首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we introduce a probabilistic measure for computing the similarity between two biological sequences without alignment. The computation of the similarity measure is based on the Kullback-Leibler divergence of two constructed Markov models. We firstly validate the method on clustering nine chromosomes from three species. Secondly, we give the result of similarity search based on our new method. We lastly apply the measure to the construction of phylogenetic tree of 48 HEV genome sequences. Our results indicate that the weighted relative entropy is an efficient and powerful alignment-free measure for the analysis of sequences in the genomic scale.  相似文献   

2.
Virtually every molecular biologist has searched a protein or DNA sequence database to find sequences that are evolutionarily related to a given query. Pairwise sequence comparison methods--i.e., measures of similarity between query and target sequences--provide the engine for sequence database search and have been the subject of 30 years of computational research. For the difficult problem of detecting remote evolutionary relationships between protein sequences, the most successful pairwise comparison methods involve building local models (e.g., profile hidden Markov models) of protein sequences. However, recent work in massive data domains like web search and natural language processing demonstrate the advantage of exploiting the global structure of the data space. Motivated by this work, we present a large-scale algorithm called ProtEmbed, which learns an embedding of protein sequences into a low-dimensional "semantic space." Evolutionarily related proteins are embedded in close proximity, and additional pieces of evidence, such as 3D structural similarity or class labels, can be incorporated into the learning process. We find that ProtEmbed achieves superior accuracy to widely used pairwise sequence methods like PSI-BLAST and HHSearch for remote homology detection; it also outperforms our previous RankProp algorithm, which incorporates global structure in the form of a protein similarity network. Finally, the ProtEmbed embedding space can be visualized, both at the global level and local to a given query, yielding intuition about the structure of protein sequence space.  相似文献   

3.
Qian B  Goldstein RA 《Proteins》2003,52(3):446-453
It is often desired to identify further homologs of a family of biological sequences from the ever-growing sequence databases. Profile hidden Markov models excel at capturing the common statistical features of a group of biological sequences. With these common features, we can search the biological database and find new homologous sequences. Most general profile hidden Markov model methods, however, treat the evolutionary relationships between the sequences in a homologous group in an ad-hoc manner. We hereby introduce a method to incorporate phylogenetic information directly into hidden Markov models, and demonstrate that the resulting model performs better than most of the current multiple sequence-based methods for finding distant homologs.  相似文献   

4.
Dai Q  Li L  Liu X  Yao Y  Zhao F  Zhang M 《PloS one》2011,6(11):e26779
Word-based models have achieved promising results in sequence comparison. However, as the important statistical properties of words in biological sequence, how to use the overlapping structures and background information of the words to improve sequence comparison is still a problem. This paper proposed a new statistical method that integrates the overlapping structures and the background information of the words in biological sequences. To assess the effectiveness of this integration for sequence comparison, two sets of evaluation experiments were taken to test the proposed model. The first one, performed via receiver operating curve analysis, is the application of proposed method in discrimination between functionally related regulatory sequences and unrelated sequences, intron and exon. The second experiment is to evaluate the performance of the proposed method with f-measure for clustering Hepatitis E virus genotypes. It was demonstrated that the proposed method integrating the overlapping structures and the background information of words significantly improves biological sequence comparison and outperforms the existing models.  相似文献   

5.
The amino acid sequences of proteins provide rich information for inferring distant phylogenetic relationships and for predicting protein functions. Estimating the rate matrix of residue substitutions from amino acid sequences is also important because the rate matrix can be used to develop scoring matrices for sequence alignment. Here we use a continuous time Markov process to model the substitution rates of residues and develop a Bayesian Markov chain Monte Carlo method for rate estimation. We validate our method using simulated artificial protein sequences. Because different local regions such as binding surfaces and the protein interior core experience different selection pressures due to functional or stability constraints, we use our method to estimate the substitution rates of local regions. Our results show that the substitution rates are very different for residues in the buried core and residues on the solvent-exposed surfaces. In addition, the rest of the proteins on the binding surfaces also have very different substitution rates from residues. Based on these findings, we further develop a method for protein function prediction by surface matching using scoring matrices derived from estimated substitution rates for residues located on the binding surfaces. We show with examples that our method is effective in identifying functionally related proteins that have overall low sequence identity, a task known to be very challenging.  相似文献   

6.
Effective similarity measures for expression profiles   总被引:3,自引:0,他引:3  
It is commonly accepted that genes with similar expression profiles are functionally related. However, there are many ways one can measure the similarity of expression profiles, and it is not clear a priori what is the most effective one. Moreover, so far no clear distinction has been made as for the type of the functional link between genes as suggested by microarray data. Similarly expressed genes can be part of the same complex as interacting partners; they can participate in the same pathway without interacting directly; they can perform similar functions; or they can simply have similar regulatory sequences. Here we conduct a study of the notion of functional link as implied from expression data. We analyze different similarity measures of gene expression profiles and assess their usefulness and robustness in detecting biological relationships by comparing the similarity scores with results obtained from databases of interacting proteins, promoter signals and cellular pathways, as well as through sequence comparisons. We also introduce variations on similarity measures that are based on statistical analysis and better discriminate genes which are functionally nearby and faraway. Our tools can be used to assess other similarity measures for expression profiles, and are accessible at biozon.org/tools/expression/  相似文献   

7.
Making sense of score statistics for sequence alignments   总被引:1,自引:0,他引:1  
The search for similarity between two biological sequences lies at the core of many applications in bioinformatics. This paper aims to highlight a few of the principles that should be kept in mind when evaluating the statistical significance of alignments between sequences. The extreme value distribution is first introduced, which in most cases describes the distribution of alignment scores between a query and a database. The effects of the similarity matrix and gap penalty values on the score distribution are then examined, and it is shown that the alignment statistics can undergo an abrupt phase transition. A few types of random sequence databases used in the estimation of statistical significance are presented, and the statistics employed by the BLAST, FASTA and PRSS programs are compared. Finally the different strategies used to assess the statistical significance of the matches produced by profiles and hidden Markov models are presented.  相似文献   

8.
Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity.  相似文献   

9.
We present a model of amino acid sequence evolution based on a hidden Markov model that extends to transmembrane proteins previous methods that incorporate protein structural information into phylogenetics. Our model aims to give a better understanding of processes of molecular evolution and to extract structural information from multiple alignments of transmembrane sequences and use such information to improve phylogenetic analyses. This should be of value in phylogenetic studies of transmembrane proteins: for example, mitochondrial proteins have acquired a special importance in phylogenetics and are mostly transmembrane proteins. The improvement in fit to example data sets of our new model relative to less complex models of amino acid sequence evolution is statistically tested. To further illustrate the potential utility of our method, phylogeny estimation is performed on primate CCR5 receptor sequences, sequences of l and m subunits of the light reaction center in purple bacteria, guinea pig sequences with respect to lagomorph and rodent sequences of calcitonin receptor and K-substance receptor, and cetacean sequences of cytochrome b.  相似文献   

10.
Identifying and characterizing the structure in genome sequences is one of the principal challenges in modern molecular biology, and comparative genomics offers a powerful tool. In this paper, we introduce a hidden Markov model that allows a comparative analysis of multiple sequences related by a phylogenetic tree, and we present an efficient method for estimating the parameters of the model. The model integrates structure prediction methods for one sequence, statistical multiple alignment methods, and phylogenetic information. This unified model is particularly useful for a detailed characterization of DNA sequences with a common gene. We illustrate the model on a variety of homologous sequences.  相似文献   

11.
The surprising fact that global statistical properties computed on a genomewide scale may reveal species information has first been observed in studies of dinucleotide frequencies. Here we will look at the same phenomenon with a totally different statistical approach. We show that patterns in the short-range statistical correlations in DNA sequences serve as evolutionary fingerprints of eukaryotes. All chromosomes of a species display the same characteristic pattern, markedly different from those of other species. The chromosomes of a species are sorted onto the same branch of a phylogenetic tree due to this correlation pattern. The average correlation between nucleotides at a distance k is quantified in two independent ways: (i) by estimating it from a higher-order Markov process and (ii) by computing the mutual information function at a distance k. We show how the quality of phylogenetic reconstruction depends on the range of correlation strengths and on the length of the underlying sequence segment. This concept of the correlation pattern as a phylogenetic signature of eukaryote species combines two rather distant domains of research, namely phylogenetic analysis based on molecular observation and the study of the correlation structure of DNA sequences.  相似文献   

12.
The increasing throughput of sequencing raises growing needs for methods of sequence analysis and comparison on a genomic scale, notably, in connection with phylogenetic tree reconstruction. Such needs are hardly fulfilled by the more traditional measures of sequence similarity and distance, like string edit and gene rearrangement, due to a mixture of epistemological and computational problems. Alternative measures, based on the subword composition of sequences, have emerged in recent years and proved to be both fast and effective in a variety of tested cases. The common denominator of such measures is an underlying information theoretic notion of relative compressibility. Their viability depends critically on computational cost. The present paper describes as a paradigm the extension and efficient implementation of one of the methods in this class. The method is based on the comparison of the frequencies of all subwords in the two input sequences, where frequencies are suitably adjusted to take into account the statistical background.  相似文献   

13.
The evolutionary classification of influenza genes into lineages is a first step in understanding their molecular epidemiology and can inform the subsequent implementation of control measures. We introduce a novel approach called Lineage Assignment By Extended Learning (LABEL) to rapidly determine cladistic information for any number of genes without the need for time-consuming sequence alignment, phylogenetic tree construction, or manual annotation. Instead, LABEL relies on hidden Markov model profiles and support vector machine training to hierarchically classify gene sequences by their similarity to pre-defined lineages. We assessed LABEL by analyzing the annotated hemagglutinin genes of highly pathogenic (H5N1) and low pathogenicity (H9N2) avian influenza A viruses. Using the WHO/FAO/OIE H5N1 evolution working group nomenclature, the LABEL pipeline quickly and accurately identified the H5 lineages of uncharacterized sequences. Moreover, we developed an updated clade nomenclature for the H9 hemagglutinin gene and show a similarly fast and reliable phylogenetic assessment with LABEL. While this study was focused on hemagglutinin sequences, LABEL could be applied to the analysis of any gene and shows great potential to guide molecular epidemiology activities, accelerate database annotation, and provide a data sorting tool for other large-scale bioinformatic studies.  相似文献   

14.
A finite-context (Markov) model of order k yields the probability distribution of the next symbol in a sequence of symbols, given the recent past up to depth k. Markov modeling has long been applied to DNA sequences, for example to find gene-coding regions. With the first studies came the discovery that DNA sequences are non-stationary: distinct regions require distinct model orders. Since then, Markov and hidden Markov models have been extensively used to describe the gene structure of prokaryotes and eukaryotes. However, to our knowledge, a comprehensive study about the potential of Markov models to describe complete genomes is still lacking. We address this gap in this paper. Our approach relies on (i) multiple competing Markov models of different orders (ii) careful programming techniques that allow orders as large as sixteen (iii) adequate inverted repeat handling (iv) probability estimates suited to the wide range of context depths used. To measure how well a model fits the data at a particular position in the sequence we use the negative logarithm of the probability estimate at that position. The measure yields information profiles of the sequence, which are of independent interest. The average over the entire sequence, which amounts to the average number of bits per base needed to describe the sequence, is used as a global performance measure. Our main conclusion is that, from the probabilistic or information theoretic point of view and according to this performance measure, multiple competing Markov models explain entire genomes almost as well or even better than state-of-the-art DNA compression methods, such as XM, which rely on very different statistical models. This is surprising, because Markov models are local (short-range), contrasting with the statistical models underlying other methods, where the extensive data repetitions in DNA sequences is explored, and therefore have a non-local character.  相似文献   

15.
16.
17.
We present an efficient algorithm for statistical multiple alignment based on the TKF91 model of Thorne, Kishino, and Felsenstein (1991) on an arbitrary k-leaved phylogenetic tree. The existing algorithms use a hidden Markov model approach, which requires at least O( radical 5(k)) states and leads to a time complexity of O(5(k)L(k)), where L is the geometric mean sequence length. Using a combinatorial technique reminiscent of inclusion/exclusion, we are able to sum away the states, thus improving the time complexity to O(2(k)L(k)) and considerably reducing memory requirements. This makes statistical multiple alignment under the TKF91 model a definite practical possibility in the case of a phylogenetic tree with a modest number of leaves.  相似文献   

18.
Dai Q  Liu X  Yao Y  Zhao F 《Amino acids》2012,42(5):1867-1877
There are two crucial problems with statistical measures for sequence comparison: overlapping structures and background information of words in biological sequences. Word normalization in improved composition vector method took into account these problems and achieved better performance in evolutionary analysis. The word normalization is desirable, but not sufficient, because it assumes that the four bases A, C, T, and G occur randomly with equal chance. This paper proposed an improved word normalization which uses Markov model to estimate exact k-word distribution according to observed biological sequence and thus has the ability to adjust the background information of the k-word frequencies in biological sequences. The improved word normalization was tested with three experiments and compared with the existing word normalization. The experiment results confirm that the improved word normalization using Markov model to estimate the exact k-word distribution in biological sequences is more efficient.  相似文献   

19.
Previous studies have shown that the identification and analysis of both abundant and rare k-mers or “DNA words of length k” in genomic sequences using suitable statistical background models can reveal biologically significant sequence elements. Other studies have investigated the uni/multimodal distribution of k-mer abundances or “k-mer spectra” in different DNA sequences. However, the existing background models are affected to varying extents by compositional bias. Moreover, the distribution of k-mer abundances in the context of related genomes has not been studied previously. Here, we present a novel statistical background model for calculating k-mer enrichment in DNA sequences based on the average of the frequencies of the two (k-1) mers for each k-mer. Comparison of our null model with the commonly used ones, including Markov models of different orders and the single mismatch model, shows that our method is more robust to compositional AT-rich bias and detects many additional, repeat-poor over-abundant k-mers that are biologically meaningful. Analysis of overrepresented genomic k-mers (4≤k≤16) from four yeast species using this model showed that the fraction of overrepresented DNA words falls linearly as k increases; however, a significant number of overabundant k-mers exists at higher values of k. Finally, comparative analysis of k-mer abundance scores across four yeast species revealed a mixture of unimodal and multimodal spectra for the various genomic sub-regions analyzed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号