首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The xyloglucan-cellulose assembly at the atomic scale   总被引:3,自引:0,他引:3  
Hanus J  Mazeau K 《Biopolymers》2006,82(1):59-73
The assembly of cell wall components, cellulose and xyloglucan (XG), was investigated at the atomistic scale using molecular dynamics simulations. A molecular model of a cellulose crystal corresponding to the allomorph Ibeta and exhibiting a flexible complex external morphology was employed to mimic the cellulose microfibril. The xyloglucan molecules considered were the three typical basic repeat units, differing only in the size of one of the lateral chain. All the investigated XG fragments adsorb nonspecifically onto cellulose fiber; multiple arrangements are equally probable, and every cellulose surface was capable of binding the short XG molecules. The following structural effects emerged: XG molecules that do not have any long side chains tended to adapt themselves nicely to the topology of the microfibril, forming a flat, outstretched conformation with all the sugar residues interacting with the surface. In contrast, the XG molecules, which have long side chains, were not able to adopt a flat conformation that would enable the interaction of all the XG residues with the surface. In addition to revealing the fundamental atomistic details of the XG adsorption on cellulose, the present calculations give a comprehensive understanding of the way the XG molecules can unsorb from cellulose to create a network that forms the cell wall. Our revisited view of the adsorption features of XG on cellulose microfibrils is consistent with experimental data, and a model of the network is proposed.  相似文献   

2.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with trypto-phan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cell  相似文献   

3.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.  相似文献   

4.
The interaction of cellulose layers with colloidal silica particles was investigated by direct force measurements with the atomic force microscope (AFM). Upon approach, repulsive forces were found between the negatively charged silica particles and the cellulose surface. The forces were interpreted quantitatively in terms of electrostatic interactions due to overlap of diffuse layers originating from negatively charged carboxylic groups on the cellulose surface. The diffuse layer charge density of cellulose was estimated to be 0.80 mC/m2 at pH 9.5 and 0.21 mC/m2 at pH 4. The forces upon retraction are characterized by molecular adhesion events, whereby individual cellulose chains desorb from the probe surface. The retraction profiles are dominated by well-defined force plateaus, which correspond to single-chain desorption forces of 35-42 pN. We surmise that adsorption of cellulose to probe surfaces is dominated by nonelectrostatic forces, probably originating from hydrogen bonding. Electrostatic contributions to desorption force could be detected only at high pH, where the silica surface is highly charged.  相似文献   

5.
Reverse electrodialysis (RED) is known as an efficient way of converting the salinity gradient between river water and sea water into energy. However, the high cost and complex fabrication of the necessary ion exchange membranes greatly prohibit the development of the RED process. For the first time, an ionized wood membrane is demonstrated for this application, benefiting from the advantages of natural wood, which is abundant, low cost, sustainable, and easy to scale. The wood membrane maintains the aligned nanochannels of the cellulose nanofibers derived from the natural wood. The surface of the nanochannels can be functionalized to positively or negatively charged by in situ modifying the hydroxyl groups on the cellulose chains to quaternary ammonium or carboxyl groups, respectively. These charged aligned nanochannels serve as nanofluidic passages for selective ion transport with opposite polarity through the wood membrane, resulting in efficient charge separation and generating an electrochemical potential difference. The all‐wood RED device with 100 cells using a scalable stacking geometry generates an output voltage as high as 9.8 V at open circuit from a system of synthetic river water and sea water.  相似文献   

6.
Native cellulose in higher plants forms crystalline fibrils a few nm across, with a substantial fraction of their glucan chains at the surface. The accepted crystal structures feature a flat-ribbon 21 helical chain conformation with every glucose residue locked to the next by hydrogen bonds from O-3' to O-5 and from O-2 to O-6'. Using solid-state NMR spectroscopy we show that the surface chains have a different C-6 conformation so that O-6 is not in the correct position for the hydrogen bond from O-2. We also present evidence consistent with a model in which alternate glucosyl residues are transiently or permanently twisted away from the flat-ribbon conformation of the chain, weakening the O-3' - 0-5 hydrogen bond. Previous molecular modelling and the modelling studies reported here indicate that this 'translational' chain conformation is energetically feasible and does not preclude binding of the surface chains to the interior chains, because the surface chains share the axial repeat distance of the 21 helix. Reduced intramolecular hydrogen bonding allows the surface chains to form more hydrogen bonds to external molecules in textiles, wood, paper and the living plant.  相似文献   

7.
Advanced glycation end products (AGEs) contribute to changes in protein conformation, loss of function, and irreversible crosslinking. Using a library of dipeptides on cellulose membranes (SPOT library), we have developed an approach to systematically assay the relative reactivities of amino acid side chains and the N-terminal amino group to sugars and protein-AGEs. The sugars react preferentially with cysteine or tryptophan when both the alpha-amino group and the side chains are free. In peptides with blocked N-terminus and free side chains, cysteine, lysine, and histidine were preferred. Crosslinking of protein-AGEs to dipeptides with free side chains and blocked N termini occurred preferentially to arginine and tryptophan. Dipeptide SPOT libraries are excellent tools for comparing individual reactivities of amino acids for nonenzymatic modifications, and could be extended to other chemically reactive molecules.  相似文献   

8.
The adsorption of DNA molecules onto a flat mica surface is a necessary step to perform atomic force microscopy studies of DNA conformation and observe DNA-protein interactions in physiological environment. However, the phenomenon that pulls DNA molecules onto the surface is still not understood. This is a crucial issue because the DNA/surface interactions could affect the DNA biological functions. In this paper we develop a model that can explain the mechanism of the DNA adsorption onto mica. This model suggests that DNA attraction is due to the sharing of the DNA and mica counterions. The correlations between divalent counterions on both the negatively charged DNA and the mica surface can generate a net attraction force whereas the correlations between monovalent counterions are ineffective in the DNA attraction. DNA binding is then dependent on the fractional surface densities of the divalent and monovalent cations, which can compete for the mica surface and DNA neutralizations. In addition, the attraction can be enhanced when the mica has been pretreated by transition metal cations (Ni(2+), Zn(2+)). Mica pretreatment simultaneously enhances the DNA attraction and reduces the repulsive contribution due to the electrical double-layer force. We also perform end-to-end distance measurement of DNA chains to study the binding strength. The DNA binding strength appears to be constant for a fixed fractional surface density of the divalent cations at low ionic strength (I < 0.1 M) as predicted by the model. However, at higher ionic strength, the binding is weakened by the screening effect of the ions. Then, some equations were derived to describe the binding of a polyelectrolyte onto a charged surface. The electrostatic attraction due to the sharing of counterions is particularly effective if the polyelectrolyte and the surface have nearly the same surface charge density. This characteristic of the attraction force can explain the success of mica for performing single DNA molecule observation by AFM. In addition, we explain how a reversible binding of the DNA molecules can be obtained with a pretreated mica surface.  相似文献   

9.
We studied the electrophoretic behavior of long DNA molecules in a linear polymer [polyacrylamide (PA)] solution through direct observation by means of fluorescence microscopy. DNA migrates in an I-shaped conformation in concentrated polymer solutions under steady electric fields, but it is not stretched up to its natural contour length in this I-shaped conformation under such fields. The stretching of DNA is induced under alternating current fields through the entanglement effect between DNA and host polymers. We experimentally investigated the conditions required for this stretching phenomenon and found that DNA can be stretched at a concentration of around 7% PA, under a field of around 10 Hz. These conditions do not depend on the length of the DNA chains. It is expected that DNA stretching will be useful in the optical mapping of specific sites along an individual DNA chain.  相似文献   

10.
Xyloglucan has been hypothesized to bind extensively to cellulose microfibril surfaces and to tether microfibrils into a load‐bearing network, thereby playing a central role in wall mechanics and growth, but this view is challenged by newer results. Here we combined high‐resolution imaging by field emission scanning electron microscopy (FESEM) with nanogold affinity tags and selective endoglucanase treatments to assess the spatial location and conformation of xyloglucan in onion cell walls. FESEM imaging of xyloglucanase‐digested cell walls revealed an altered microfibril organization but did not yield clear evidence of xyloglucan conformations. Backscattered electron detection provided excellent detection of nanogold affinity tags in the context of wall fibrillar organization. Labelling with xyloglucan‐specific CBM76 conjugated with nanogold showed that xyloglucans were associated with fibril surfaces in both extended and coiled conformations, but tethered configurations were not observed. Labelling with nanogold‐conjugated CBM3, which binds the hydrophobic surface of crystalline cellulose, was infrequent until the wall was predigested with xyloglucanase, whereupon microfibril labelling was extensive. When tamarind xyloglucan was allowed to bind to xyloglucan‐depleted onion walls, CBM76 labelling gave positive evidence for xyloglucans in both extended and coiled conformations, yet xyloglucan chains were not directly visible by FESEM. These results indicate that an appreciable, but still small, surface of cellulose microfibrils in the onion wall is tightly bound with extended xyloglucan chains and that some of the xyloglucan has a coiled conformation.  相似文献   

11.
Individual cellulose macromolecules were successfully visualized on a highly oriented pyrolytic graphite (HOPG) surface by tapping-mode atomic force microscopy under ambient condition. Monomolecular-level dispersion of cellulose chains was achieved through the momentary contact of dilute cellulose/cupri-ethylenediamine (Cu-ED) solution onto the HOPG substrate. Both concentrations of cellulose and Cu-ED provided critical impacts on the topographical images. Single cellulose chains with molecular height of ca. 0.55 nm could be observed under the optimal conditions, showing rigid molecular rods with a unique morphology of hexagonal regularity. It was strongly suggested that the cellulose chains were aligned along the HOPG crystal lattice through a specific attraction, possibly due to a CH-pi interaction between the axial plane of cellulose and the HOPG pi-conjugated system. These phenomena would imply the potential applications of an HOPG substrate for not only nano-level imaging, but also for molecular alignment of cellulose and other structural polysaccharides.  相似文献   

12.
The outer membrane of Gram-negative bacteria is of great scientific interest because it mediates the action of antimicrobial agents. The membrane surface is composed of lipopolysaccharide (LPS) molecules with negatively charged oligosaccharide headgroups. To a certain fraction, LPSs additionally display linear polysaccharides termed O-side chains (OSCs). Structural studies on bacterial outer surfaces models, based on LPS monolayers at air-water interfaces, have so far dealt only with rough mutant LPSs lacking these OSCs. Here, we characterize monolayers of wild-type LPS from Escherichia coli O55:B5 featuring strain-specific OSCs in the presence of defined concentrations of monovalent and divalent ions. Pressure-area isotherms yield insight into in-plane molecular interactions and monolayer elastic moduli. Structural investigations by x-ray and neutron reflectometry reveal the saccharide conformation and allow quantifying the area per molecule and the fraction of LPS molecules carrying OSCs. The OSC conformation is satisfactorily described by the self-consistent field theory for end-grafted polymer brushes. The monolayers exhibit a significant structural response to divalent cations, which goes beyond generic electrostatic screening.  相似文献   

13.
We have examined the roles of peptide and beta 2-microglobulin (beta 2m) in regulating the conformation and expression level of class I molecules on the cell surface. Using a cell line synthesizing H-2Dd H chain and mouse beta 2m but defective in endogenous peptide loading, we demonstrate the ability of either exogenous peptide or beta 2m alone to increase surface H-2Dd expression at both 25 degrees C and 37 degrees C. Peptide and beta 2m show marked synergy in their abilities to increase surface class I expression, with minimal increases promoted by peptide in the absence of free beta 2m. Low temperature-induced molecules have indistinguishable rates of loss of beta 2m and alpha 1/alpha 2 domain conformational epitopes during culture at 37 degrees C. However, the rate of alpha 3 epitope loss is much slower, indicating a minimum of two steps in class I loss from the cell surface: 1) loss of beta 2m binding to H chain and unfolding of the alpha 1/alpha 2 region; then 2) denaturation, degradation, or internalization of the free H chains possessing alpha 3 epitopes. These data show for the first time that free H chains survive for a finite time on the membrane in a form capable of refolding into alpha 1/alpha 2 epitope positive molecules upon addition of beta 2m and peptide. This refolding in the presence of beta 2m and peptide can explain the reported requirement for both components in sensitizing cells for class I-dependent CTL lysis. It also indicates that such conformational changes in class I molecules are not strictly dependent on either newly synthesized H chains or on intracellular chaperons. The study of H chain-peptide-beta 2m interaction on the cell surface may be relevant to understanding intracellular peptide loading events.  相似文献   

14.
Woody materials are comprised of plant cell walls that contain a layered secondary cell wall composed of structural polymers of polysaccharides and lignin. Layer-by-layer (LbL) assembly process which relies on the assembly of oppositely charged molecules from aqueous solutions was used to build a freestanding composite film of isolated wood polymers of lignin and oxidized nanofibril cellulose (NFC). To facilitate the assembly of these negatively charged polymers, a positively charged polyelectrolyte, poly(diallyldimethylammomium chloride) (PDDA), was used as a linking layer to create this simplified model cell wall. The layered adsorption process was studied quantitatively using quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. The results showed that layer mass/thickness per adsorbed layer increased as a function of total number of layers. The surface coverage of the adsorbed layers was studied with atomic force microscopy (AFM). Complete coverage of the surface with lignin in all the deposition cycles was found for the system, however, surface coverage by NFC increased with the number of layers. The adsorption process was carried out for 250 cycles (500 bilayers) on a cellulose acetate (CA) substrate. Transparent free-standing LBL assembled nanocomposite films were obtained when the CA substrate was later dissolved in acetone. Scanning electron microscopy (SEM) of the fractured cross-sections showed a lamellar structure, and the thickness per adsorption cycle (PDDA-Lignin-PDDA-NC) was estimated to be 17 nm for two different lignin types used in the study. The data indicates a film with highly controlled architecture where nanocellulose and lignin are spatially deposited on the nanoscale (a polymer-polymer nanocomposites), similar to what is observed in the native cell wall.  相似文献   

15.
The conformation of charged molecules tethered to conducting substrates can be controlled efficiently through the application of external voltages. Biomolecules like DNA or oligopeptides can be forced to stretch away from??or fold onto??surfaces biased at moderate potentials of merely hundreds of millivolts. These externally controlled conformation changes can be used to switch the biological function of molecular monolayers on and off, by revealing or concealing molecular recognition sites at will. Moreover, the electrical actuation of biomolecular surface probes bears great potential as a novel, label-free, yet highly sensitive measurement modality for the analysis of molecular interactions. The binding of target molecules to an oscillating probe layer significantly alters the layer??s switching behavior in terms of the conformation switching amplitude and, most remarkably, with respect to the molecular switching dynamics. Analyzing the switching response of target?Cprobe complexes from the low- to the high-frequency regime reveals a wealth of previously inaccessible information. Besides ??classical?? interaction parameters like binding affinities and kinetic rate constants, information on the size, shape, bending flexibility, and elasticity of the target molecule may be obtained in a single assay. This review describes the advent of electrically switchable biosurfaces, focusing on DNA monolayers. The preparation of self-assembled switchable oligonucleotide monolayers and their electrical interactions with charged substrates are highlighted. Special attention is paid to the merits of evaluating the dynamic response of charged biolayers which are operated at high driving frequencies. Several applications of biosensors based on electrically manipulated molecules are exemplified. It is emphasized that the electrical actuation of biomolecules bears many advantages over passive sensor surfaces.  相似文献   

16.
The molecular properties of substance P (SP) (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met amide) and three of its antagonists were derived by measuring the Gibbs adsorption isotherm, providing information on the surface activity, the molecular shape, and the pK values of the different molecules. The following three antagonists were investigated: [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP, ANT I; [D-Arg1,D-Trp7,9,Leu11]SP, ANT II and [D-Pro2,D-Trp7,9]SP, ANT III. SP is only moderately surface active. The amino acid substitutions lead, however, to an increased surface activity of the antagonists. From the concentration dependence of the surface activity it was possible to quantify the packing characteristics of the individual neuropeptides. SP shows cross-sectional areas of 300 +/- 5 A2 to 240 +/- 5 A2 (pH 5 to 8, 154 mM NaCl) at concentrations below 10(-5) M, i.e., in the physiological concentration range, indicating a folded SP conformation. Upon increasing the packing density to concentrations larger than 10(-5) M the surface area was only half as large (148 +/- 5 A2 to 124 +/- 3 A2) suggesting now a relatively extended conformation of the SP molecule with its long molecular axis perpendicular to the air/water interface. In contrast, the three antagonists were characterized by surface areas of 147 +/- 3 A2 to 126 +/- 3 A2 which were almost independent of concentration. The antagonists thus adopt a relatively extended conformation in the whole concentration range measured. This is further supported by computer modelling which shows that the antagonists are motionally restricted and can adopt neither a bent nor a alpha-helical conformation. The surface activity of the neuropeptides was dependent on the pH of the solution. At low peptide concentrations (about 10(-6) M) it was possible to resolve and determine the pK values of all individual charged amino acid side chains. The pK values observed for the neuropeptides were about two pK units lower than those of the free amino acids in solution. The pK shifts of the neuropeptides at the air/water interface are explained in terms of the Gouy-Chapman theory. SP and its antagonists bind to lipid bilayers in the order of their surface activity. While the binding of SP is mainly due to electrostatic interactions, hydrophobic peptide-lipid interactions contribute to the binding of the antagonists.  相似文献   

17.
Outer membrane protein F, a major component of the Escherichia coli outer membrane, was crystallized for the first time in lipidic mesophase of monoolein in novel space groups, P1 and H32. Due to ease of its purification and crystallization OmpF can be used as a benchmark protein for establishing membrane protein crystallization in meso, as a "membrane lyzozyme". The packing of porin trimers in the crystals of space group H32 is similar to natural outer membranes, providing the first high-resolution insight into the close to native packing of OmpF. Surprisingly, interaction between trimers is mediated exclusively by lipids, without direct protein-protein contacts. Multiple ordered lipids are observed and many of them occupy identical positions independently of the space group, identifying preferential interaction sites of lipid acyl chains. Presence of ordered aliphatic chains close to a positively charged area on the porin surface suggests a position for a lipopolysaccharide binding site on the surface of the major E. coli porins.  相似文献   

18.
The major 97-aa timothy grass (Phleum pratense) allergen Phl p 3 was recently isolated from an extract of timothy grass pollen. Sequence comparison classifies this protein as a group 3 allergen. The solution structure of Phl p 3 as determined by nuclear magnetic resonance spectroscopy reveals that the protein consists of a core of hydrophobic amino-acid side chains from two beta-sheets of five and four anti-parallel beta-strands, respectively. This conformation is very similar to the crystal structure published for Phl p 2 and strongly resembles the known conformation of the carboxy-terminal domain of Phl p 1, the major difference being the loop orientations. Phl p 2 and Phl p 3 show virtually identical immunoreactivity, and comparison of the charged surface amino acids of the two proteins gives initial clues as to the IgE recognition epitopes of these proteins.  相似文献   

19.
The SEC-MALS-QELS (size-exclusion chromatography equipped with multiangle light scattering and quasi-elastic light scattering detectors) method using lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) and LiCl/1,3-dimethyl-2-imidazolidinone (LiCl/DMI) as mobile phases was applied to cellulose and cellulose tricarbanilate (CTC) samples with various average degree of polymerization (DP) values. Molecular conformations of cellulose and CTC in the solvents were then discussed and compared on the basis of the relationships between the radii of gyration (R(g,z) or S(2)(z)(1/2)), the hydrodynamic radii (R(h,z)), and weight-average DP (DP(w)) or the contour lengths (L(w)). The Benoit-Doty theory for wormlike polymer chains was applied to the R(g) vs L(w) data obtained, and the theoretical curves with Kuhn segment lengths l(K) of around 18 nm were found to fit the data of both cellulose and CTC molecules in the solvents. It was concluded from the obtained results that both cellulose and CTC molecules have conformations essentially identical to each other in the solvents; they behave as typical semiflexible chains in good solvents.  相似文献   

20.
The hemicellulosic polysaccharide xyloglucan binds with a strong affinity to cellulosic cell wall microfibrils, the resulting heterogeneous network constituting up to 50% of the dry weight of the cell wall in dicotyledonous plants. To elucidate the molecular details of this interaction, we have performed theoretical potential energy calculations of the static and dynamic equilibrium conformations of xyloglucan using the GEGOP software. In particular, we have evaluated the preferred sidechain conformations of hexa-, octa-, deca- and heptadecasaccharide model fragments of xyloglucan for molecules with a cellulose-like, flat, glucan backbone, and a cellobiose-like, twisted, glucan backbone conformation. For the flat backbone conformation the determination of static equilibrium molecular conformations revealed a tendency for sidechains to fold onto one surface of the backbone, defined here as the H1S face, in the fucosylated region of the polymer. This folding produces a molecule that is sterically accessible on the opposite face of the backbone, the H4S face. Typically, this folding onto the H1S surface is significantly stabilized by favorable interactions between the fucosylated, trisaccharide sidechain and the backbone, with some stabilization from adjacent terminal xylosyl sidechains. In contrast, the trisaccharide sidechain folds onto the H4S face of xyloglucan fragments with a twisted backbone conformation. Preliminary NMR data on nonasaccharide fragments isolated from sycamore suspension-cultured cell walls are consistent with the hypothesis that the twisted conformation of xyloglucan represents the solution form of this molecule. Metropolis Monte Carlo (MMC) simulations were employed to assess sidechain flexibility of the heptadecasaccharide fragments. Simulations performed on the flat, rigid, backbone xyloglucan indicate that the trisaccharide sidechain is less mobile than the terminal xylosyl sidechains. MMC calculations on a fully relaxed molecule revealed a positive correlation between a specific trisaccharide sidechain orientation and the 'flatness' of the backbone glucosyl residues adjacent to this sidechain. These results suggest that the trisaccharide sidechain may play a role in the formation of nucleation sites that initiate the binding of these regions to cellulose. Based on these conformational preferences we suggest the following model for the binding of xyloglucan to cellulose. Nucleation of a binding site is initiated by the fucosylated, trisaccharide sidechain that flattens out an adjacent region of the xyloglucan backbone. Upon contacting a cellulose microfibril this region spreads by step-wise flattening of successive segments of the backbone. Self-association of xyloglucan molecules in solution may be prevented by the low frequency of formation of these nucleation sites and the geometry of the molecules in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号