首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell wall proteins of Candida albicans play a key role in morphogenesis and pathogenesis and might be potential target sites for new specific antifungal drugs. However, these proteins are difficult to analyze because of their high heterogeneity, interconnections with wall polysaccharides (mannan, glucan, and chitin), low abundance, low solubility, and hydrophobic nature. Here we report a subproteomic approach for the study of the cell wall proteins (CWPs) from C. albicans yeast and hyphal forms. Most of the mannoproteins present in this compartment were extracted by cell wall fractionation according to the type of interactions that they establish with other structural components. CWPs were solubilized from isolated cell walls by hot SDS and dithiothreitol treatment followed by extraction either by mild alkali conditions or by enzymatic treatment with glucanases and chitinases. These highly enriched cell wall fractions were analyzed by two-dimensional PAGE, showing that a large number of proteins are involved in cell wall construction and that the wall remodeling that occurs during germ tube formation is related to changes in the composition of CWPs. We suggest that the CWP-chitin linkage is an important retention mechanism of CWPs in C. albicans mycelial forms. This article also highlights the usefulness of the combination of sequential fractionation and two-dimensional PAGE followed by Western blotting using specific antibodies against known CWPs in the characterization of incorporation mechanisms of such CWPs into the cell wall and of their interactions with other wall components. Mass spectrometry analyses have allowed the identification of several cell surface proteins classically associated with both the cell wall and other compartments. The physiological significance of the dual location of these moonlighting proteins is also discussed. This approach is therefore a powerful tool for obtaining a comprehensive and integrated view of the cell wall proteome.  相似文献   

2.
We investigated the chemical structure of the specific determinant in the mannan of Candida albicans M-1012 (serotype A) strain. Acetolysis of the mannan, obtained by alkali extraction and purified as the copper complex, gave mannose and six oligosaccharides (from di- to hexasaccharide) and a small amount of a heptasaccharide. We examined the inhibition by these oligosaccharides up to hexaose of the precipitin reaction between anti-factor 6 serum specific for serotype A and homologous mannan, and found that the mannohexaose was the most effective inhibitor. These, and results obtained by proton magnetic resonance (PMR) spectroscopy, methylation analysis, and other structural studies, suggest that the main component of this hexaose consists of one terminal alpha (1-3) linkage in addition to four alpha (1-2) linkages, and that this alpha (1-3)-containing mannohexaose may be responsible for the specificity of antigenic factor 6. Further results obtained by analyses of polarimetry, PMR spectroscopy, and chromium trioxide oxidation-methylation of C. albicans M-1012 mannan has a beta-linkage in addition to alpha-linkages, and that the mode of the beta-linkage is mainly (1-6) linkage. Further evidence obtained by Smith degradation-methylation analysis and by quantitative precipitin reactions of intact and acid-degraded mannan suggests that the antigenic determinant of antigenic factor 6 may be bound, via the beta (1-6) linkage, to C-6 of mannose residues involved in oligosaccharide side chains of serotype A mannan.  相似文献   

3.
Antibody response to Candida albicans cell wall antigens   总被引:3,自引:0,他引:3  
The cell wall of Candida albicans is not only the structure where many essential biological functions reside but is also a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both carbohydrate and protein moieties are able to trigger immune responses. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to profoundly influence the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins to host ligands. In this review we examine various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo. Some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidiasis, particularly the disseminated form. In addition, recent studies have focused on the potential of antibodies against the cell wall protein determinants in protecting the host against infection. Hence, a better understanding of the humoral response triggered by the cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis, and (ii) novel prophylactic (vaccination) and therapeutic strategies to control this type of infections.  相似文献   

4.
Secretion of glycoproteins through the cell wall of Candida albicans   总被引:1,自引:0,他引:1  
A monoclonal antibody raised against the pathogenic phase of Candida albicans has been coupled to colloidal gold and used to detect the corresponding epitope in cell wall and culture medium of blastoconidia grown as germ tubes in vitro. Immunogold silver staining of Western blots of culture supernatants demonstrated release of the epitope into the culture medium. The stain revealed 3 well defined bands of 205,000, 66,000 and 30,000 Mr and a smear from the top of the gel to an Mr of 120,000. Immunoelectron microscopy of ultrathin frozen sections of the corresponding growth forms showed that epitope accumulated first in the periplasmic space, generally corresponding to plasmalemma invaginations within the cytoplasm. From these sites, it was possible to follow continuous lines of epitope distribution through the cell wall and antigenic extrusion at the cell surface. In tangential sections of intensely labeled walls, these preferential excretion ways appeared to be organized as a parallel network. Antigen emergence at the cell surface corresponded to patches of material which tended to coalesce in an easily dissociated layer, probably corresponding to the fuzzy coat. These experiments demonstrate, for the first time, preferential ways for cellular secretion through the yeast cell wall.  相似文献   

5.
To assess the dynamics of synthesis of the wall by regenerating Candida albicans protoplasts deposition of chitin and mannoproteins were investigated ultrastructurally using wheat germ agglutinin conjugated with either horseradish peroxidase or colloidal gold, and Concanavalin A coupled to ferritin respectively.Freshly prepared protoplasts lacked wheat germ agglutinin receptor sites but after 1–2 h of regeneration, they were detected. After 4–5 h of regeneration, the cell wall showed a discrete structure which was only labelled with wheat germ agglutinin in thin sections. At this stage of regeneration the outermost layer of the wall was labelled with clusters of Concanavalin A-ferritin particles.After 8 h regeneration, the cell wall appeared compact, and homogenously marked with wheat germ agglutinin whereas only the surface layers appeared consistently labelled with Concanavalin A-ferritin.From these observations we conclude that C. albicans protoplasts are able to regenerate in liquid medium a cell wall consisting of a network of chitin fibrils and mannoproteins at least (glucan polymers were not determined in the present cytological study). The former are the fundamental component of the inner layers at early stages of regeneration, whereas the latter molecules are predominant in the outer layers of the wall.Abbreviations WGA-HRP wheat germ agglutinin conjugated with horseradish peroxidase - WGA-Au wheat germ agglutinin conjugated with colloidal gold - Con A-ferritin Concanavalin A coupled to ferritin  相似文献   

6.
The structure of the mannan of Candida albicans NIH A-207 strain (serotype A) was investigated by adopting mild acetolysis followed by enzymolysis with an Arthrobacter GJM-1 exo-alpha-mannosidase. The resultant oligosaccharides, from pentaose to octaose (where manp = D-mannopyranose), were identified as manp beta (1----2)manp alpha (1----2)manp alpha (1----2)manp alpha (1----2)manp, manp beta (1----2)manp beta (1----2)manp alpha (1----2)manp alpha (1----2)- manp alpha (1----2)manp, manp beta (1----2)manp beta (1----2)manp beta (1----2)manp alpha (1----2)manp alpha (1----2)manp alpha (1----2)manp and manp beta (1----2)manp beta (1----2)manp beta (1----2)manp beta (1----2)manp alpha (1----2)manp alpha (1----2)manp alpha (1----2)manp, respectively. Analyses of alpha-linked oligosaccharides obtained by acetolysis under conventional conditions gave the same oligosaccharides, from biose to heptaose, as those obtained from the mannans of C. albicans NIH B-792 (serotype B) and J-1012 (serotype A, formerly serotype C).  相似文献   

7.
Fluconazole is a commonly used antifungal drug that inhibits Erg11, a protein responsible for 14α-demethylation during ergosterol synthesis. Consequently, ergosterol is depleted from cellular membranes and replaced by toxic 14α-methylated sterols, which causes increased membrane fluidity and drug permeability. Surface-grown and planktonic cultures of Candida albicans responded similarly to fluconazole at 0.5 mg/liter, showing reduced biomass formation, severely reduced ergosterol levels, and almost complete inhibition of hyphal growth. There was no evidence of cell leakage. Mass spectrometric analysis of the secretome showed that its composition was strongly affected and included 17 fluconazole-specific secretory proteins. Relative quantification of (14)N-labeled query walls relative to a reference standard mixture of (15)N-labeled yeast and hyphal walls in combination with immunological analysis revealed considerable fluconazole-induced changes in the wall proteome as well. They were, however, similar for both surface-grown and planktonic cultures. Two major trends emerged: (i) decreased incorporation of hypha-associated wall proteins (Als3, Hwp1, and Plb5), consistent with inhibition of hyphal growth, and (ii) increased incorporation of putative wall repair-related proteins (Crh11, Pga4, Phr1, Phr2, Pir1, and Sap9). As exposure to the wall-perturbing drug Congo red led to a similar response, these observations suggested that fluconazole affects the wall. In keeping with this, the resistance of fluconazole-treated cells to wall-perturbing compounds decreased. We propose that fluconazole affects the integrity of both the cellular membranes and the fungal wall and discuss its potential consequences for antifungal therapy. We also present candidate proteins from the secretome for clinical marker development.  相似文献   

8.
9.
An imbalance of the normal microbial flora, breakage of epithelial barriers or dysfunction of the immune system favour the transition of the human pathogenic yeast Candida albicans from a commensal to a pathogen. C. albicans has evolved to be adapted as a commensal on mucosal surfaces. As a commensal it has also acquired attributes, which are necessary to avoid or overcome the host defence mechanisms. The human host has also co-evolved to recognize and eliminate potential fungal invaders. Many of the fungal genes that have been the focus of this co-evolutionary process encode cell wall components. In this review, we will discuss the transition from commensalism to pathogenesis, the key players of the fungal cell surface that are important for this transition, the role of the morphology and the mechanisms of host recognition and response.  相似文献   

10.
Mansour FA  Mohamedin AH 《Microbios》2001,105(411):87-101
The production of lytic enzyme by Streptomyces thermodiastaticus was found to be affected by some growth conditions and nutritional factors. The highest enzyme production was obtained after 18 h of incubation at pH 5.5 and at 50 degrees C. The carbon source influenced the lytic enzyme production. A higher enzyme yield was obtained when Candida albicans cell wall (1 g/100 ml) was used as the sole carbon source. NaNO3 at 0.1 g/100 ml was the best nitrogen source for enzyme production. From all phosphorous sources, microelements, and growth factors tested, KH2PO4 (1 g/l), ZnSO4 (1 mg/I) and Tween 80 (0.1%), respectively, were found to favour the highest production of lytic enzymes by S. thermodiastaticus. The lytic enzymes mainly produced chitinolytic and proteolytic activities.  相似文献   

11.
Cell wall proteins of Candida albicans   总被引:16,自引:0,他引:16  
Proteins were solubilized from cell wall fractions of Candida albicans and separated by polyacrylamide gel electrophoresis. Cell walls were isolated from 25 and 37 degrees C growing and stationary phase yeast cultures and from germ tubes. The 42 protein bands detected by dye binding were observed in all wall extracts, regardless of the temperature, growth state, or morphology of the culture. The carbohydrate content of most bands was below the detectable limit of the periodic acid Schiff reagent. The protein complement revealed by autoradiography of radiolabeled proteins was half that detected by staining. Two bands showed greater intensity from cultures grown at 37 degrees C. The radio-labeled pattern was similar with both [35S]methionine-and [14C]leucine-labeled proteins and either pulse- or continuous-labeled proteins.  相似文献   

12.
In Candida albicans wild-type cells, the beta1, 6-glucanase-extractable glycosylphosphatidylinositol (GPI)-dependent cell wall proteins (CWPs) account for about 88% of all covalently linked CWPs. Approximately 90% of these GPI-CWPs, including Als1p and Als3p, are attached via beta1,6-glucan to beta1,3-glucan. The remaining GPI-CWPs are linked through beta1,6-glucan to chitin. The beta1,6-glucanase-resistant protein fraction is small and consists of Pir-related CWPs, which are attached to beta1,3-glucan through an alkali-labile linkage. Immunogold labelling and Western analysis, using an antiserum directed against Saccharomyces cerevisiae Pir2p/Hsp150, point to the localization of at least two differentially expressed Pir2 homologues in the cell wall of C. albicans. In mnn9Delta and pmt1Delta mutant strains, which are defective in N- and O-glycosylation of proteins respectively, we observed enhanced chitin levels together with an increased coupling of GPI-CWPs through beta1,6-glucan to chitin. In these cells, the level of Pir-CWPs was slightly upregulated. A slightly increased incorporation of Pir proteins was also observed in a beta1, 6-glucan-deficient hemizygous kre6Delta mutant. Taken together, these observations show that C. albicans follows the same basic rules as S. cerevisiae in constructing a cell wall and indicate that a cell wall salvage mechanism is activated when Candida cells are confronted with cell wall weakening.  相似文献   

13.
Polyclonal antibodies (pAbs) and monoclonal antibodies (mAbs), raised against mannoprotein components from Candida albicans ATCC 26555 (serotype A) blastoconidia and mycelial cell walls, were used to investigate antigenic similarities among wall mannoproteins from other C. albicans serotype A and B strains, and from C. tropicalis and C. guilliermondii. Radioactively labelled walls isolated from cells grown at either 28 degrees C or 37 degrees C were digested with a beta-glucanase complex (Zymolyase 20T) to release cell-wall-bound mannoproteins. Numerous molecular species with different electrophoretic mobilities were released from the various isolates. Differences appeared to be related to both the organism and the growth temperature. Among the major protein components solubilized were mannoproteins larger than 100 kDa (high molecular mass mannoproteins), heterogeneous in size in most cases. Antigenic homology was detected among the cell wall high molecular mass mannoproteins of the two C. albicans serotype A isolates, whereas significant qualitative and quantitative differences were detected between serotype A and serotype B cell-wall-bound antigenic profiles. Moreover, C. tropicalis and C. guilliermondii wall antigenic determinants were not recognized by the preparations of pAbs and mAbs raised against C. albicans walls. A mannoprotein with a molecular mass of 33-34 kDa was present in the enzymic wall digests of all the organisms studied. When probed with pAbs raised against the protein moiety of the 33 kDa cell wall mannoprotein of Saccharomyces cerevisiae, antigenic cross-reactivity was observed in all cases except C. tropicalis. There appear to be significant antigenic differences between the mannoproteins of different isolates of C. albicans, and between those of C. albicans and other Candida species.  相似文献   

14.
In order to test the hypothesis that cell wall glycoproteins of Candida albicans contained non-mannan oligosaccharides, the sugar composition of cell wall extracts and fractions of cell wall extracts was examined by means of fluorophore-assisted carbohydrate electrophoresis (FACE). In addition to the expected mannose, glucose, and N-acetyl-glucosamine, this analysis showed the presence of galactose, N-acetyl-galactosamine, fucose, and sialic acid and two unknown sugars. These sugars are also associated with complex oligosaccharides of mammalian glycoproteins. Presence of fucosylated cell wall components was further demonstrated by lectin-blotting analysis of cell wall extracts. Besides their structural role, complex carbohydrate structures on the surface of C. albicans may represent additional motifs through which interactions of this fungus with host cells and tissues could be established.  相似文献   

15.
16.
Cell wall glycopeptides of Candida albicans serotypes A and B   总被引:4,自引:0,他引:4  
  相似文献   

17.
The major fungal pathogen Candida albicans can occupy diverse microenvironments in its human host. During colonization of the gastrointestinal or urogenital tracts, mucosal surfaces, bloodstream, and internal organs, C. albicans thrives in niches that differ with respect to available nutrients and local environmental stresses. Although most studies are performed on glucose‐grown cells, changes in carbon source dramatically affect cell wall architecture, stress responses, and drug resistance. We show that growth on the physiologically relevant carboxylic acid, lactate, has a significant impact on the C. albicans cell wall proteome and secretome. The regulation of cell wall structural proteins (e.g. Cht1, Phr1, Phr2, Pir1) correlated with extensive cell wall remodeling in lactate‐grown cells and with their increased resistance to stresses and antifungal drugs, compared with glucose‐grown cells. Moreover, changes in other proteins (e.g. Als2, Gca1, Phr1, Sap9) correlated with the increased adherence and biofilm formation of lactate‐grown cells. We identified mating and pheromone‐regulated proteins that were exclusive to lactate‐grown cells (e.g. Op4, Pga31, Pry1, Scw4, Yps7) as well as mucosa‐specific and other niche‐specific factors such as Lip4, Pga4, Plb5, and Sap7. The analysis of the corresponding null mutants confirmed that many of these proteins contribute to C. albicans adherence, stress, and antifungal drug resistance. Therefore, the cell wall proteome and secretome display considerable plasticity in response to carbon source. This plasticity influences important fitness and virulence attributes known to modulate the behavior of C. albicans in different host microenvironments during infection.  相似文献   

18.
Candida albicans is one of the most important opportunistic pathogenic fungi. Weakening of the defense mechanisms of the host, and the ability of the microorganism to adapt to the environment prevailing in the host tissues, turn the fungus from a rather harmless saprophyte into an aggressive pathogen. The disease, candidiasis, ranges from light superficial infections to deep processes that endanger the life of the patient. In the establishment of the pathogenic process, the cell wall of C. albicans (as in other pathogenic fungi) plays an important role. It is the outer structure that protects the fungus from the host defense mechanisms and initiates the direct contact with the host cells by adhering to their surface. The wall also contains important antigens and other compounds that affect the homeostatic equilibrium of the host in favor of the parasite. In this review, we discuss our present knowledge of the structure of the cell wall of C. albicans, the synthesis of its different components, and the mechanisms involved in their organization to give rise to a coherent composite. Furthermore, special emphasis has been placed on two further aspects: how the composition and structure of C. albicans cell wall compare with those from other fungi, and establishing the role of some specific wall components in pathogenesis. From the data presented here, it becomes clear that the composition, structure and synthesis of the cell wall of C. albicans display both subtle and important differences with the wall of different saprophytic fungi, and that some of these differences are of utmost importance for its pathogenic behavior.  相似文献   

19.
The alarming incidence of invasive candidiasis, predominantly among the recent expanding immunocompromised population, the appearance of antifungal-drug resistance, and the lack of specific diagnostic tests for it have demanded more impactful research into Candida albicans pathogenicity. Proteomic approaches can provide accurate clues about its biological complexity. Indeed, initial C. albicans proteome analyses have focused on the understanding of dimorphism, host responses, the cell wall, virulence factors and drug resistance, among others. This review aims to briefly outline the technology available for proteomics-based studies, surveying the main proteomic approaches applied to C. albicans research. Prefractionation techniques, two-dimensional gel electrophoresis and mass spectrometry continue to be the backbone of proteomic projects. Emerging strategies for protein separation, quantification and identification may, however, challenge the pivotal position of 2D-PAGE. Regardless of this, since we are now approaching the completion and annotation of C. albicans genome sequencing, systematic characterization of the proteome of this fungal pathogen, although still in its early stages, heralds an exciting expansion of our knowledge in years to come.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号