首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioinformatics analysis of alternative splicing   总被引:5,自引:0,他引:5  
Over the past few years, the analysis of alternative splicing using bioinformatics has emerged as an important new field, and has significantly changed our view of genome function. One exciting front has been the analysis of microarray data to measure alternative splicing genome-wide. Pioneering studies of both human and mouse data have produced algorithms for discerning evidence of alternative splicing and clustering genes and samples by their alternative splicing patterns. Moreover, these data indicate the presence of alternative splice forms in up to 80 per cent of human genes. Comparative genomics studies in both mammals and insects have demonstrated that alternative splicing can in some cases be predicted directly from comparisons of genome sequences, based on heightened sequence conservation and exon length. Such studies have also provided new insights into the connection between alternative splicing and a variety of evolutionary processes such as Alu-based exonisation, exon creation and loss. A number of groups have used a combination of bioinformatics, comparative genomics and experimental validation to identify new motifs for splice regulatory factors, analyse the balance of factors that regulate alternative splicing, and propose a new mechanism for regulation based on the interaction of alternative splicing and nonsense-mediated decay. Bioinformatics studies of the functional impact of alternative splicing have revealed a wide range of regulatory mechanisms, from NAGNAG sites that add a single amino acid; to short peptide segments that can play surprisingly complex roles in switching protein conformation and function (as in the Piccolo C2A domain); to events that entirely remove a specific protein interaction domain or membrane anchoring domain. Common to many bioinformatics studies is a new emphasis on graph representations of alternative splicing structures, which have many advantages for analysis.  相似文献   

2.
3.
Tau protein, which binds to and stabilizes microtubules, is critical for neuronal survival and function. In the human brain, tau pre-mRNA splicing is regulated to maintain a delicate balance of exon 10-containing and exon 10-skipping isoforms. Splicing mutations affecting tau exon 10 alternative splicing lead to tauopathies, a group of neurodegenerative disorders including dementia. Molecular mechanisms regulating tau alternative splicing remain to be elucidated. In this study, we have developed an expression cloning strategy to identify splicing factors that stimulate tau exon 10 inclusion. Using this expression cloning approach, we have identified a previously unknown tau exon 10 splicing regulator, RBM4 (RNA binding motif protein 4). In cells transfected with a tau minigene, RBM4 overexpression leads to an increased inclusion of exon 10, whereas RBM4 down-regulation decreases exon 10 inclusion. The activity of RBM4 in stimulating tau exon 10 inclusion is abolished by mutations in its RNA-binding domain. A putative intronic splicing enhancer located in intron 10 of the tau gene is required for the splicing stimulatory activity of RBM4. Immunohistological analyses reveal that RBM4 is expressed in the human brain regions affected in tauopathy, including the hippocampus and frontal cortex. Our study demonstrates that RBM4 is involved in tau exon 10 alternative splicing. Our work also suggests that down-regulating tau exon 10 splicing activators, such as RBM4, may be of therapeutic potential in tauopathies involving excessive tau exon 10 inclusion.  相似文献   

4.
《The Journal of cell biology》1990,111(5):2089-2096
During development of the rat central nervous system, neural cell adhesion molecule (NCAM) mRNAs containing in the extracellular domain a 30-bp alternative exon, here named VASE, replace RNAs that lack this exon. The presence of this alternative exon between previously described exons 7 and 8 changes the predicted loop structure of the derived polypeptide from one resembling an immunoglobulin constant region domain to one resembling an immunoglobulin variable domain. This change could have significant effects on NCAM polypeptide function and cell-cell interaction. In this report we test multiple rat tissues for the presence of additional alternative exons at this position and also examine the regulation of splicing of the previously described exon. To sensitively examine alternative splicing, polymerase chain reactions (PCRs) with primers flanking the exon 7/exon 8 alternative splicing site were performed. Four categories of RNA samples were tested for new exons: whole brain from embryonic day 11 to adult, specific brain regions dissected from adult brain, clonal lines of neural cells in vitro, and muscle cells and tissues cultured in vitro and obtained by dissection. Within the limits of the PCR methodology, no evidence for any alternative exon other than the previously identified VASE was obtained. The regulation of expression of this exon was found to be complex and tissue specific. Expression of the 30-bp exon in the heart and nervous system was found to be regulated independently; a significant proportion of embryonic day 15 heart NCAM mRNAs contain VASE while only a very small amount of day 15 nervous system mRNAs contain VASE. Some adult central nervous system regions, notably the olfactory bulb and the peripheral nervous system structures adrenal gland and dorsal root ganglia, express NCAM which contains very little VASE. VASE is undetectable in NCAM PCR products from the olfactory epithelium. Other nervous system regions express significant quantities of NCAM both with and without VASE. Clonal cell lines in culture generally expressed very little VASE. These results indicate that a single alternative exon, VASE, is found in NCAM immunoglobulin-like loop 4 and that distinct tissues and nervous system regions regulate expression of VASE independently both during development and in adult animals.  相似文献   

5.
The Drosophila membrane-associated guanylate kinase (MAGUK) protein Polychaetoid (Pyd) is required for dorsal closure of the embryo, sensory organ patterning, and cell fate specification in the developing eye. We demonstrate that pyd is alternatively spliced resulting in two isoforms that differ by the presence or absence of exon 6. To determine the role of alternative splicing in Pyd function, we generated antibodies specific for each isoform. We find that the exon 6+ form of Pyd is localized at adherens junctions of embryonic and imaginal epithelia, while the exon 6 form is distributed broadly along the lateral membrane. These results suggest that localization of Pyd is controlled by alternative splicing and raise the possibility that exon 6 represents a distinct protein–protein interaction domain.  相似文献   

6.
CD45 encodes a trans-membrane protein-tyrosine phosphatase expressed in diverse cells of the immune system. By combinatorial use of three variable exons 4-6, isoforms are generated that differ in their extracellular domain, thereby modulating phosphatase activity and immune response. Alternative splicing of these CD45 exons involves two heterogeneous ribonucleoproteins, hnRNP L and its cell-type specific paralog hnRNP L-like (LL). To address the complex combinatorial splicing of exons 4-6, we investigated hnRNP L/LL protein expression in human B-cells in relation to CD45 splicing patterns, applying RNA-Seq. In addition, mutational and RNA-binding analyses were carried out in HeLa cells. We conclude that hnRNP LL functions as the major CD45 splicing repressor, with two CA elements in exon 6 as its primary target. In exon 4, one element is targeted by both hnRNP L and LL. In contrast, exon 5 was never repressed on its own and only co-regulated with exons 4 and 6. Stable L/LL interaction requires CD45 RNA, specifically exons 4 and 6. We propose a novel model of combinatorial alternative splicing: HnRNP L and LL cooperate on the CD45 pre-mRNA, bridging exons 4 and 6 and looping out exon 5, thereby achieving full repression of the three variable exons.  相似文献   

7.
The tau gene encodes a microtubule-associated protein that is critical for neuronal survival and function. Splicing defects in the human tau gene lead to frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), an autosomal dominant neurodegenerative disorder. Genetic mutations associated with FTDP-17 often affect tau exon 10 alternative splicing. To investigate mechanisms regulating tau exon 10 alternative splicing, we have developed a green fluorescent protein reporter for tau exon 10 skipping and an expression cloning strategy to identify splicing regulators. A role for SRp54 (also named SFRS11) as a tau exon 10 splicing repressor has been uncovered using this strategy. The overexpression of SRp54 suppresses tau exon 10 inclusion. RNA interference-mediated knock-down of SRp54 increases exon 10 inclusion. SRp54 interacts with a purine-rich element in exon 10 and antagonizes Tra2beta, an SR-domain-containing protein that enhances exon 10 inclusion. Deletion of this exonic element eliminates the activity of SRp54 in suppressing exon 10 inclusion. Our data support a role of SRp54 in regulating tau exon 10 splicing. These experiments also establish a generally useful approach for identifying trans-acting regulators of alternative splicing by expression cloning.  相似文献   

8.
9.
10.
The Drosophila membrane-associated guanylate kinase (MAGUK) protein Polychaetoid (Pyd) is required for dorsal closure of the embryo, sensory organ patterning, and cell fate specification in the developing eye. We demonstrate that pyd is alternatively spliced resulting in two isoforms that differ by the presence or absence of exon 6. To determine the role of alternative splicing in Pyd function, we generated antibodies specific for each isoform. We find that the exon 6+ form of Pyd is localized at adherens junctions of embryonic and imaginal epithelia, while the exon 6 form is distributed broadly along the lateral membrane. These results suggest that localization of Pyd is controlled by alternative splicing and raise the possibility that exon 6 represents a distinct protein–protein interaction domain.  相似文献   

11.
水稻NBS-LRR基因选择性剪接的全基因组检测及分析   总被引:1,自引:0,他引:1  
顾连峰  郭荣发 《遗传学报》2007,34(3):247-257
选择性剪接是促进基因组复杂性和蛋白质组多样性的一种主要机制,但是对水稻NBS-LRR序列选择性剪接的全基因组分析却未见报道。通过隐马尔柯夫模型搜索,从TIGR数据库里得到了855条编码NBS-LRR基序的序列。利用这些序列在KOME、TIGR基因索引及UniProt三个数据库中进行同源搜索,获得同源的完整cDNA序列、假设一致性序列和蛋白质序列。再利用Spidey和SIM4程序把完整cDNA序列和假设一致性序列联配到相应的BAC序列上来预测选择性剪接。蛋白质序列和基因组序列之间的联配使用tBLASTn。在这875个NBS-LRR基因中,119个基因具有选择性剪接现象,其中包括71内含子保留,20个外显子跳跃,25个选择性起始,16个选择性终止,12个5′端的选择性剪接和16个3′端选择性剪接。大多数选择性剪接都为两个和多个转录本所支持。可以通过访问http://www.bioinfor.org查询这些数据。进而通过生物信息学分析剪接边界发现外显子跳跃和内含子保留的‘GT…AG’的规则不如组成型的保守。这暗示了它们是通过不同的调控机制来指导剪接变构体的形成。通过分析内含子保留对蛋白质的影响,发现选择性剪接的蛋白更倾向于改变其C端氨基酸序列。最后对选择性剪接的组织分布和蛋白质定位进行分析,结果表明选择性剪接的最大类的组织分布是根和愈伤组织。超过1/3剪接变构体的蛋白质定位是质膜和细胞质。这些选择性剪接蛋白可能在抗病信号转导中起到重要作用。  相似文献   

12.
Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) is a multifunctional protein containing two enzymes that act sequentially to catalyze the alpha-amidation of neuroendocrine peptides. Peptidylglycine alpha-hydroxylating monooxygenase (PHM) catalyzes the first step of the reaction and is dependent on copper, ascorbate, and molecular oxygen. Peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) catalyzes the second step of the reaction. Previous studies demonstrated that alternative splicing results in the production of bifunctional PAM proteins that are integral membrane or soluble proteins as well as soluble monofunctional PHM proteins. Rat PAM is encoded by a complex single copy gene that consists of 27 exons and encompasses more than 160 kilobases (kb) of genomic DNA. The 12 exons comprising PHM are distributed over at least 76 kb genomic DNA and range in size from 49-185 base pairs; four of the introns within the PHM domain are over 10 kb in length. Alternative splicing in the PHM region can result in a truncated, inactive PHM protein (rPAM-5), or a soluble, monofunctional PHM protein (rPAM-4) instead of a bifunctional protein. The eight exons comprising PAL are distributed over at least 19 kb genomic DNA. The exons encoding PAL range in size from 54-209 base pairs and have not been found to undergo alternative splicing. The PHM and PAL domains are separated by a single alternatively spliced exon surrounded by lengthy introns; inclusion of this exon results in the production of a form of PAM (rPAM-1) in which endoproteolytic cleavage at a paired basic site can separate the two catalytic domains. The exon following the PAL domain encodes the trans-membrane domain of PAM; alternative splicing at this site produces integral membrane or soluble PAM proteins. The COOH-terminal domain of PAM is comprised of a short exon subject to alternative splicing and a long exon encoding the final 68 amino acids present in all bifunctional PAM proteins along with the entire 3'-untranslated region. Analysis of hybrid cell panels indicates that the human PAM gene is situated on the long arm of chromosome 5.  相似文献   

13.
Intersectin 1 (ITSN1) is a conserved adaptor protein implicated in endocytosis, regulation of actin cytoskeleton rearrangements and mitogenic signaling. Its expression is characterized by multiple alternative splicing. Here we show neuron-specific expression of ITSN1 isoforms containing exon 20, which encodes five amino acid residues in the first SH3 domain (SH3A). In vitro binding experiments demonstrated that inclusion of exon 20 changes the binding properties of the SH3A domain. Endocytic proteins dynamin 1 and synaptojanin 1 as well as GTPase-activating protein CdGAP bound the neuron-specific variant of the SH3A domain with higher affinity than ubiquitously expressed SH3A. In contrast, SOS1, a guanine nucleotide exchange factor for Ras, and the ubiquitin ligase Cbl mainly interact with the ubiquitously expressed isoform. These results demonstrate that alternative splicing leads to the formation of two pools of ITSN1 with potentially different properties in neurons, affecting ITSN1 function as adaptor protein.  相似文献   

14.
Alternative pre-mRNA splicing of two terminal exons (α and β) regulates the expression of the human DNA ligase III gene. In most tissues, the α exon is expressed. In testes and during spermatogenesis, the β exon is used instead. The α exon encodes the interaction domain with a scaffold DNA repair protein, XRCC1, while the β exon-encoded C-terminal does not. Sequence elements regulating the alternative splicing pattern were mapped by in vitro splicing assays in HeLa nuclear extracts. Deletion of a region beginning in the β exon and extending into the downstream intron derepressed splicing to the β exon. Two silencing elements were found within this 101 nt region: a 16 nt exonic splicing silencer immediately upstream of the β exon polyadenylation signal and a 45 nt intronic splicing silencer. The exonic splicing silencer inhibited splicing, even when the polyadenylation signal was deleted or replaced by a 5′ splice site. This element also enhanced polyadenylation under conditions unfavourable to splicing. The splicing silencer partially inhibited assembly of spliceosomal complexes and functioned in an adenoviral pre-mRNA context. Silencing of splicing by the element was associated with cross-linking of a 37 kDa protein to the RNA substrate. The element exerts opposite functions in splicing and polyadenylation.  相似文献   

15.
CaV1.2 calcium channels play roles in diverse cellular processes such as gene regulation, muscle contraction, and membrane excitation and are diversified in their activity through extensive alternative splicing of the CaV1.2 mRNA. The mutually exclusive exons 8a and 8 encode alternate forms of transmembrane segment 6 (IS6) in channel domain 1. The human genetic disorder Timothy syndrome is caused by mutations in either of these two CaV1.2 exons, resulting in disrupted Ca(2+) homeostasis and severe pleiotropic disease phenotypes. The tissue-specific pattern of exon 8/8a splicing leads to differences in symptoms between patients with exon 8 or 8a mutations. Elucidating the mechanisms controlling the exon 8/8a splicing choice will be important in understanding the spectrum of defects associated with the disease. We found that the polypyrimidine tract-binding protein (PTB) mediates a switch from exon 8 to 8a splicing. PTB and its neuronal homolog, nPTB, are widely studied splicing regulators controlling large sets of alternative exons. During neuronal development, PTB expression is down-regulated with a concurrent increase in nPTB expression. Exon 8a is largely repressed in embryonic mouse brain but is progressively induced during neuronal differentiation as PTB is depleted. This splicing repression is mediated by the direct binding of PTB to sequence elements upstream of exon 8a. The nPTB protein is a weaker repressor of exon 8a, resulting in a shift in exon choice when nPTB replaces PTB in cells. These results provide mechanistic understanding of how these two exons, important for human disease, are controlled.  相似文献   

16.
Alternative splicing is the main source of proteome diversity. Here, we have investigated how alternative splicing affects the function of two human histone methyltransferases (HMTase): G9A and SUV39H2. We show that exon 10 in G9A and exon 3 in SUV39H2 are alternatively included in a variety of tissues and cell lines, as well as in a different species. The production of these variants is likely tightly regulated because both constitutive and alternative splicing factors control their splicing profiles. Based on this evidence, we have assessed the link between the inclusion of these exons and the activity of both enzymes. We document that these HMTase genes yield several protein isoforms, which are likely issued from alternative splicing regulation. We demonstrate that inclusion of SUV39H2 exon 3 is a determinant of the stability, the sub-nuclear localization, and the HMTase activity. Genome-wide expression analysis further revealed that alternative inclusion of SUV39H2 exon 3 differentially modulates the expression of target genes. Our data also suggest that a variant of G9A may display a function that is independent of H3K9 methylation. Our work emphasizes that expression and function of genes are not collinear; therefore alternative splicing must be taken into account in any functional study.  相似文献   

17.
Molecular diversity in T-type Ca(2+) channels is produced by expression of three genes, and alternative splicing of those genes. Prompted by differences noted between rat and human Ca(v)3.3 sequences, we searched for splice variants. We cloned six variants, which are produced by splicing at exon 33 and exon 34. Expression of the variants differed between brain regions. The electrophysiological properties of the variants displayed similar voltage-dependent gating, but differed in their kinetic properties. The functional impact of splicing was inter-related, suggesting an interaction. We conclude that alternative splicing of the Ca(v)3.3 gene produces channels with distinct properties.  相似文献   

18.
19.
The Fox proteins are a family of regulators that control the alternative splicing of many exons in neurons, muscle, and other tissues. Each of the three mammalian paralogs, Fox-1 (A2BP1), Fox-2 (RBM9), and Fox-3 (HRNBP3), produces proteins with a single RNA-binding domain (RRM) flanked by N- and C-terminal domains that are highly diversified through the use of alternative promoters and alternative splicing patterns. These genes also express protein isoforms lacking the second half of the RRM (FoxΔRRM), due to the skipping of a highly conserved 93-nt exon. Fox binding elements overlap the splice sites of these exons in Fox-1 and Fox-2, and the Fox proteins themselves inhibit exon inclusion. Unlike other cases of splicing autoregulation by RNA-binding proteins, skipping the RRM exon creates an in-frame deletion in the mRNA to produce a stable protein. These FoxΔRRM isoforms expressed from cDNA exhibit highly reduced binding to RNA in vivo. However, we show that they can act as repressors of Fox-dependent splicing, presumably by competing with full-length Fox isoforms for interaction with other splicing factors. Interestingly, the Drosophila Fox homolog contains a nearly identical exon in its RRM domain that also has flanking Fox-binding sites. Thus, rather than autoregulation of splicing controlling the abundance of the regulator, the Fox proteins use a highly conserved mechanism of splicing autoregulation to control production of a dominant negative isoform.  相似文献   

20.
PHR protein family consists of C. elegan Rpm-1/Drosophila Highwire/Zebrafish Esrom/Mouse Phr-1/Human Pam. Esrom is required for correct neurites exiting the paused state at intermediate targets as well as pteridine synthesis. This study reports the identification and characterization of two novel Esrom splice variants, named splice variants 2 (splicing out 5′ 24 bp of exon 17) and 3 (splicing out 5′ 24 bp of exons 17 and 18). Polypeptides encoded by 5′ 24 bp of exons 17 and 18 are part of basic amino-acid-rich region inside Esrom RCC1-like domain (RLD). These two splice variants maintain the whole protein reading frame and alternative exons usage patterns are conserved with mammal. At different developmental stages and adult zebrafish tissues, abundances of these splice variants are different. Importantly, by yeast two-hybrid screen and confocal colocalization analysis, it was found that alternative splicing of exon 18 regulates Esrom RLD interaction with kinesin family member 22 and G protein beta-subunit 1. Taken together, these results suggest that Esrom RLD functions are regulated by alternative splicing at temporal and spatial-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号