首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Cyr61/CCN1 is a secreted extracellular matrix associated protein involved in diverse biological functions and plays multiple roles in tumorigenesis. Cyr61 was down-regulated in HCC tumor tissues as observed in our previous cDNA microarray study, but its potential role in hepatocarcinogenesis is still unclear. To explore the biological significance of Cyr61 in HCC development, over-expression of this gene was established in HCC cell lines and its effects on cell proliferation, adhesion, migration and invasion were analyzed in this study. Cyr61 expression was down-regulated in HCC tumors as measured by quantitative real-time PCR and its protein level was decreased in most HCC cell lines as detected by Western blot. Over-expression of Cyr61 in HCC cell lines suppressed cell proliferation in monolayer and anchorage-independent growth in soft agar, whereas down-regulation of Cyr61 by siRNA increased cell proliferation rate. Over-expression of Cyr61 also significantly enhanced adhesion activities of HepG2 cells to various ECM proteins. Moreover, stably transfected HepG2-Cyr61 cells showed inhibited cell mobility (40-45%) and reduced invasiveness (30-40%) compared to HepG2-Neo controls. Furthermore, upon exposure to 5-Fluorouracil and UV irradiation, Cyr61 was rapidly induced in both p53(+/+) HepG2 and p53(-/-) Hep3B cells. However, only HepG2 cells showed increased G2/M phase arrest with concomitant up-regulation in p53 and p21 levels, suggesting that Cyr61 may play an active role in regulating HCC cell growth involving p53 as well as alternative pathways. In conclusion, we demonstrated that Cyr61 is a tumor suppressor in hepatocarcinogenesis and is involved in DNA damage response.  相似文献   

2.
3.
The human lissencephaly-1 gene (LIS1) is a disease gene responsible for Miller–Dieker lissencephaly syndrome (MDL). LIS1 gene is located in the region of chromosome 17p13.3 that is frequency deleted in MDL patients and in human liver cancer cells. However, the expression and significance of LIS1 in liver cancer remain unknown. Here, we investigated the expression of LIS1 in hepatocellular carcinoma (HCC) tissues by real-time PCR, Western blot, and immunohistochemistry. The results indicated that the mRNA and protein levels of LIS1 were downregulated in about 70% of HCC tissues, and this downregulation was significantly associated with tumor progression. Functional studies showed that the reduction of LIS1 expression in the normal human liver cell line QSG7701 or the mouse fibroblast cell line NIH3T3 by shRNA resulted in colony formation in soft agar and xenograft tumor formation in nude mice, demonstrating that a decrease in the LIS1 level can promote the oncogenic transformation of cells. We also observed that the phenotypes of LIS1-knockdown cells displayed various defective mitotic structures, suggesting that the mechanism by which reduced LIS1 levels results in tumorigenesis is associated with its role in mitosis. Furthermore, we demonstrated that ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. Our results suggest that LIS1 plays a potential tumor suppressor role in the development and progression of HCC.  相似文献   

4.
人肝细胞癌中抑癌基因PTEN/MMAC1/TEP1的突变分析   总被引:8,自引:0,他引:8  
PTEN/MMAC1/TEP1 is a tumor suppressor gene. Its mutation has been found in several different types of human cancers. 34 primary human hepatocellular carcinomas have been examined for mutations in exon 5 and exon 8 of the PTEN gene. Exon 5 and exon 8 were amplified by polymerase chain reaction (PCR) with intronic primers and subjected to single strand conformation polymorphism (SSCP) analysis. SSCPs were found in 4 of the 34 hepatocellular carcinomas analyzed. Direct sequencing of the PCR products identified single base-pair substitutions in the four tumor DNA samples, two in intron 4 and two in exon 8. One of the base-pair substitution in exon 8 is a missense mutation, which changed codon 304 of PTEN protein from Cys to Gly. These data suggest that PTEN may be involved in the carcinogenesis and development of hepatocellular carcinoma.  相似文献   

5.
The tumor suppressor protein TSLC1 is involved in cell-cell adhesion   总被引:17,自引:0,他引:17  
TSLC1 is a tumor suppressor gene encoding a member of the immunoglobulin (Ig) superfamily. The significant homology of its extracellular domain with those of other Ig superfamily cell adhesion molecules (IgCAMs) has raised the possibility that TSLC1 participates in cell-cell interactions. In this study, the physiological properties of TSLC1 were investigated in Madin-Darby canine kidney (MDCK) cells expressing TSLC1 tagged with green fluorescent protein (GFP) as well as in the cells that express endogenous TSLC1. Biochemical analysis has revealed that TSLC1 is an N-linked glycoprotein with a molecular mass of 75 kDa and that it forms homodimers through cis interaction within the plane of the cell membranes. Confocal laser scanning microcopy of the cells expressing TSLC1 showed the localization patterns characteristic to adhesion molecules. At the beginning of cell attachment, TSLC1 accumulated in interdigitated structures at cell-cell boundaries, but, when cells reached a confluence, TSLC1 was distributed all along the cell membranes. In polarized cells, TSLC1 was recruited to the lateral membrane, implying trans interaction of TSLC1 between neighboring cells. In support of this notion, MDCK cells expressing TSLC1-GFP showed a significant level of cell aggregation in the absence or presence of Ca(2+) and Mg(2+). Taken together, these results indicate that TSLC1 mediates intracellular adhesion through homophilic interactions in a Ca(2+)/Mg(2+)-independent manner.  相似文献   

6.
CYLD is a deubiquitinating enzyme that exerts a tumor suppressive function. Its downregulation or inactivation has been associated with the development of several types of malignancies including hepatocellular carcinoma (HCC). HCC cells display significantly lower Cyld expression compared to primary human hepatocytes, and Cyld downregulation can contribute to apoptotic resistance of HCC cells. Little is known about the mechanism of Cyld downregulation in human HCC cells. In the present study we explored the possible regulation of Cyld expression by histone deacetylases (HDACs) in human HCC cell lines. We demonstrated that the HDAC inhibitors suberoylanilide hydroxamic acid, sodium butyrate, and trichostatin A induced the upregulation of both mRNA and protein levels of CYLD in two different HCC cell lines, HepG2 and Huh7. Our results demonstrate the involvement of HDACs in the downregulation of Cyld expression in HCC cells and support and may improve the use of HDAC inhibitors for the treatment for HCC.  相似文献   

7.
Summary Inactivation of one or more tumor-suppressor genes on the short arm of chromosome 11 is thought to play a role in the etiology of Wilms' tumor. A candidate gene, QM, was recently isolated by subtractive hybridization between a tumorigenic cell line (deleted for part of 11p) and a non-tumorigenic cell line (the tumorigenic cell line carrying an extra t(X;11)copy). We show here with an exon-specific polymerase chain reaction that the genomic homolog of the QM cDNA is located in the G6PD-color vision genes region in Xq28. No homologous sequences could be detected on 11p. Our experiments indicate that the QM gene is not involved in the suppression of Wilms' tumor.  相似文献   

8.
9.
Polarity is a fundamental feature of all organisms both during development and in the adult. This reflects the key role of cell polarity during basic fundamental processes such as cell division, cell differentiation and cell migration. The control of cell polarity relies on functionally conserved proteins. Among these, Scribble, initially identified as a tumor suppressor gene in Drosophila, has been first involved in epithelial polarity. More recently Scribble function has been implicated in neuronal polarity and polarized cell migration. Scribble joins the growing family of tumor suppressors that play a key and conserved function in cell polarity. Scribble illustrates the more and more obvious link between regulation of cell polarity, cell transformation and tumor formation.  相似文献   

10.
11.
OVCA1, also known as DPH2L1, is a tumor suppressor gene associated with ovarian carcinoma and other tumors. Ovca1 homozygous mutant mice die at birth with developmental delay and cell-autonomous proliferation defects. Ovca1 heterozygous mutant mice are tumor-prone but rarely develop ovarian tumors. OVCA1 appears to be the homolog of yeast DPH2, which participates in the first biosynthetic step of diphthamide, by modification of histidine on translation elongation factor 2 (EF-2). Yeast dph2 mutants are resistant to diphtheria toxin, which catalyses ADP ribosylation of EF-2 at diphthamide. Thus, there appears to be growing evidence implicating alterations in protein translation with tumorigenesis.  相似文献   

12.
Zhao JJ  Pan K  Li JJ  Chen YB  Chen JG  Lv L  Wang DD  Pan QZ  Chen MS  Xia JC 《PloS one》2011,6(10):e26608

Background

LZAP was isolated as a binding protein of the Cdk5 activator p35. LZAP has been highly conserved during evolution and has been shown to function as a tumor suppressor in various cancers. This study aimed to investigate LZAP expression and its prognostic value in hepatocellular carcinoma (HCC). Meanwhile, the function of LZAP in hepatocarcinogenesis was further investigated in cell culture models and mouse models.

Methods

Real-time quantitative PCR, western blot and immunohistochemistry were used to explore LZAP expression in HCC cell lines and primary HCC clinical specimens. The functions of LZAP in the proliferation, colony formation, cell cycle, migration, invasion and apoptosis of HCC cell lines were also analyzed by infecting cells with an adenovirus containing full-length LZAP. The effect of LZAP on tumorigenicity in nude mice was also investigated.

Results

LZAP expression was significantly decreased in the tumor tissues and HCC cell lines. Clinicopathological analysis showed that LZAP expression was significantly correlated with tumor size, histopathological classification and serum α-fetoprotein (AFP). The Kaplan–Meier survival curves revealed that decreasing LZAP expression was associated with poor prognosis in HCC patients. LZAP expression was an independent prognostic marker of overall HCC patient survival in a multivariate analysis. The re-introduction of LZAP expression in the HepG2 and sk-Hep1 HCC cell lines significantly inhibited proliferation and colony formation in the HCC cells and induced G1 phase arrest and apoptosis of the HCC cells in vitro. Restoring LZAP expression in the HCC cell lines also inhibited migration and invasion. In addition, experiments with a mouse model revealed that LZAP overexpression could suppress HCC tumorigenicity in vivo.

Conclusions

Our data suggest that LZAP may play an important role in HCC progression and could be a potential molecular therapy target for HCC.  相似文献   

13.
Hsu TH  Chu CC  Jiang SY  Hung MW  Ni WC  Lin HE  Chang TC 《FEBS letters》2012,586(9):1287-1293
Recent studies indicated that the RIG1 (RARRES3/TIG3) plays an important role in cell proliferation, differentiation, and apoptosis. However, the regulatory mechanism of RIG1 gene expression has not been clearly elucidated. In this study, we identified a functional p53 response element (p53RE) in the RIG1 gene promoter. Transfection studies revealed that the RIG1 promoter activity was greatly enhanced by wild type but not mutated p53 protein. Sequence specific mutation of the p53RE abolished p53-mediated transactivation. Specific binding of p53 protein to the rig-p53RE was demonstrated using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay. Further studies confirmed that the expression of RIG1 mRNA and protein is enhanced through increased p53 protein in HepG2 or in H24-H1299 cells. In conclusion, our results indicated that RIG1 gene is a downstream target of p53 in cancer cell lines.  相似文献   

14.
Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression.  相似文献   

15.
16.
17.
Aberrant long noncoding RNAs (lncRNA) have been proved to be associated with the many types of malignant tumors (including hepatocellular carcinoma [HCC]). In this study, a lncRNAs and mRNAs microarray analysis was performed in three pairs of HCC patitents’ tumor. We found lncRNA LIM and SH3 protein 1 antisense (LASP1-AS) and its sense-cognate gene LIM and SH3 protein 1 (LASP1) were upregulated in HCC and both are correlated with poorer prognosis and lower survival of HCC patients. Meanwhile, the expression of LASP1-AS correlated positively with LASP1 expression in HCC tissues. LASP1-AS promoted the proliferation, migration, and invasion abilities of HCC in vitro and vivo by enhancing LASP1 expression. Our study explored lncRNA LASP1-AS as an oncogene in HCC and promoted proliferation and metastasis capabilities of HCC via increasing the expression of its sense-cognate gene LASP1. LncRNA LASP1-AS might be a potential valuable prognostic biomarker and potential therapeutic target of HCC.  相似文献   

18.
Park US  Su JJ  Ban KC  Qin L  Lee EH  Lee YI 《Gene》2000,251(1):73-80
Infection with hepadnaviruses and exposure to aflatoxin B1 (AFB1) are considered to be major risk factors in the development of hepatocellular carcinoma (HCC) in humans. A high rate of p53 mutations at codon 249 has been reported in these tumors. The tree shrew (Tupaia belangeri chinensis) is a useful animal model for the development of HCC after human hepatitis B virus (HBV) infection or AFB1 treatment. Therefore, it was of particular interest to determine whether the p53 gene in tree shrew HCCs associated with HBV infection and/or with exposure to AFB1 is affected in the same manner as in human HCCs. We determined the tree shrew p53 wild-type nucleotide sequences by RT-PCR and automatic DNA-sequencing. Tree shrew wild-type p53 sequence showed 91.7 and 93.4% homologies with human p53 nucleotide and amino acids sequences, respectively, while it showed 77.2 and 73.7% homologies in mice. One HCC and normal liver tissue from AFB1 treated and one HCC from AFB1- and HBV-treated tree shrew showed no change in p53 sequences, while three HCCs from AFB1- and HBV-treated tree shrews showed point mutations in p53 sequences. One HCC showed point mutations at codon 275, which is on the DNA-binding domain of p53 gene, which might be a cause of gain-of-function during the development of HCC. As a result, our finding indicates that tree shrews exposed to AFB1 and/or HBV had neither codon 249 mutations nor significant levels of other mutations in the p53 gene, as is the case with humans.  相似文献   

19.
子宫内膜癌的发病率在逐年上升,引起了人们的广泛关注,但其发病的分子遗传学机制仍不十分清楚。近年来基因改变致癌的研究成为热点。国内外研究报道发现:PTEN(与张力蛋白同源第10染色体丢失的磷酸酶基因)是目前已知的子宫内膜癌中突变率最高的基因,常发生在子宫内膜癌的早期,对其突变的检测有助于子宫内膜癌的早期诊断、治疗及预后评价,并为子宫内膜癌的基因治疗提供了新的靶点。另外,研究发现,PTENP1(PTEN的假基因)转录调控PTEN的表达,被认为与一些肿瘤的发生有关。本文就PTEN基因的结构、功能及在子宫内膜癌中的突变情况、临床意义及PTENP1的研究现状进行综述。  相似文献   

20.
The Wilms tumor suppressor gene wt1 is required for development of the spleen.   总被引:14,自引:0,他引:14  
The Wilms tumor suppressor gene WT1 (wt1 in mouse) is unique among tumor suppressors because, in addition to its involvement in cancer [1] [2] and various other diseases [3] [4] [5] [6], it has an essential role in the development of certain organs. This is revealed by the phenotype of mice with inactivated wt1 alleles [7]. These animals exhibit a complete failure of kidney and gonad development as well as abnormalities of the heart and mesothelial structures. On a C57BL/6 genetic background, wt1(-/-) animals die between day 13.5 (E13.5) and 15.5 (E15.5) of embryonic development [7]. We report here that crossing of the wt1 mutation onto different mouse backgrounds delayed embryonic lethality until birth. In wt1(-/-) mice on these different genetic backgrounds, we observed a dramatic failure of spleen development, in addition to the well characterized phenotypic abnormalities. The spleen anlage formed at around E12 to E13 and involuted by the E15 stage, before the invasion of hematopoietic cells. The absence of proper spleen development in these wt1(-/-) embryos correlated with enhanced apoptosis in the primordial spleen cells. The expression of hox11, a gene that also controls development of the spleen [8] [9], was not altered by the inactivation of wt1. In situ hybridization revealed that the two genes are regulated independently. These findings demonstrate that the penetrance of the wt1(-/-) phenotype depends on the existence of one or more modifier gene(s) and that wt1 plays a pivotal role in the development of the spleen, thereby extending its role in organogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号