanine abolished SGK1-mediated SEK1 inhibition. Oxidative stress upregulated SGK1 expression, and depletion of SGK1 by RNA interference potentiated the activation of SEK1 induced by oxidative stress in Rat2 fibroblasts. Moreover, such SGK1 depletion prevented the dexamethasone-induced increase in SGK1 expression, as well as the inhibitory effects of dexamethasone on paclitaxel-induced SEK1-JNK signaling and apoptosis in MDA-MB-231 breast cancer cells. Together, our results suggest that SGK1 negatively regulates stress-activated signaling through inhibition of SEK1 function.  相似文献   

16.
17.
18.
19.
Presenilin 1 (PS1) plays a pivotal role in Notch signaling and the intracellular metabolism of the amyloid beta-protein. To understand intracellular signaling events downstream of PS1, we investigated in this study the action of PS1 on mitogen-activated protein kinase pathways. Overexpressed PS1 suppressed the stress-induced stimulation of stress-activated protein kinase (SAPK)/c-Jun NH(2)-terminal kinase (JNK) in human embryonic kidney 293 cells. Interestingly, two functionally inactive PS1 mutants, PS1(D257A) and PS1(D385A), failed to inhibit UV-stimulated SAPK/JNK. Furthermore, H(2)O(2-) or UV-stimulated SAPK activity was higher in mouse embryonic fibroblast (MEF) cells from PS1-null mice than in MEF cells from PS(+/+) mice. MEF(PS1(-/-)) cells were more sensitive to the H(2)O(2)-induced apoptosis than MEF(PS1(+/+)) cells. Ectopic expression of PS1 in MEF(PS1(-/-)) cells suppressed H(2)O(2)-stimulated SAPK/JNK activity and apoptotic cell death. Together, our data suggest that PS1 inhibits the stress-activated signaling by suppressing the SAPK/JNK pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号