共查询到20条相似文献,搜索用时 15 毫秒
1.
原子力显微术不仅能够提供样品表面纳米级别分辨率的三维图像数据,而且能够对pN级微小力进行测量,同时将两者结合发展出的TREC(topography and recognition)显微术还能够在进行高分辨成像的同时实现对特定分子的定位。原子力显微术的这些特点使之成为生物化学、细胞生物学等生物研究的有利工具。本文主要介绍了原子力显微镜高分辨成像和检测生物分子识别的原理,以及TREC显微术在生物学上的应用。 相似文献
2.
Tessmer I Moore T Lloyd RG Wilson A Erie DA Allen S Tendler SJ 《Journal of molecular biology》2005,350(2):254-262
Genetic studies of rdgC in different bacterial systems suggest that it may play a role in replication and recombination. However, the exact function of the corresponding protein, RdgC, is unknown. In this study, we have imaged complexes of RdgC with both linear and supercoiled circular plasmid DNA using atomic force microscopy. We confirm that RdgC does not target any specific sequences in double-stranded DNA, as has been suggested from biochemical data. However, we detect an increased affinity of the protein to DNA ends, and an ability to promote bending of DNA. Similar binding preferences have been reported for enzymes involved in recombination. Protein complexes with supercoiled plasmid DNA further enabled us to study the effect of RdgC on DNA superstructure. At high concentrations of protein we observed promotion of DNA condensation. Recombination is largely enhanced by close contacts of distant regions along the DNA strands, as can occur, for instance, through condensation. Our data thus support a possible function of RdgC as a midwife of recombination. 相似文献
3.
Sub diffraction limited infrared absorption imaging of hemoglobin was performed by coupling IR optics with an atomic force microscope. Comparisons between the AFM topography and IR absorption images of micron sized hemoglobin features are presented, along with nanoscale IR spectroscopic analysis of the metalloprotein. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
4.
Immobilization of virions to glass surfaces is a critical step in single virion imaging. Here we present a technique adopted from single molecule imaging assays which allows adhesion of single virions to glass surfaces with specificity. This preparation is based on grafting the surface of the glass with a mixture of PLL-g-PEG and PLL-g-PEG-Biotin, adding a layer of avidin, and finally creating virion anchors through attachment of biotinylated virus specific antibodies. We have applied this technique across a range of experiments including atomic force microscopy (AFM) and super-resolution fluorescence imaging. This sample preparation method results in a control adhesion of the virions to the surface. 相似文献
5.
Single-molecule force-quench atomic force microscopy (FQ-AFM) is used to detect folding intermediates of a simple protein by detecting changes of molecular stiffness of the protein during its folding process. Those stiffness changes are obtained from shape and peaks of an autocorrelation of fluctuations in end-to-end length of the folding molecule. The results are supported by predictions of the equipartition theorem and agree with existing Langevin dynamics simulations of a simplified model of a protein folding. In the light of the Langevin simulations the experimental data probe an ensemble of random-coiled collapsed states of the protein, which are present both in the force-quench and thermal-quench folding pathways. 相似文献
6.
Yves F. Dufrêne 《Proteomics》2009,9(24):5400-5405
Analysing microbial cell surface proteins is a challenging task in current microbial proteomic research, which has major implications for drug design, vaccine development, and microbial monitoring. In this context, atomic force microscopy (AFM) has recently emerged has a powerful characterization platform, providing valuable insights into the surface proteome of microbial cells. The aim of this article is to show how advanced AFM techniques, that all have in common functionalization of the AFM tip with specific molecules, can be used to answer pertinent questions related to surface‐associated proteins, such as what is their spatial arrangement on the cell surface, and what are the forces driving their interaction with the environment? 相似文献
7.
C. Formosa V. Lachaize C. Galés M. P. Rols H. Martin‐Yken J. M. François R. E. Duval E. Dague 《Journal of molecular recognition : JMR》2015,28(1):1-9
Single‐molecule force spectroscopy using atomic force microscopy (AFM) is more and more used to detect and map receptors, enzymes, adhesins, or any other molecules at the surface of living cells. To be specific, this technique requires antibodies or ligands covalently attached to the AFM tip that can specifically interact with the protein of interest. Unfortunately, specific antibodies are usually lacking (low affinity and specificity) or are expensive to produce (monoclonal antibodies). An alternative strategy is to tag the protein of interest with a peptide that can be recognized with high specificity and affinity with commercially available antibodies. In this context, we chose to work with the human influenza hemagglutinin (HA) tag (YPYDVPDYA) and labeled two proteins: covalently linked cell wall protein 12 (Ccw12) involved in cell wall remodeling in the yeast Saccharomyces cerevisiae and the β2‐adrenergic receptor (β2‐AR), a G protein‐coupled receptor (GPCR) in higher eukaryotes. We first described the interaction between HA antibodies, immobilized on AFM tips, and HA epitopes, immobilized on epoxy glass slides. Using our system, we then investigated the distribution of Ccw12 proteins over the cell surface of the yeast S. cerevisiae. We were able to find the tagged protein on the surface of mating yeasts, at the tip of the mating projections. Finally, we could unfold multimers of β2‐AR from the membrane of living transfected chinese hamster ovary cells. This result is in agreement with GPCR oligomerization in living cell membranes and opens the door to the study of the influence of GPCR ligands on the oligomerization process. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
8.
Insights into molecular mechanisms of collagen assembly are important for understanding countless biological processes and at the same time a prerequisite for many biotechnological and medical applications. In this work, the self-assembly of collagen type I molecules into fibrils could be directly observed using time-lapse atomic force microscopy (AFM). The smallest isolated fibrillar structures initiating fibril growth showed a thickness of approximately 1.5 nm corresponding to that of a single collagen molecule. Fibrils assembled in vitro established an axial D-periodicity of approximately 67 nm such as typically observed for in vivo assembled collagen fibrils from tendon. At given collagen concentrations of the buffer solution the fibrils showed constant lateral and longitudinal growth rates. Single fibrils continuously grew and fused with each other until the supporting surface was completely covered by a nanoscopically well-defined collagen matrix. Their thickness of approximately 3 nm suggests that the fibrils were build from laterally assembled collagen microfibrils. Laterally the fibrils grew in steps of approximately 4 nm, indicating microfibril formation and incorporation. Thus, we suggest collagen fibrils assembling in a two-step process. In a first step, collagen molecules assemble with each other. In the second step, these molecules then rearrange into microfibrils which form the building blocks of collagen fibrils. High-resolution AFM topographs revealed substructural details of the D-band architecture of the fibrils forming the collagen matrix. These substructures correlated well with those revealed from positively stained collagen fibers imaged by transmission electron microscopy. 相似文献
9.
10.
Hermann Schillers Izhar Medalsy Shuiqing Hu Andrea L. Slade James E. Shaw 《Journal of molecular recognition : JMR》2016,29(2):95-101
Microvilli are a common structure found on epithelial cells that increase the apical surface thus enhancing the transmembrane transport capacity and also serve as one of the cell's mechanosensors. These structures are composed of microfilaments and cytoplasm, covered by plasma membrane. Epithelial cell function is usually coupled to the density of microvilli and its individual size illustrated by diseases, in which microvilli degradation causes malabsorption and diarrhea. Atomic force microscopy (AFM) has been widely used to study the topography and morphology of living cells. Visualizing soft and flexible structures such as microvilli on the apical surface of a live cell has been very challenging because the native microvilli structures are displaced and deformed by the interaction with the probe. PeakForce Tapping® is an AFM imaging mode, which allows reducing tip–sample interactions in time (microseconds) and controlling force in the low pico‐Newton range. Data acquisition of this mode was optimized by using a newly developed PeakForce QNM‐Live Cell probe, having a short cantilever with a 17‐µm‐long tip that minimizes hydrodynamic effects between the cantilever and the sample surface. In this paper, we have demonstrated for the first time the visualization of the microvilli on living kidney cells with AFM using PeakForce Tapping. The structures observed display a force dependence representing either the whole microvilli or just the tips of the microvilli layer. Together, PeakForce Tapping allows force control in the low pico‐Newton range and enables the visualization of very soft and flexible structures on living cells under physiological conditions. © 2015 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd. 相似文献
11.
12.
Oberhauser AF Badilla-Fernandez C Carrion-Vazquez M Fernandez JM 《Journal of molecular biology》2002,319(2):433-447
Mechanically induced conformational changes in proteins such as fibronectin are thought to regulate the assembly of the extracellular matrix and underlie its elasticity and extensibility. Fibronectin contains a region of tandem repeats of up to 15 type III domains that play critical roles in cell binding and self-assembly. Here, we use single-molecule force spectroscopy to examine the mechanical properties of fibronectin (FN) and its individual FNIII domains. We found that fibronectin is highly extensible due to the unfolding of its FNIII domains. We found that the native FNIII region displays strong mechanical unfolding hierarchies requiring 80 pN of force to unfold the weakest domain and 200 pN for the most stable domain. In an effort to determine the identity of the weakest/strongest domain, we engineered polyproteins composed of an individual domain and measured their mechanical stability by single-protein atomic force microscopy (AFM) techniques. In contrast to chemical and thermal measurements of stability, we found that the tenth FNIII domain is mechanically the weakest and that the first and second FNIII domains are the strongest. Moreover, we found that the first FNIII domain can acquire multiple, partially folded conformations, and that their incidence is modulated strongly by its neighbor FNIII domain. The mechanical hierarchies of fibronectin demonstrated here may be important for the activation of fibrillogenesis and matrix assembly. 相似文献
13.
To understand force generation under a wide range of loads, the stepping of single kinesin molecules was measured at loads from −20 to 42 pN by optical tweezers with high temporal resolution. The optical trap has been improved to halve positional noise and increase bandwidth by using 200-nm beads. The step size of the forward and backward steps was 8.2 nm even over a wide range of loads. Histograms of the dwell times of backward steps and detachment fit well to two independent exponential equations with fast (~0.4 ms) and slow (>3 ms) time constants, indicating the existence of a fast step in addition to the conventional slow step. The dwell times of the fast steps were almost independent of the load and ATP concentration, while those of the slow backward steps and detachment depended on those. We constructed the kinetic model to explain the fast and slow steps under a wide range of loads. 相似文献
14.
Na Wu Qi Wang Xingfei Zhou Si Si Jia Youjie Fan Jun Hu Bin Li 《Journal of molecular recognition : JMR》2013,26(12):700-704
DNA origami shows tremendous promise as templates for the assembly of nano‐components and detection of molecular recognition events. So far, the method of choice for evaluating these structures has been atomic force microscopy (AFM), a powerful tool for imaging nanoscale objects. In most cases, tethered targets on DNA origami have proven to be highly effective samples for investigation. Still, while maximal assembly of the nanostructures might benefit from the greatest flexibility in the tether, AFM imaging requires a sufficient stability of the adsorbed components. The balance between the tether flexibility and sample stability is a major, poorly understood, concern in such studies. Here, we investigated the dependence of the tethering length on molecular capture events monitored by AFM. In our experiments, single biotin molecules were attached to DNA origami templates with various linker lengths of thymidine nucleotides, and their interaction with streptavidin was observed with AFM. Our results show that the streptavidin‐biotin complexes are easily detected with short tethered lengths, and that their morphological features clearly change with the tethering length. We identify the functionally useful tether lengths for these investigations, which are also expected to prove useful in the construction and further application of DNA origami in bio‐nanotechnology studies. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
15.
Commercial exploitation of lignocellulose for biotechnological production of fuels and commodity chemicals requires efficient—usually enzymatic—saccharification of the highly recalcitrant insoluble substrate. A key characteristic of cellulose conversion is that the actual hydrolysis of the polysaccharide chains is intrinsically entangled with physical disruption of substrate morphology and structure. This “substrate deconstruction” by cellulase activity is a slow, yet markedly dynamic process that occurs at different length scales from and above the nanometer range. Little is currently known about the role of progressive substrate deconstruction on hydrolysis efficiency. Application of advanced visualization techniques to the characterization of enzymatic degradation of different celluloses has provided important new insights, at the requisite nano‐scale resolution and down to the level of single enzyme molecules, into cellulase activity on the cellulose surface. Using true in situ imaging, dynamic features of enzyme action and substrate deconstruction were portrayed at different morphological levels of the cellulose, thus providing new suggestions and interpretations of rate‐determining factors. Here, we review the milestones achieved through visualization, the methods which significantly promoted the field, compare suitable (model) substrates, and identify limiting factors, challenges and future tasks. Biotechnol. Bioeng. 2013; 110: 1529–1549. © 2013 Wiley Periodicals, Inc. 相似文献
16.
Shu‐wen W. Chen Jean‐Marie Teulon Christian Godon Jean‐Luc Pellequer 《Journal of molecular recognition : JMR》2016,29(1):51-55
Image visibility is a central issue in analyzing all kinds of microscopic images. An increase of intensity contrast helps to raise the image visibility, thereby to reveal fine image features. Accordingly, a proper evaluation of results with current imaging parameters can be used for feedback on future imaging experiments. In this work, we have applied the Laplacian function of image intensity as either an additive component (Laplacian mask) or a multiplying factor (Laplacian weight) for enhancing image contrast of high‐resolution AFM images of two molecular systems, an unknown protein imaged in air, provided by AFM COST Action TD1002 ( http://www.afm4nanomedbio.eu /), and tobacco mosaic virus (TMV) particles imaged in liquid. Based on both visual inspection and quantitative representation of contrast measurements, we found that the Laplacian weight is more effective than the Laplacian mask for the unknown protein, whereas for the TMV system the strengthened Laplacian mask is superior to the Laplacian weight. The present results indicate that a mathematical function, as exemplified by the Laplacian function, may yield varied processing effects with different operations. To interpret the diversity of molecular structure and topology in images, an explicit expression for processing procedures should be included in scientific reports alongside instrumental setups. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
Understanding drug-biomembrane interactions at high resolution is a key issue in current biophysical and pharmaceutical research. Here we used real-time atomic force microscopy (AFM) imaging to visualize the interaction of the antibiotic azithromycin with lipid domains in model biomembranes. Various supported lipid bilayers were prepared by fusion of unilamellar vesicles on mica and imaged in buffer solution. Phase-separation was observed in the form of domains made of dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), or SM/cholesterol (SM/Chl) surrounded by a fluid matrix of dioleoylphosphatidylcholine (DOPC). Time-lapse images collected following addition of 1 mM azithromycin revealed progressive erosion and disappearance of DPPC gel domains within 60 min. We attribute this effect to the disruption of the tight molecular packing of the DPPC molecules by the drug, in agreement with earlier biophysical experiments. By contrast, SM and SM-Chl domains were not modified by azithromycin. We suggest that the higher membrane stability of SM-containing domains results from stronger intermolecular interactions between SM molecules. This work provides direct evidence that the perturbation of lipid domains by azithromycin strongly depends on the lipid nature and opens the door for developing new applications in membrane biophysics and pharmacology. 相似文献
18.
利用天然纤维废弃物发酵生产L-乳酸的研究 总被引:2,自引:0,他引:2
为了降低L-乳酸的生产成本,更好的实现生物质秸秆的资源化,利用天然纤维素依次接种经离子注入诱变处理的木聚糖酶高产菌黑曲霉P602和米根霉RL6041高产菌进行固、液体二次发酵的方法,将其转化成用于工业生产的L-乳酸。结果表明:本实验条件下,未经过任何化学预处理的秸秆等物质接种黑曲霉P602进行固体发酵,产生的木聚糖酶活力为6 320 IU/g干(培养)基,纤维素酶活力为29 IU/g干基;加入100 mL水浸提后,产生的还原糖浓度为14.07 g/L,纤维物质糖化率为79.45%。取滤液接入米根霉RL6041进行液体发酵后,生成乳酸的量为7 g/L,糖酸转化率为47.6%,以(NH4)2SO4作为氮源时,最佳氮源浓度为3 g/L。 相似文献
19.
Kyusik Yun Seonhee Park Hyeonbong Pyo Seunghwan Kim Sooyeul Lee 《Biotechnology and Bioprocess Engineering》1999,4(1):72-77
An antibody containing a genetically engineered lipid group at the N-terminus and a hexahistidinyl tag at the C-terminus (Lpp-scFv-His6) was immobilized in an oriented manner on the surface of liposomes. Liposomes, consisting of antibody and phosphatidylcholine, have been prepared and imaged by AFM. For AFM visualization, the resulting liposomes were bound on the surface of mica by two different mechanisms. The histidine tags present in the antibody molecules of the immunoliposome were anchored to the NiCl2 treated mica surface. Alternatively, the immunoliposomes were immunochemically bound on antigen-coated mica surface. Both approaches yielded liposomes which were clearly imaged without damage by AFM in ambient condition. 相似文献