首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salivary agglutinin is encoded by DMBT1 and identical to gp-340, a member of the scavenger receptor cysteine-rich (SRCR) superfamily. Salivary agglutinin/DMBT1 is known for its Streptococcus mutans agglutinating properties. This 300-400 kDa glycoprotein is composed of conserved peptide motifs: 14 SRCR domains that are separated by SRCR-interspersed domains (SIDs), 2 CUB (C1r/C1s Uegf Bmp1) domains, and a zona pellucida domain. We have searched for the peptide domains of agglutinin/DMBT1 responsible for bacteria binding. Digestion with endoproteinase Lys-C resulted in a protein fragment containing exclusively SRCR and SID domains that binds to S. mutans. To define more closely the S. mutans-binding domain, consensus-based peptides of the SRCR domains and SIDs were designed and synthesized. Only one of the SRCR peptides, designated SRCRP2, and none of the SID peptides bound to S. mutans. Strikingly, this peptide was also able to induce agglutination of S. mutans and a number of other bacteria. The repeated presence of this peptide in the native molecule endows agglutinin/DMBT1 with a general bacterial binding feature with a multivalent character. Moreover, our studies demonstrate for the first time that the polymorphic SRCR domains of salivary agglutinin/DMBT1 mediate ligand interactions.  相似文献   

2.
The scavenger receptor cysteine-rich (SRCR) proteins form an archaic group of metazoan proteins characterized by the presence of SRCR domains. These proteins are classified in group A and B based on the number of conserved cysteine residues in their SRCR domains, i.e. six for group A and eight for group B. The protein DMBT1 (deleted in malignant brain tumors 1), which is identical to salivary agglutinin and lung gp-340, belongs to the group B SRCR proteins and is considered to be involved in tumor suppression and host defense by pathogen binding. In a previous study we used nonoverlapping synthetic peptides covering the SRCR consensus sequence to identify a 16-amino acid bacteria-binding protein loop (peptide SRCRP2; QGRVEVLYRGSWGTVC) within the SRCR domains. In this study, using overlapping peptides, we pinpointed the minimal bacteria-binding site on SRCRP2, and thus DMBT1, to an 11-amino acid motif (DMBT1 pathogen-binding site 1 or DMBT1pbs1; GRVEVLYRGSW). An alanine substitution scan revealed that VEVL and Trp are critical residues in this motif. Bacteria binding by DMBT1pbs1 was different from the bacteria binding by the macrophage receptor MARCO in which an RXR motif was critical. In addition, the homologous consensus sequences of a number of SRCR proteins were synthesized and tested for bacteria binding. Only consensus sequences of DMBT1 orthologues bound bacteria by this motif.  相似文献   

3.
Salivary agglutinin (SAG), lung glycoprotein-340 (gp-340) and Deleted in Malignant Brain Tumours 1 (DMBT1) are three names for identical proteins encoded by the dmbt1 gene. DMBT1/SAG/gp-340 belongs to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins, a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. On the one hand, DMBT1 may represent an innate defence factor acting as a pattern recognition molecule. It interacts with a broad range of pathogens, including cariogenic streptococci and Helicobacter pylori, influenza viruses and HIV, but also with mucosal defence proteins, such as IgA, surfactant proteins and MUC5B. Stimulation of alveolar macrophage migration, suppression of neutrophil oxidative burst and activation of the complement cascade point further to an important role in the regulation of inflammatory responses. On the other hand, DMBT1 has been demonstrated to play a role in epithelial and stem cell differentiation. Inactivation of the gene coding for this protein may lead to disturbed differentiation, possibly resulting in tumour formation. These data strongly point to a role for DMBT1 as a molecule linking innate immune processes with regenerative processes.  相似文献   

4.
Deleted in malignant brain tumours 1 (DMBT1) codes for a approximately 340kDa glycoprotein with highly repetitive scavenger receptor cysteine-rich (SRCR) domains. DMBT1 was implicated in cancer, defence against viral and bacterial infections, and differentiation of epithelial cells. Recombinant expression and purification of DMBT1 is an essential step for systematic standardized functional research and towards the evaluation of its therapeutical potential. So far, DMBT1 is obtained from natural sources such as bronchioalveolar lavage or saliva, resulting in time consuming sample collection, low yields, and protein preparations which may substantially vary due to differential processing and genetic polymorphism, all of which impedes functional research on DMBT1. Cloning of DMBT1 cDNAs is hampered because of the size and the 13 highly homologous SRCR exons. In this study, we report on the setup of a vector system that facilitates cloning of DMBT1 variants. We demonstrate applicability of the vector system by expression of the largest DMBT1 variant in a tetracycline-inducible mammalian expression system using the Chinese hamster ovary cell line. Yields up to 30 mg rDMBT1 per litre of cell culture supernatant could be achieved with an optimized production procedure. By harnessing the specific bacteria-binding property of DMBT1 we established an affinity purification procedure which allows the isolation of more than 3 mg rDMBT1 with a purity of about 95%. Although the glycosylation moieties of rDMBT1 are different from DMBT1(SAG) isolated from saliva, we demonstrate that rDMBT1 is functionally active in aggregating Gram-positive and Gram-negative bacteria and binding to C1q and lactoferrin, which represent two known endogenous DMBT1 ligands.  相似文献   

5.
6.
The antigen I/II (AgI/II) family polypeptides, ranging from 1310 to 1653 amino acid (aa) residues, are cell wall anchored adhesins expressed by most indigenous species of oral streptococci. The polypeptides interact with a wide range of host molecules, in particular salivary agglutinin glycoprotein (SAG or gp340), and with ligands on other oral bacteria. To determine the receptor recognition properties of six different AgI/II family polypeptides from strains of Streptococcus gordonii, Streptococcus intermedius and Streptococcus mutans, the genes were cloned and expressed on the surface of the surrogate host Lactococcus lactis. The S. gordonii SspA and SspB polypeptides mediated higher binding levels of L. lactis cells to surface immobilized gp340 than did S. intermedius Pas protein, or S. mutans SpaP or PAc proteins. However, the AgI/II proteins were all similar in their abilities to mediate aggregation of lactococci by fluid phase gp340. The SpaP(I) polypeptide from S. mutans Ingbritt, which was C-terminally truncated by approximately 400 aa residues, did not bind gp340. Lactococci expressing AgI/II proteins, including SpaP(I), were aggregated by a synthetic 16 aa residue peptide SRCRP2 derived from the aa repeat block sequences within gp340. In coaggregation assays, SspB from S. gordonii was unique in mediating coaggregation with only group A and group E strains of Actinomyces naeslundii. All the other AgI/II polypeptides mediated coaggregation with group C and group D strains of A. naeslundii. Analysis of chimeric protein constructs revealed that coaggregation specificity was determined by sequences within the N-terminal half of AgI/II protein. A synthetic peptide (20 aa residues), which defines a putative adhesion epitope within the C-terminal region of polypeptide, inhibited AgI/II-mediated aggregation by gp340 but did not affect coaggregation with A. naeslundii. These results suggest that different mechanisms operate in interactions of AgI/II family polypeptides with native gp340, gp340 SRCR domain peptide, and A. naeslundii. Specificity of these interactions appears to be determined by discontinuous but interacting regions of the polypeptides, thus providing flexibility in receptor recognition for streptococcal colonization of the human host.  相似文献   

7.

Background

gp340, a member of scavenger receptor cysteine rich family encoded by Deleted in Malignant Brain Tumors 1 (DMBT1), is an important component in innate immune defense. The first scavenger receptor cysteine rich domain (SRCR1) of gp340 has been shown to inhibit HIV-1 infection through binding to the N-terminal flank of the V3 loop of HIV-1 gp120.

Results

Through homology modeling and docking analysis of SRCR1 to a gp120-CD4-X5 antibody complex, we identified three loop regions containing polar or acidic residues that directly interacted with gp120. To confirm the docking prediction, a series of over-lapping peptides covering the SRCR1 sequence were synthesized and analyzed by gp120-peptide binding assay. Five peptides coincide with three loop regions showed the relative high binding index. An alanine substitution scan revealed that Asp34, Asp35, Asn96 and Glu101 in two peptides with the highest binding index are the critical residues in SRCR1 interaction with gp120.

Conclusion

We pinpointed the vital gp120-binding regions in SRCR1 and narrowed down the amino acids which play critical roles in contacting with gp120.  相似文献   

8.
Porcine sperm binding glycoprotein (SBG) is involved in sperm-oviduct interaction. Here we use mass spectrometry to identify SBG, finding peptides corresponding to deleted in malignant brain tumors 1 (DMBT1), at scavenger receptor cysteine-rich (SRCR) and CUB domains. RT-PCR allowed the cloning of unique sequences, belonging to porcine DMBT1. Western blot and immunofluorescence of oviductal tissues using anti-SBG and anti-hDMBT1 antibodies showed identical results. The biochemical characteristics of both proteins are coincident. We conclude that porcine SBG is an oviductal form of DMBT1, and thus assign this protein a novel location and function.  相似文献   

9.
The extracellular region of CD6 consists of three scavenger receptor cysteine-rich (SRCR) domains and binds activated leukocyte cell adhesion molecule (ALCAM), a member of the immunoglobulin superfamily (IgSF). Residues important for the CD6-ALCAM interaction have previously been identified by mutagenesis. A total of 22 CD6 residues were classified according to their importance for anti-CD6 monoclonal antibody (mAb) and/or ALCAM binding. The three-dimensional structure of the SRCR domain of Mac-2 binding protein has recently been determined, providing a structural prototype for the SRCR protein superfamily. This has made a thorough three-dimensional analysis of CD6 mutagenesis and mAb binding experiments possible. Mutation of buried residues compromised both mAb and ALCAM binding, consistent with the presence of structural perturbations. However, several residues whose mutation affected both mAb and ALCAM binding or, alternatively, only ligand binding were found to map to the surface in the same region of the domain. This suggests that the CD6 ligand binding site and epitopes of tested mAbs overlap and provides an explanation for the finding that these mAbs effectively block ALCAM binding. An approximate molecular model of CD6 was used to delineate the ALCAM binding site.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s0089490050263Abbreviations ALCAM activated leukocyte cell adhesion molecule - CD6D3 third (membrane-proxi-mal) extracellular domain of CD6 - IgSF immunoglobulin superfamily - mAb monoclonal antibody - M2BP Mac-2 binding protein - SRCR scavenger receptor cysteine-rich domain - SRCRSF scavenger receptor cysteine-rich protein superfamily  相似文献   

10.
The highly conserved antigen I/II family of polypeptides produced by oral streptococci are believed to be colonization determinants and may mediate adhesion of bacterial cells to salivary glycoproteins adsorbed to cells and tissues in the human oral cavity. Streptococcus gordonii is shown to express, on the cell surface, two antigen I/II polypeptides designated SspA and SspB (formerly Ssp-5) that are the products of tandemly arranged chromosomal genes. The structure and arrangement of these genes is similar in two independently isolated strains, DL1 and M5, of S. gordonii. The mature polypeptide sequences of M5 SspA (1539 amino acid (aa) residues) and SspB (1462 aa residues) are almost wholly conserved (98% identical) in the C-terminal regions (from residues 796 in SspA and 719 in SspB, to the respective C-termini), well-conserved (84%) at the N-terminal regions (residues 1–429), and divergent (only 27% identical residues) within the intervening central regions. Insertional inactivation of the sspA gene in S. gordonii DL1 resulted in reduced binding of cells to salivary agglutinin glycoprotein (SAG), human erythrocytes, and to the oral bacterium Actinomyces naeslundii. Further reductions in streptococcal cell adhesion to SAG and to two strains of A. naeslundii were observed when both sspA and sspB genes were inactivated. The results suggest that both SspA and SspB polypeptides are involved in adhesion of S. gordonii cells to human and bacterial receptors.  相似文献   

11.
Kang W  Reid KB 《FEBS letters》2003,540(1-3):21-25
DMBT1 (deleted in malignant brain tumor 1), which encodes a large scavenger receptor cysteine rich (SRCR) B protein, has been proposed to be a tumor suppressor gene, due to the high frequency of its homozygous deletion and the lack of expression in a variety of cancers. However, studies on its physiological functions and its relationship with tumorigenesis are still at an initial stage. Two mucosal defense-related molecules, gp-340 and salivary agglutinin, have been identified to be alternatively spliced products of DMBT1, which suggests that DMBT1 is a pattern recognition receptor in innate immunity. Meanwhile, results from immunohistochemical staining and studies at the cellular level, began to associate DMBT1 with a proliferation to differentiation switching process in gastrointestinal epithelial cells. Together with its up-regulation in inflammation, these findings suggest that DMBT1 might be a local regulator of homeostasis, possibly through linking mucosal inflammation to the modulation of epithelial regeneration, and whose abnormality is a frequent cause of malignancy.  相似文献   

12.
Formation of the haptoglobin (Hp)-hemoglobin (Hb) complex in human plasma leads to a high affinity recognition by the endocytic macrophage receptor CD163. A fast segregation of Hp-Hb from CD163 occurs at endosomal conditions (pH <6.5). The ligand binding site of CD163 has previously been shown to involve the scavenger receptor cysteine-rich (SRCR) domain 3. This domain and the adjacent SRCR domain 2 of CD163 contain a consensus motif for a calcium-coordinated acidic amino acid triad cluster as originally identified in the SRCR domain of the scavenger receptor MARCO. Here we show that site-directed mutagenesis in each of these acidic triads of SRCR domains 2 and 3 abrogates the high affinity binding of recombinant CD163 to Hp-Hb. In the ligand, Hp Arg-252 and Lys-262, both present in a previously identified CD163 binding loop of Hp, were revealed as essential residues for the high affinity receptor binding. These findings are in accordance with pairing of the calcium-coordinated acidic clusters in SRCR domains 2 and 3 with the two basic Arg/Lys residues in the Hp loop. Such a two-point electrostatic pairing is mechanistically similar to the pH-sensitive pairings disclosed in crystal structures of ligands in complex with tandem LDL receptor repeats or tandem CUB domains in other endocytic receptors.  相似文献   

13.
DMBT1 (deleted in malignant brain tumor 1), a human mucin-like glycoprotein, belonging to the scavenger receptor cystein-rich (SRCR) superfamily, is mainly secreted from mucosal epithelia. It has been shown previously that interaction of hensin, the rabbit ortholog of DMBT1, with galectin 3, a β-galactoside-binding lectin, induces a terminal differentiation of epithelial cells. In this paper, we have used surface plasmon resonance (SPR), to analyse the binding of galectin 3 to two purified samples of human DMBT1:recombinant DMBT1 produced in CHO cells and DMBT1 isolated from intestinal tissues. Characterization of their glycosylation profile by nano-ESI-Q-TOF tandem mass spectrometry showed significant differences in O-glycans between the two DMBT1 samples. Results obtained by SPR demonstrated that the oligosaccharide side chains of DMBT1 are recognized by the carbohydrate-recognition domain (CRD) of galectin 3 and modification in the pattern of oligosaccharides modulates the binding parameters of DMBT1 with galectin 3. Moreover, using immunohistochemistry on paraffin-embedded colonic tissue sections, we could show a co-localisation of DMBT1 and galectin 3 in human intestine, suggesting a potential physiological interaction.  相似文献   

14.
The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 Å resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C1, C2, and C3. Each domain adopts a DE-variant IgG fold, with two β-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimal region of binding was contained within the first and second DE-variant-IgG domains (C1 and C2) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C1 and C2 domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C1 and C2 domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.  相似文献   

15.
Oral streptococci adhere to tooth-immobilized glycoprotein 340 (GP340) via the surface protein antigen I/II (AgI/II) and its homologs as the first step in pathogenesis. Studying this interaction using recombinant proteins, we observed that calcium increases the conformational stability of the scavenger-rich cysteine repeat (SRCRs) domains of GP340. Our results also show that AgI/II adheres specifically with nanomolar affinity to the calcium-induced SRCR conformation in an immobilized state and not in solution. This interaction is significantly dependent on the O-linked carbohydrates present on the SRCRs. This study also establishes that a single SRCR domain of GP340 contains the two surfaces to which the apical and C-terminal regions of AgI/II noncompetitively adhere. Compared with the single SRCR domain, the three tandem SRCR domains displayed a collective/cooperative increase in their bacterial adherence and aggregation. The previously described SRCRP2 peptide that was shown to aggregate several oral streptococci displayed limited aggregation and also nonspecific adherence compared to SRCR domains. Finally, we show distinct species-specific adherence/aggregation between Streptococcus mutans AgI/II and Streptococcus gordonii SspB in their interaction with the SRCRs. This study concludes that identification of the metal ion and carbohydrate adherence motifs on both SRCRs and AgI/II homologs could lead to the development of anti-adhesive inhibitors that could deter the adherence of pathogenic oral streptococci and thereby prevent the onset of infections.  相似文献   

16.
17.
DMBT1 (deleted in malignant brain tumors) encodes a large scavenger receptor cysteine rich (SRCR) protein with proposed tumor suppressor properties due to its frequent deletion or lack of expression in a variety of different tumors including endometrial cancers. The gene is alternatively spliced to produce a number of related proteins with suspected functions in mucosal inflammation and epithelial regeneration. Expression of DMBT1 has been demonstrated in a wide variety of cell types, mostly of epithelial origin, including tissues of the respiratory system, the alimentary system, brain, and reproductive system. We have previously identified a Rhesus monkey cDNA clone H3 (homologous to human DMBT1) as a progesterone-induced gene in Rhesus monkey endometrium during the secretory phase of the menstrual cycle. As an initial step in understanding the molecular mechanisms of H3 (DMBT1) regulation we have cloned and sequenced 1.5 kb of the 5'-flanking region expected to contain promoter sequences of the Rhesus monkey gene and identified six putative progesterone receptor binding sites in the 5'-upstream region.  相似文献   

18.
Human salivary α-amylase (HSAmy) has three distinct functions relevant to oral health: (i) hydrolysis of starch; (ii) binding to hydroxyapatite; and (iii) binding to bacteria (e.g. viridans streptococci). Oral bacteria utilize the starch hydrolyzing activity of HSAmy to derive their nutrients from dietary starch. Localized acid production by bacteria, through the metabolism of maltose generated by HSAmy, can lead to the dissolution of tooth enamel, a critical step in dental caries formation. HSAmy is a component of the acquired enamel pellicle and is used by Streptococcus gordonii to colonize the oral cavity. Although the active site of HSAmy for starch hydrolysis is well characterized, the regions responsible for the bacterial binding are yet to be defined. Since HSAmy possesses several secondary saccharide-binding sites in which aromatic residues are prominently located, we hypothesized that one of the secondary saccharide-binding sites harboring the aromatic residues W316 and W388, may play an important role in bacterial binding. To test this hypothesis, the aromatic residues W316 and W388 were mutated to alanine. The wild type and the mutant enzymes were characterized for their abilities to exhibit enzyme activity, starch binding and bacterial binding. Our results clearly showed that (i) the mutants W316A and W388A were not impaired in starch binding or bacterial binding; (ii) mutation of aromatic residues at these sites does not alter the overall conformation of the molecule; and (iii) the hydrolytic activity of the enzyme is unaffected against starch as substrates but reduced significantly against oligosaccharides.  相似文献   

19.
Scavenger receptor cysteine-rich (SRCR) domains are ancient protein modules widely found among cell surface and secreted proteins of the innate and adaptive immune system, where they mediate ligand binding. We have solved the crystal structure at 2.2 A of resolution of the SRCR CD5 domain III, a human lymphocyte receptor involved in the modulation of antigen specific receptor-mediated T cell activation and differentiation signals. The first structure of a member of a group B SRCR domain reveals the fold of this ancient protein module into a central core formed by two antiparallel beta-sheets and one alpha-helix, illustrating the conserved core at the protein level of genes coding for group A and B members of the SRCR superfamily. The novel SRCR group B structure permits the interpretation of site-directed mutagenesis data on the binding of activated leukocyte cell adhesion molecule (ALCAM/CD166) binding to CD6, a closely related lymphocyte receptor homologue to CD5.  相似文献   

20.
Design, synthesis and DNA binding activity of a nonlinear 102 residue peptide are reported. The peptide contains four sequence-specific DNA binding domains of 434 Cro protein. These four domains were linked covalently to a symmetrical carboxyterminal crosslinker that contains four arms each ending with an aliphatic aminogroup. From CD studies we have found that in aqueous buffer in the presence of 20% trifluoroethanol the peptide residues assume alpha helical, beta-sheet and random coiled conformations with an alpha helical content of about 16% at room temperature. The alpha helicity is increased up to 40% in the presence of 40% trifluoroethanol. Upon complex formation between the peptide and DNA a change in the peptide conformation takes place which is consistent with an alpha-beta transition in the DNA binding, helix-turn-helix motif of 434 Cro repressor. Evidently residues present in helices alpha(2) and alpha(3) form a beta hairpin which is inserted in the minor DNA groove. The latter inference is supported by our observations that the peptide can displace minor groove binding antibiotic distamycin A from a complex with poly(dA).poly(dT). As revealed from DNase protection studies the peptide exhibits preferences for binding to operator and pseudooperator sites recognized by 434 Cro repressor. It binds strongly to operator sites OR1, OR2 and OR3 and exhibits a greater affinity for pseudooperator site Op1. From analysis of nucleotide sequences in the strong affinity binding sites for the peptide on DNA a conclusion is drawn that it binds to pseudosymmetrical nucleotide sequences 5'-ACAA(W)nCTGT-3', where W is an arbitrary nucleotide. n is equal to six or seven. In the strongest affinity binding site for the peptide on DNA (Op1) motif 5'-ACAA-3' is replaced by sequence 5'-ACCA-3'. A difference in binding specificity shown by the peptide and 434 Cro protein could be attributed to a flexibility of the connecting chains between DNA-binding domains in the peptide molecule as well as to a replacement of Thr - Ala in the alpha 2 helix. Removal of two residues from the N-terminal end of helix alpha 2 in each of the four DNA binding domains of 434 Cro present in the peptide leads to a loss of binding specificity, although the modified peptide binds to DNA unspecifically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号