首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Epstein-Barr virus latent membrane protein 1 (LMP1) binds tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) and the TNFR-associated death domain protein (TRADD). Moreover, it induces NF-kappaB and the c-Jun N-terminal kinase 1 (JNK1) pathway. Thus, LMP1 appears to mimick the molecular functions of TNFR1. However, TNFR1 elicits a wide range of cellular responses including apoptosis, whereas LMP1 constitutes a transforming protein. Here we mapped the JNK1 activator region (JAR) of the LMP1 molecule. JAR overlaps with the TRADD-binding domain of LMP1. In contrast to TNFR1, LMP1 recruits TRADD via the TRADD N-terminus but not the TRADD death domain. Consequently, the molecular function of TRADD in LMP1 signaling differs from its role in TNFR1 signal transduction. Whereas NF-kappaB activation by LMP1 was blocked by a dominant-negative TRADD mutant, LMP1 induces JNK1 independently of the TRADD death domain and TRAF2, which binds to TRADD. Further downstream, JNK1 activation by TNFR1 involves Cdc42, whereas LMP1 signaling to JNK1 is independent of p21 Rho-like GTPases. Although both LMP1 and TNFR1 interact with TRADD and TRAF2, the different topologies of the signaling complexes correlate with substantial differences between LMP1 and TNFR1 signal transduction to JNK1.  相似文献   

2.
A site in the Epstein-Barr virus (EBV) transforming protein LMP1 that constitutively associates with the tumor necrosis factor receptor 1 (TNFR1)-associated death domain protein TRADD to mediate NF-kappaB and c-Jun N-terminal kinase activation is critical for long-term lymphoblastoid cell proliferation. We now find that LMP1 signaling through TRADD differs from TNFR1 signaling through TRADD. LMP1 needs only 11 amino acids to activate NF-kappaB or synergize with TRADD in NF-kappaB activation, while TNFR1 requires approximately 70 residues. Further, LMP1 does not require TRADD residues 294 to 312 for NF-kappaB activation, while TNFR1 requires TRADD residues 296 to 302. LMP1 is partially blocked for NF-kappaB activation by a TRADD mutant consisting of residues 122 to 293. Unlike TNFR1, LMP1 can interact directly with receptor-interacting protein (RIP) and stably associates with RIP in EBV-transformed lymphoblastoid cell lines. Surprisingly, LMP1 does not require RIP for NF-kappaB activation. Despite constitutive association with TRADD or RIP, LMP1 does not induce apoptosis in EBV-negative Burkitt lymphoma or human embryonic kidney 293 cells. These results add a different perspective to the molecular interactions through which LMP1, TRADD, and RIP participate in B-lymphocyte activation and growth.  相似文献   

3.
The tumor necrosis factor (TNF)-receptor 1–associated death domain protein (TRADD) mediates induction of apoptosis as well as activation of NF-κB by cellular TNF-receptor 1 (TNFR1). TRADD is also recruited by the latent membrane protein 1 (LMP1) oncoprotein of Epstein-Barr virus, but its role in LMP1 signaling has remained enigmatic. In human B lymphocytes, we have generated, to our knowledge, the first genetic knockout of TRADD to investigate TRADD's role in LMP1 signal transduction. Our data from TRADD-deficient cells demonstrate that TRADD is a critical signaling mediator of LMP1 that is required for LMP1 to recruit and activate I-κB kinase β (IKKβ). However, in contrast to TNFR1, LMP1-induced TRADD signaling does not induce apoptosis. Searching for the molecular basis for this observation, we characterized the 16 C-terminal amino acids of LMP1 as an autonomous and unique virus-derived TRADD-binding domain. Replacing the death domain of TNFR1 by LMP1′s TRADD-binding domain converts TNFR1 into a nonapoptotic receptor that activates NF-κB through a TRAF6-dependent pathway, like LMP1 but unlike wild-type TNFR1. Thus, the unique interaction of LMP1 with TRADD encodes the transforming phenotype of viral TRADD signaling and masks TRADD's pro-apoptotic function.  相似文献   

4.
The oncogenic latent membrane protein 1 (LMP1) of the Epstein-Barr virus recruits tumor necrosis factor-receptor (TNFR)-associated factors (TRAFs), the TNFR-associated death domain protein (TRADD) and JAK3 to induce intracellular signaling pathways. LMP1 serves as the prototype of a TRADD-binding receptor that transforms cells but does not induce apoptosis. Here we show that TRAF6 critically mediates LMP1 signaling to p38 mitogen-activated protein kinase (MAPK) via a MAPK kinase 6-dependent pathway. In addition, NF-kappaB but not c-Jun N-terminal kinase 1 (JNK1) induction by LMP1 involves TRAF6. The PxQxT motif of the LMP1 C-terminal activator region 1 (CTAR1) and tyrosine 384 of CTAR2 together are essential for full p38 MAPK activation and for TRAF6 recruitment to the LMP1 signaling complex. Dominant-negative TRADD blocks p38 MAPK activation by LMP1. The data suggest that entry of TRAF6 into the LMP1 complex is mediated by TRADD and TRAF2. In TRAF6-knockout fibroblasts, significant induction of p38 MAPK by LMP1 is dependent on the ectopic expression of TRAF6. We describe a novel role of TRAF6 as an essential signaling mediator of a transforming oncogene, downstream of TRADD and TRAF2.  相似文献   

5.
Stimulation of tumor necrosis factor receptor 1 (TNFR1) can initiate several cellular responses, including apoptosis, which relies on caspases, necrotic cell death, which depends on receptor-interacting protein kinase 1 (RIP1), and NF-kappaB activation, which induces survival and inflammatory responses. The TNFR-associated death domain (TRADD) protein has been suggested to be a crucial signal adaptor that mediates all intracellular responses from TNFR1. However, cells with a genetic deficiency of TRADD are unavailable, precluding analysis with mature immune cell types. We circumvented this problem by silencing TRADD expression with small interfering RNA. We found that TRADD is required for TNFR1 to induce NF-kappaB activation and caspase-8-dependent apoptosis but is dispensable for TNFR1-initiated, RIP1-dependent necrosis. Our data also show that TRADD and RIP1 compete for recruitment to the TNFR1 signaling complex and the distinct programs of cell death. Thus, TNFR1-initiated intracellular signals diverge at a very proximal level by the independent association of two death domain-containing proteins, RIP1 and TRADD. These single transducers determine cell fate by triggering NF-kappaB activation, apoptosis, and nonapoptotic death signals through separate and competing signaling pathways.  相似文献   

6.
Activated tumor necrosis factor alpha (TNF-alpha) receptor 1 (TNFR1) recruits TNFR1-associated death domain protein (TRADD), which in turn triggers two opposite signaling pathways leading to caspase activation for apoptosis induction and NF-kappaB activation for antiapoptosis gene upregulation. Here we show that Stat1 is involved in the TNFR1-TRADD signaling complex, as determined by employing a novel antibody array screening method. In HeLa cells, Stat1 was associated with TNFR1 and this association was increased with TNF-alpha treatment. TNFR1 signaling factors TRADD and Fas-associated death domain protein (FADD) were also found to interact with Stat1 in a TNF-alpha-dependent process. Our in vitro recombinant protein-protein interaction studies demonstrated that Stat1 could directly interact with TNFR1 and TRADD but not with FADD. Interaction between Stat1 and receptor-interacting protein (RIP) or TNFR-associated factor 2 (TRAF2) was not detected. Examination of Stat1-deficient cells showed an apparent increase in TNF-alpha-induced TRADD-RIP and TRADD-TRAF2 complex formation, while interaction between TRADD and FADD was unaffected. As a consequence, TNF-alpha-mediated I-kappaB degradation and NF-kappaB activation were markedly enhanced in Stat1-deficient cells, whereas overexpression of Stat1 in 293T cells blocked NF-kappaB activation by TNF-alpha. Thus, Stat1 acts as a TNFR1-signaling molecule to suppress NF-kappaB activation.  相似文献   

7.
The signal-transducing adaptor protein 2 (STAP-2) is a recently identified adaptor protein that contains a pleckstrin homology (PH) and Src homology 2 (SH2)-like domains, as well as a proline-rich domain in its C-terminal region. In previous studies, we demonstrated that STAP-2 binds to MyD88 and IKK-alpha or IKK-beta and modulates NF-kappaB signaling in macrophages. In the present study, we found that ectopic expression of STAP-2 inhibited Epstein-Barr virus (EBV) LMP1-mediated NF-kappaB signaling and interleukin-6 expression. Indeed, STAP-2 associated with LMP1 through its PH and SH2-like domains, and these proteins interacted with each other in EBV-positive human B cells. We found, furthermore, that STAP-2 regulated LMP1-mediated NF-kappaB signaling through direct or indirect interactions with the tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) and TNFR-associated death domain (TRADD) proteins. STAP-2 mRNA was induced by the expression of LMP1 in human B cells. Furthermore, transient expression of STAP-2 in EBV-positive human B cells decreased cell growth. Finally, STAP-2 knockout mouse embryonic fibroblasts showed enhanced LMP1-induced cell growth. These results suggest that STAP-2 acts as an endogenous negative regulator of EBV LMP1-mediated signaling through TRAF3 and TRADD.  相似文献   

8.
TRADD (TNFR1-associated death domain protein) was initially identified as an adaptor molecule that transduces the signal downstream of the TNFR1 (tumor necrosis factor receptor 1). TNFR1 belongs to the so-called death receptor (DR) family of receptors that depending on the context can induce either apoptosis or proliferation, as well as NF-κB and MAP kinase activation. The receptors of this group contain death domain (DD) that is necessary for the induction of apoptosis. This review summarizes the recent advances in the field of DR signaling and in particular the role of TRADD.  相似文献   

9.
TRADD (TNFR1-associated death domain protein) was initially identified as an adaptor molecule that transduces the signal downstream of the TNFR1 (tumor necrosis factor receptor 1). TNFR1 belongs to the so-called death receptor (DR) family of receptors that depending on the context can induce either apoptosis or proliferation, as well as NF-κB and MAP kinase activation. The receptors of this group contain death domain (DD) that is necessary for the induction of apoptosis. This review summarizes the recent advances in the field of DR signaling and in particular the role of TRADD.  相似文献   

10.
In TNF-treated cells, TNFR1, TNFR-associated death domain protein (TRADD), Fas-associated death domain protein, and receptor-interacting protein kinase proteins form the signaling complex via modular interaction within their C-terminal death domains. In this paper, we report that the death domain SXXE/D motifs (i.e., S381DHE motif of TNFR1-death domain as well as S215LKD and S296LAE motifs of TRADD-death domain) are phosphorylated, and this is required for stable TNFR1-TRADD complex formation and subsequent activation of NF-κB. Phospho-S215LKD and phospho-S296LAE motifs are also critical to TRADD for recruiting Fas-associated death domain protein and receptor-interacting protein kinase. IκB kinase β plays a critical role in TNFR1 phosphorylation of S381, which leads to subsequent T cell migration and accumulation. Consistently, we observed in inflammatory bowel disease specimens that TNFR1 was constitutively phosphorylated on S381 in those inflammatory T cells, which had accumulated in high numbers in the inflamed mucosa. Therefore, SXXE/D motifs found in the cytoplasmic domains of many TNFR family members and their adaptor proteins may serve to function as a specific interaction module for the α-helical death domain signal transduction.  相似文献   

11.
12.
Liu HP  Wu CC  Chang YS 《The EMBO journal》2006,25(17):4120-4130
Latent membrane protein 1 (LMP1), which is an Epstein-Barr virus (EBV)-encoded oncoprotein, induces nuclear factor-kappa B (NF-kappaB) signaling by mimicking the tumor necrosis factor receptor (TNFR). LMP1 signals primarily from intracellular compartments in a ligand-independent manner. Here, we identify a new LMP1-interacting molecule, prenylated Rab acceptor 1 (PRA1), which interacts with LMP1 for the first time through LMP1's transmembrane domain, and show that PRA1 is involved in intracellular LMP1 trafficking and LMP1-induced NF-kappaB activity. Immunofluorescence and biochemical analyses revealed that LMP1 physically interacted with PRA1 at the Golgi apparatus, and the colocalization of LMP1 and PRA1 to the Golgi was sensitive to nocodazole and brefeldin A. Coexpression of a PRA1 export mutant or knockdown of PRA1 led to redistribution of LMP1 and its associated signaling molecules to the endoplasmic reticulum and subsequent impairment of LMP1-induced NF-kappaB activation, but had no effect on CD40- and TNFR1-mediated signaling or the functional integrity of the Golgi apparatus. These novel findings provide important new insights into LMP1, and identify an unexpected new role for PRA1 in cellular signaling.  相似文献   

13.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

14.
15.
Trimeric tumor necrosis factor (TNF) binding leads to recruitment of TRADD to TNFR1. In current models, TRADD recruits RIP, TRAF2, and FADD to activate NF-kappaB, Jun N-terminal protein kinase (JNK), and apoptosis. Using stable short-hairpin RNA (shRNA) knockdown (KD) cells targeting these adaptors, TNF death-inducing signaling complex immunoprecipitation demonstrates competitive binding of TRADD and RIP to TNFR1, whereas TRAF2 recruitment requires TRADD. Analysis of KD cells indicates that FADD is necessary for Fas-L- or TRAIL- but not TNF-induced apoptosis. Interestingly, TRADD is dispensable, while RIP is required for TNF-induced apoptosis in human tumor cells. TRADD is required for c-Jun phosphorylation upon TNF exposure. RIP KD abrogates formation of complex II following TNF exposure, whereas TRADD KD allows efficient RIP-caspase 8 association. Treatment with TRAIL also induces formation of a complex II containing FADD, RIP, IKKalpha, and caspase 8 and 10, leading to activation of caspase 8. Our data suggest that TNF triggers apoptosis in a manner distinct from that of Fas-L or TRAIL.  相似文献   

16.
17.
The latent membrane protein 1 (LMP1) of Epstein-Barr virus causes cellular transformation and activates several intracellular signals, including NF-kappaB and c-Jun N-terminal kinase. Using yeast two-hybrid screening with the LMP1 C-terminal sequence as bait, we demonstrate that BRAM1 (bone morphogenetic protein receptor-associated molecule 1) is an LMP1-interacting protein. BRAM1 associates with LMP1, both in vitro and in vivo, as revealed by confocal microscopy, glutathione S-transferase pull-down, and co-immunoprecipitation assays. This association mainly involves the C-terminal half of BRAM1 comprising the MYND domain and the CTAR2 region of LMP1, which is critical in LMP1-mediated signaling pathways. We show that BRAM1 interferes with LMP1-mediated NF-kappaB activation but not the JNK signaling pathway. Because the CTAR2 region interacts with the tumor necrosis factor (TNF-alpha receptor-associated death domain protein, it is interesting to find that BRAM1 also interferes with NF-kappaB activation mediated by TNF-alpha. BRAM1 interferes LMP1-mediated and TNF-alpha-induced NF-kappaB activation by targeting IkappaBalpha molecules. Moreover, BRAM1 inhibits the resistance of LMP1-expressing cells to TNF-alpha-induced cytotoxicity. We therefore propose that the BRAM1 molecule associates with LMP1 and functions as a negative regulator of LMP1-mediated biological functions.  相似文献   

18.
The adapter protein tumor necrosis factor receptor (TNFR)1-associated death domain (TRADD) plays an essential role in recruiting signaling molecules to the TNFRI receptor complex at the cell membrane. Here we show that TRADD contains a nuclear export and import sequence that allow shuttling between the nucleus and the cytoplasm. In the absence of export, TRADD is found within nuclear structures that are associated with promyelocytic leukemia protein (PML) nuclear bodies. In these structures, the TRADD death domain (TRADD-DD) can activate an apoptosis pathway that is mechanistically distinct from its action at the membrane-bound TNFR1 complex. Apoptosis by nuclear TRADD-DD is promyelocytic leukemia protein dependent, involves p53, and is inhibited by Bcl-xL but not by caspase inhibitors or dominant negative FADD (FADD-DN). Conversely, apoptosis induced by TRADD in the cytoplasm is resistant to Bcl-xL, but sensitive to caspase inhibitors and FADD-DN. These data indicate that nucleocytoplasmic shuttling of TRADD leads to the activation of distinct apoptosis mechanisms that connect the death receptor apparatus to nuclear events.  相似文献   

19.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is essential for EBV-mediated transformation of primary B lymphocytes. LMP1 spontaneously aggregates in the plasma membrane and enables two transformation effector sites (TES1 and TES2) within the 200-amino-acid cytoplasmic carboxyl terminus to constitutively engage the tumor necrosis factor receptor (TNFR)-associated factors TRAF1, TRAF2, TRAF3, and TRAF5 and the TNFR-associated death domain proteins TRADD and RIP, thereby activating NF-kappaB and c-Jun N-terminal kinase (JNK). To investigate the importance of the 60% of the LMP1 carboxyl terminus that lies between the TES1-TRAF and TES2-TRADD and -RIP binding sites, an EBV recombinant was made that contains a specific deletion of LMP1 codons 232 to 351. Surprisingly, the deletion mutant was similar to wild-type (wt) LMP1 EBV recombinants in its efficiency in transforming primary B lymphocytes into lymphoblastoid cell lines (LCLs). Mutant and wt EBV-transformed LCLs were similarly efficient in long-term outgrowth and in regrowth after endpoint dilution. Mutant and wt LMP1 proteins were also similar in their constitutive association with TRAF1, TRAF2, TRAF3, TRADD, and RIP. Mutant and wt EBV-transformed LCLs were similar in steady-state levels of Bcl2, JNK, and activated JNK proteins. The wt phenotype of recombinants with LMP1 codons 232 to 351 deleted further demarcates TES1 and TES2, underscores their central importance in B-lymphocyte growth transformation, and provides a new perspective on LMP1 sequence variation between TES1 and TES2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号