首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of calix[4]arenes C-97, C-99, C-107, functionalized by fragments of alpha-hydroxy-phosphonic, alpha-aminophosphonic- and methylene-bisphosphonic acid on enzymatic activity of oubaine-sensitive Na+, K+-ATPase and oubaine-resistant basal Mg2+- ATPase (specific activity - 10.6 +/- 0.9 and 18.1 +/- 1.2 micromol Pi/h per 1 mg of protein, respectively; n = 7) was studied in experiments made on the suspension of myometrium cell plasma membranes treated by 0.1% solution of digitonin. It was found that calixarene-phosphonic acids in concentration of 100 microM inhibited enzymatic activity of Na+, K+-ATPase by 86-98% and did not practically affect activity of Mg2+-ATPase. These calixarenes were more efficient than oubaine in suppressing enzymatic activity of the sodium pump: in case of the effect of calixerenes the value of the appearence constant of inhibition I0.5 was < 0.1 microM. Calixarene-methylene-bisphosphonic acid (calixarene C-97; I0.5 =33 +/- 4 microM (n = 6) takes the most efficient inhibitory effect on Na+,K+-ATPase activity among the studied calixarenes. A phenomenon of negative cooperation: the Hill coefficient value etaH =0.1-0.5<1 is characteristic of both the inhibiting effect of calixarenes and oubaine. Reguliarities of calixarenes C-97 effect on enzymatic activity of Na+,K+-ATPase were studied. As it appeared its inhibiting effect cannot be caused by trivial factors - potentially possible binding of Mg ions by it and (or) this substance effect on Mg2+ interaction with ATP4- in the incubation medium. Calixerene C-97 does not also decrease the enzyme affinity for Mg ions or ATP. However this calixerenes decreases the affinity of Na+,K+-ATPase for Na ions (the value of activation constant K(Na+)) from 50 +/- 4 (control) to 76 +/- 6 microM in the control and under the effect of calixerene, respectively). A conclusion is made that calixerene C-97 is highly-efficient (with respect to oubaine) and selective (with respect to lack of its effect on basal Mg2+-ATPase) inhibitor of Na+,K+-ATPase of plasma membrane. In the practical aspect it may be used in concentration of 1-10 microM in biochemical membranology when testing and studying kinetic and catalytic properties of the sodium pump in case of such experimental model, as the plasma membrane fraction.  相似文献   

2.
The comparative research of catalytic properties of two ATP-hydrolases of the sarcolemma of the smooth muscle of the uterus--ouabaine-sensitive Na+,K+-ATPase and ouabaine-resistent Mg2+-ATPase is carried out. The specific enzymatic activity of Na+,K+-ATPase and Mg2+-ATPase makes 10.2 +/- 0.7 and 18.1 +/- 1.2 mmol P/mg of protein for 1 hour, accordingly. The action of ouabaine on Na+,K+-ATPase is characterized by magnitude of quotient of inhibition I0.5=21.3 +/- 1.5 mkM. Processing of the sarcolemma fraction by digitonin in concentrations 0.001 +/- 0.1% promotes an activation of Na+,K+ATPase and Mg2+- ATPase, and in the first case much more efficiently than in the second. The kinetics of accumulation of the product of ATP-hydrolase reactions of phosphate satisfies the laws of the zero order reaction (incubation time--about 10 min). Na+,K+-ATPase is highly specific concerning the univalent cations--Na+, K+, however Li+ can partially substitute K+. Activity of Mg2+-ATPase is not specific concerning univalent cations. The dependence of Na+,K+-ATPase activity on pH in the range of 6.0-8.0 is characterized by the bell-shaped curve, at the same time the linear dependence on pH is peculiar to Mg2+-ATPase. The functioning of Na+,K+-ATPase is provided only by ATP, in the case of Mg2+-ATPase ATP can be successfully replaced with other nucleotidetriphosphates. It is supposed that the obtained experimental data can be beneficial in further research of membranous mechanisms underlying the cation exchange in the smooth muscles, in particular when studying the role of the plasma membrane in the maintenance of electromechanical coupling in them, and also in the regulation of ionic homeostasis in myocytes.  相似文献   

3.
Investigation the influence of calyx[4]arenes C-90, C-91, C-97 and C-99 (codes are indicated) on the enzymatic activity of four functionally different Mg2+ -dependent ATPases from smooth muscle of the uterus: actomyosin ATPase, transporting Ca2+, Mg2+ -ATPase, ouabain-sensible Na+, K+ -ATPase and basal Mg2+ -ATPase. It was shown that calixarenes C-90 and C-91 in concentration 100 microM act multidirectionally on the functionally different Mg2+ -dependent ATP-hydrolase enzymatic systems. These compounds activate effectively the actomyosin ATPase (Ka = 52 +/- 11 microM [Ukrainian character: see text] 8 +/- 2 microM, accordingly), at the same time calixarene C-90 inhibited effectively activity of transporting Ca2+, Mg2+ -ATPase of plasmatic membranes (I(0,5) = 34.6 +/- 6.4 microM), but influence on membrane-bound Na+, K+ -ATPase and basal Mg2+ -ATPase. Calixarene C-91 reduce effectively basal Mg2+ -ATPase activity, insignificantly activating Na+, K+ -ATPase but has no influence on transporting Ca2+, Mg2+ -ATPase activity of plasmatic membranes. Calixarenes C-97 and C-99 (100 microM), which have similar structure, have monodirectional influence on activity of three functionally different Mg2+-dependent ATPases of the myometrium: actomyosin ATPase and two ATPases, that related to the ATP-hydrolases of P-type--Ca2+, Mg2+ -ATPase and Na+, K+ -ATPase of plasmatic membranes. Basal Mg2+ -ATPase is resistant to the action of these two connections. Results of comparative experiments that were obtained by catalytic titration of calixarenes C-97 and C-99 by actomyosin ATPase (I(0,5) = 88 +/- 9 and 86 +/- 8 microM accordingly) and Na+, K+ -ATPase from plasmatic membranes (I(0,5) = 33 +/- 4 and 98 +/- 8 nM accordingly) indicate to the considerably more sensitiveness of Na+, K+ -ATP-ase to these calixarenes than ATPase of contractile proteins. Thus, it is shown that calixarenes have influence on activity of a number of important enzymes, involved in functioning of the smooth muscle of the uterus and related to energy-supplies of the process of the muscle contracting and support of intracellular ionic homeostasis. The obtained results can be useful in further researches, directed at the use of calixarenes as pharmaceutical substance, able to normalize the contractile function of the uterus at some pregnancy pathologies in women's.  相似文献   

4.
The aim of this work was to develop a method for renal H+,K+-ATPase measurement based on the previously used Na+,K+-ATPase assay (Beltowski et al.: J Physiol Pharmacol.; 1998, 49: 625-37). ATPase activity was assessed by measuring the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Both ouabain-sensitive and ouabain-resistant K+-stimulated and Na+-independent ATPase activity was detected in the renal cortex and medulla. These activities were blocked by 0.2 mM imidazolpyridine derivative, Sch 28080. The method for ouabain-sensitive H+,K+-ATPase assay is characterized by good reproducibility, linearity and recovery. In contrast, the assay for ouabain-resistant H+,K+-ATPase was unsatisfactory, probably due to low activity of this enzyme. Ouabain-sensitive H+,K+-ATPase was stimulated by K+ with Km of 0.26 +/- 0.04 mM and 0.69 +/- 0.11 mM in cortex and medulla, respectively, and was inhibited by ouabain (Ki of 2.9 +/- 0.3 microM in the renal cortex and 1.9 +/- 0.4 microM in the renal medulla) and by Sch 28080 (Ki of 1.8 +/- 0.5 microM and 2.5 +/- 0.9 microM in cortex and medulla, respectively). We found that ouabain-sensitive H+,K+-ATPase accounted for about 12% of total ouabain-sensitive activity in the Na+,K+-ATPase assay. Therefore, we suggest to use Sch 28080 during Na+,K+-ATPase measurement to block H+,K+-ATPase and improve the assay specificity. Leptin administered intraperitoneally (1 mg/kg) decreased renal medullary Na+,K+-ATPase activity by 32.1% at 1 h after injection but had no effect on H+,K+-ATPase activity suggesting that the two renal ouabain-sensitive ATPases are separately regulated.  相似文献   

5.
In the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution the authors investigated influence of the calix[4]arenes C-97 and C-107 (codes are shown) on ouabain effect on the Na+,K+-ATPase activity. It was shown that calixarenes in concentration 100 tiM inhibited by 97-98% the enzymatic Na+,K+-ATPase activity, while they did not practically influence on the basal Mg2+-ATPase activity, and suppressed much more effective than ouabain the sodium pump enzymatic activity: in the case of the action of the calixarenes the value of the apparent constant of inhibition I0.5 was < 0.1 microM while for ouabain it was 15-25 microM. The negative cooperative effect was typical of the inhibitory action of calixarenes, as well as ouabain: the value of Hills factor nH = 0.3-0.5 <1. The modelling compound M-3 (0.1 microM 4 microM)--a fragment of the calixarene C-107--did not practically influence the enzymatic activities as Na+,K+-ATPase and basal Mg2+-ATPase. Hence the influence of calixarene C-107 on the Na+, K+-ATPase activity is caused by cooperative action of two fragments M-3 and effect of calixarene bowl, rather than by simple action of the fragment M-3. Calixarenes C-97 and C-107, used in concentration corresponding to values of I0.5 (40 and 60 nM, accordingly), essentially stimulated inhibiting action of ouabain on the specific Na+, K+-ATPase activity in the memrane fraction. Under coaction of ouabain with calixarene C-97 or C-107 there was no additive effect of the action of these inhibitors on the Na+,K+-ATPase activity. Calixarene C-97 brought in the incubation medium in concentration of 10 nM not only led to inhibition of the Na+,K+-ATPase activity relative to control, but also simultaneously increased the affinity of the enzyme for the cardiac glycoside: the magnitudes of the apparent constant of inhibition I0.5 were 21.0 +/- 5.2 microM and 5.3 +/- 0.7 microM. It is concluded, that highly effective inhibitors of the Na+,K+-ATPase activity--calixarenes C-97 and C-107 can enhance the effect of the sodium pump conventional inhibitor--ouabain, increasing the affinity of the enzyme for the cardiac glycoside (on the example of calixarene C-97).  相似文献   

6.
The paper is devoted to comparative analysis of the influence of a new class of macrocyclic compounds - calixarens on enzymatic activity of two ATP-hydrolase systems localized in the plasmatic membrane of contractile (myocytes of the uterus) and mobile (spermatozoids) cells--Na+, K+ -ATPase and basal Mg2+ -ATPase. The experiments performed on plasmatic membrane suspensions of myometrium and spermatozoids treated with detergent the authors studied the influence of calixarens C-97, C-99, C-107 (identified by the codes), functionalized with fragments of alpha-hydroxyphosphonic, alpha-aminophosphonic and methylenbisphosphonic acids accordingly, on enzymatic activity. The results have shown that C-97 and C-107 calixarenphosphonic acids in 100 microM concentration (97-99%) inhibit Na+, K+ -ATPase activity in both cases almost completely. C-99 (100 microM) calixaren appeared to be less effective with regard of its influence on the enzymatic systems under study: in the case of plasmatic membranes of myometrium suspension the activity of Na+, K+ -ATPase was decreased by 84-88%, and in the case of spermatozoids suspension--just by 15-20% of the control. All the studied calixarens (for both objects) in the maximal concentration (100 microM) practically did not influence the activity of basal Mg2+ -ATP-ase. The calixarens inhibited the enzymatic activity of Na+, K+ -ATPase more effectively than ouabain: in the first case the value of apparent inhibition constant I(0,5) was 25-100 nM, and in the second case--20-100 microM. The inhibition influence of calixarens on Na+, K+ -ATPase activity is characterized by the phenomenon of negative cooperativity (Hill's coefficient nH <1); the influence of ouabain in the case of plasmatic membranes of myometrium suspension is also characterized by negative cooperativity (nH < 1), and in case of spermatozoids suspension--by positive cooperativity (nH >1). The above results show that the studied calixarens are effective inhibitors of Na+, K+ -ATPase plasmatic membrane of contractive and mobile cells (C-97, C-99, C-107 calixarens in case of myocytes of uterus, and C-97, C-107 calixarens in case of spermatozoids).  相似文献   

7.
The alpha- and beta-subunits of Na+,K+-ATPase and H+,K+-ATPase were expressed in Sf9 cells in different combinations. Immunoprecipitation of the alpha-subunits resulted in coprecipitation of the accompanying beta-subunit independent of the type of beta-subunit. This indicates cross-assembly of the subunits of the different ATPases. The hybrid ATPase with the catalytic subunit of Na+,K+-ATPase and the beta-subunit of H+,K+-ATPase (NaKalphaHKbeta) showed an ATPase activity, which was only 12 +/- 4% of the activity of the Na+,K+-ATPase with its own beta-subunit. Likewise, the complementary hybrid ATPase with the catalytic subunit of H+,K+-ATPase and the beta-subunit of Na+,K+-ATPase (HKalphaNaKbeta) showed an ATPase activity which was 9 +/- 2% of that of the recombinant H+,K+-ATPase. In addition, the apparent K+ affinity of hybrid NaKalphaHKbeta was decreased, while the apparent K+ affinity of the opposite hybrid HKalphaNaKbeta was increased. The hybrid NaKalphaHKbeta could be phosphorylated by ATP to a level of 21 +/- 7% of that of Na+,K+-ATPase. These values, together with the ATPase activity gave turnover numbers for NaKalphabeta and NaKalphaHKbeta of 8800 +/- 310 min-1 and 4800 +/- 160 min-1, respectively. Measurements of phosphorylation of the HKalphaNaKbeta and HKalphabeta enzymes are consistent with a higher turnover of the former. These findings suggest a role of the beta-subunit in the catalytic turnover. In conclusion, although both Na+,K+-ATPase and H+,K+-ATPase have a high preference for their own beta-subunit, they can function with the beta-subunit of the other enzyme, in which case the K+ affinity and turnover number are modified.  相似文献   

8.
The participation of Mg2+ and Ca2+ in complicated mechanisms of Na+, K(+)-ATPase regulation is discussed in the survey. The regulatory actions of Mg2+ on Na+, K(+)-ATPase such as its participation in phosphorylation and dephosphorylation of the enzyme, ADP/ATP-exchange inhibition, cardiac glycosides and vanadate binding with the enzyme, conformational changes induction during ATPase cycle are reviewed in detail. Some current views of mechanisms of above mentioned Mg2+ regulatory effects are discussed. The experimental evidence of Ca2+ immediate influence on the functional activity of Na+, K(+)-ATPase (catalytic, transport and glycoside-binding) are given. It's noted that these effects are based on the conformational changes in the enzyme and also on the phase transition in membrane induced by Ca2+. Unimmediate action of Ca2+ on Na+, K(+)-ATPase is also discussed, especially due to its effect on other membrane systems functionally linked with Na(+)-pump (for instance, due to Na+/Ca(+)-exchanger activation). It's concluded that Mg2+ and Ca2+ as "universal regulators" of the cell effectively influence the functional activity and conformational states of Na+, K(+)-ATPase.  相似文献   

9.
The Kd for ouabain-sensitive K+ or Rb+ binding to Na+,K(+)-ATPase was determined by the centrifugation method with radioactive K+ and Rb+ in the presence of various combinations of Na+, ATP, adenylylimidodiphosphate (AMPPNP), adenylyl-(beta,gamma-methylene)diphosphonate (AMPPCP), Pi, and Mg2+. From the results of the K+ binding experiments, Kd for Na+ was estimated by using an equation describing the competitive inhibition between the K+ and Na+ binding. 1) The Kd for K+ binding was 1.9 microM when no ligand was present. Addition of 2 mM Mg2+ increased the Kd to 15-17 microM. In the presence of 2 mM Mg2+, addition of 3 mM AMPPCP with or without 3 mM Na+ increased the Kd to 1,000 or 26 microM, respectively. These Kds correspond to those for K+ of Na.E1.AMPPCPMg or E1.AMPPCPMg, respectively. 2) Addition of 4 mM ATP with or without 3 mM Na+ decreased the Kd from 15-17 microM to 5 or 0.8 microM, respectively. Because the phosphorylated intermediate was observed but ATPase activity was scarcely observed in the K+ binding medium containing 3 mM ATP and 2 mM Mg2+ in the absence of Na+ as well as in the presence of Na+ at 0 degrees C, it is suggested that K+ binds to E2-P.Mg under these ligand conditions. 3) The Kd for Na+ of the enzyme in the presence of 3 mM AMPPCP or 4 mM ATP with Mg2+ was estimated to be 80 or 570 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Bass gill microsomal preparations contain a Mg2+-dependent Na+-stimulated ATPase activity in the absence of K+, whose characteristics are compared with those of the (Na+ + K+)-ATPase of the same preparations. The activity at 30 degrees C is 11.3 mumol Pi X mg-1 protein X hr-1 under optimal conditions (5 mM MgATP, 75 mM Na+, 75 mM HEPES, pH 6.0) and exhibits a lower pH optimum than the (Na+ + K+)-ATPase. The Na+ stimulation of ATPase is only 17% inhibited by 10-3M ouabain and completely abolished by 2.5 mM ethacrinic acid which on the contrary cause, respectively, 100% and 34% inhibition of the (Na+ + K+)-ATPase. Both Na+-and (Na+ + K+)-stimulated activities can hydrolyze nucleotides other than ATP in the efficiency order ATP greater than CTP greater than UTP greater than GTP and ATP greater than CTP greater than GPT greater than UTP, respectively. In the presence of 10(-3)M ouabain millimolar concentrations of K+ ion lower the Na+ activation (90% inhibition at 40 mM K+). The Na+-ATPase is less sensitive than (Na+ + K+)-ATPase to the Ca2+ induced inhibition as the former is only 57.5% inhibited by a concentration of 1 X 10(-2)M which completely suppresses the latter. The thermosensitivity follows the order Mg2+--greater than (Na+ + K+)--greater than Na+-ATPase. A similar break of the Arrhenius plot of the three enzymes is found. Only some of these characteristics do coincide with those of a Na+-ATPase described elsewhere. A presumptive physiological role of Na+-ATPase activity in seawater adapted teleost gills is suggested.  相似文献   

11.
Inhibition of red cell Ca2+-ATPase by vanadate   总被引:3,自引:0,他引:3  
1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate. 3. Among the ligands tests, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K 1/2 for vanadate was 1.5 microM and inhibition was nearly complete at saturating vanadate concentrations. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate.  相似文献   

12.
The plasma membrane/mitochondrial fractions of Penaeus indicus postlarvae contain Mg2+-dependent ATPase, Na+,K+-stimulated ATPase, Na+-stimulated ATPase and K+-stimulated ATPase. The Na+,K+-activated, Mg2+-dependent ATPase was investigated further in relation to different pH and temperature conditions, and at various concentrations of protein, ouabain, ATP and ions in the incubation medium. In vitro and in vivo effects of lead were studied on the enzyme activity. In vitro lead inhibited the enzyme activity in a concentration-dependent manner with an IC50 value of 204.4 microM. In correlation with in vitro studies, in vivo investigations (both concentration and time dependent) of lead also indicated a gradual inhibition in enzyme activity. A maximum decrease of 85.3% was observed at LC50 (7.2 ppm) of lead for concentration-dependent experiments. In time-dependent studies, the decrease was maximal (81.7%) at 30 days of sublethal exposure (1.44 ppm). In addition, the substrate- and ion-dependent kinetics of Na+,K+-ATPase was studied in relation to in vitro exposure of lead; these studies suggest a non-competitive type of inhibition.  相似文献   

13.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

14.
Chemotactic stimulation of Dictyostelium discoideum induces an uptake of Ca2+ by the cells followed by a release of Ca2+. In this study we investigated the mechanism of Ca2+ release and found that it was inhibited by La3+, Cd2+ and azide. Ca2+ release occurred in the absence of external Na+, indicating that an Na+/Ca2+ exchange was not involved. Plasma membranes contained high- and low-affinity ATPase activities. Apparent K0.5 values were 8 microM for the major Mg2+-ATPase and 1.1 microM for the high-affinity Ca2+-ATPase, respectively. The Mg2+-ATPase activity was inhibited by elevated concentrations of Ca2+, whereas both Ca2+-ATPases were active in the absence of added Mg2+. The activities of the Ca2+-ATPases were not modified by calmodulin. The high-affinity Ca2+-ATPase was competitively inhibited by La3+ and Cd2+; we suggest that this high-affinity enzyme mediates the release of Ca2+ from D. discoideum cells.  相似文献   

15.
Inactivation of Na+, K+ -ATPase from cattle brain by sodium fluoride   总被引:3,自引:0,他引:3  
The influence of the physiological ligands and modifiers on the plasma membrane Na+, K+ -ATPase from calf brain inactivation by sodium fluoride (NaF) is studied. ATP-hydrolyzing activity of the enzyme was found to be more stable as to NaF inhibition than its K+ -pNPPase activity. The activatory ions of Na+, K+ -ATPase have different effects on the process of the enzyme inhibition by NaF. K+ intensifies inhibition, but Na+ does not affect it. An increase of [Mg2+free] in the incubation medium (from 0.5 to 3.0 mM) rises the sensitivity of Na+, K+ -ATPase to NaF inhibition. But an increase of [ATP] from 0.3 to 1.5 mM has no effect on this process. Ca and Mg ions modify Na+, K+ -ATPase inhibition by fluoride differently. Ca2+free levels this process, and Mg2+free on the contrary increases it. In the presence of Ca ions and in the neutral-alkaline medium (pH 7.0-8.5) the recovery of activity of the transport ATPase inhibited by-NaF takes place. Sodium citrate also protects both ATP-hydrolizing and K-pNPPase activity of the Na+, K+ -ATPase from NaF inhibition. Under the modifing membranous effects (the treatment of plasma membranes by Ds-Na and digitonin) the partial loss of Na+, K+ -ATPase sensitivity to NaF inhibition is observed. It is concluded that Na+, K+ -ATPase inactivation by NaF depends on the influence of the physiological ligands and modifiers as well as on the integrity of membrane structure.  相似文献   

16.
Amiodarone hydrochloride is a diiodinated antiarrhythmic agent widely used in the treatment of cardiac disorders. With the increasing use of amiodarone, several untoward effects have been recognized and neuropathy following amiodarone therapy has recently been reported. The present studies were carried out to study the effect of amiodarone on rat brain synaptosomal ATPases in an effort to understand its mechanism of action. Na+, K+-ATPase and oligomycin sensitive Mg2+ ATPase activities were inhibited by amiodarone in a concentration dependent manner with IC50 values of 50 microM and 10 microM respectively. [3H]ouabain binding was also decreased in a concentration dependent manner with an IC50 value of 12 microM, and 50 microM amiodarone totally inhibited [3H]ouabain binding. Kinetics of [3H]ouabain binding studies revealed that amiodarone inhibition of [3H]ouabain binding is competitive. K+-activated p-nitrophenyl phosphatase activity showed a maximum inhibition of 32 per cent at 200 microM amiodarone. Synaptosomal ATPase activities did not show any change in rats treated with amiodarone (20 mg kg-1 day-1) for 6 weeks, when compared to controls. The treatment period may be short, since the reported neurological abnormalities in patients were observed during 3-5 years of treatment. The present results suggest that amiodarone induced neuropathy may be due to its interference with sodium dependent phosphorylation of Na+, K+-ATPase reaction, thereby affecting active ion transport phenomenon and oxidative phosphorylation resulting in low turnover of ATP in the nervous system.  相似文献   

17.
B Vilsen 《Biochemistry》1999,38(35):11389-11400
Mutant Phe788 --> Leu of the rat kidney Na+,K(+)-ATPase was expressed in COS cells to active-site concentrations between 40 and 60 pmol/mg of membrane protein. Analysis of the functional properties showed that the discrimination between Na+ and K+ on the two sides of the system is severely impaired in the mutant. Micromolar concentrations of K+ inhibited ATP hydrolysis (K(0.5) for inhibition 107 microM for the mutant versus 76 mM for the wild-type at 20 mM Na+), and at 20 mM K+, the molecular turnover number for Na+,K(+)-ATPase activity was reduced to 11% that of the wild-type. This inhibition was counteracted by Na+ in high concentrations, and in the total absence of K+, the mutant catalyzed Na(+)-activated ATP hydrolysis ("Na(+)-ATPase activity") at an extraordinary high rate corresponding to 86% of the maximal Na+,K(+)-ATPase activity. The high Na(+)-ATPase activity was accounted for by an increased rate of K(+)-independent dephosphorylation. Already at 2 mM Na+, the dephosphorylation rate of the mutant was 8-fold higher than that of the wild-type, and the maximal rate of Na(+)-induced dephosphorylation amounted to 61% of the rate of K(+)-induced dephosphorylation. The cause of the inhibitory effect of K+ on ATP hydrolysis in the mutant was an unusual stability of the K(+)-occluded E2(K2) form. Hence, when E2(K2) was formed by K+ binding to unphosphorylated enzyme, the K(0.5) for K+ occlusion was close to 1 microM in the mutant versus 100 microM in the wild-type. In the presence of 100 mM Na+ to compete with K+ binding, the K(0.5) for K+ occlusion was still 100-fold lower in the mutant than in the wild-type. Moreover, relative to the wild-type, the mutant exhibited a 6-7-fold reduced rate of release of occluded K+, a 3-4-fold increased apparent K+ affinity in activation of the pNPPase reaction, a 10-11-fold lower apparent ATP affinity in the Na+,K(+)-ATPase assay with 250 microM K+ present (increased K(+)-ATP antagonism), and an 8-fold reduced apparent ouabain affinity (increased K(+)-ouabain antagonism).  相似文献   

18.
The effects of mild periodate exposure on the kinetics of (Na+ + K+)-ATPase and K+-p-nitrophenylphosphatase were studied using rat cerebral microsome preparations. Fifty percent inhibition of both enzyme activities was attained near 3 microM periodate concentrations. This inhibition was biphasic with time. Mg2+-ATPase and Mg2+-p-nitrophenylphosphatase activities were much less inhibited by periodate. Periodate inhibition was partially reversed by dimercaprol and dithiothreitol but not by diffusion. The possible reaction products formic acid, formaldehyde, glyceraldehyde, and acetaldehyde had no inhibitory effects in similar concentrations. Periodate exposure produced no detectable changes in the activation of (Na+ + K+)-ATPase by Na+, K+, Mg2+, or ATP. Residues shared by both (Na+ + K+)-ATPase and K+-p-nitrophenylphosphatase are both critical to hydrolytic function and sensitive to mild oxidation by periodate.  相似文献   

19.
(1) Ethylenediamine is an inhibitor of Na+- and K+-activated processes of Na+/K+-ATPase, i.e. the overall Na+/K+-ATPase activity, Na+-activated ATPase and K+-activated phosphatase activity, the Na+-activated phosphorylation and the Na+-free (amino-buffer associated) phosphorylation. (2) The I50 values (I50 is the concentration of inhibitor that half-maximally inhibits) increase with the concentration of the activating cations and the half-maximally activating cation concentrations (Km values) increase with the inhibitor concentration. (3) Ethylenediamine is competitive with Na+ in Na+-activated phosphorylation and with the amino-buffer (triallylamine) in Na+-free phosphorylation. Significant, though probably indirect, effects can also be noted on the affinity for Mg2+ and ATP, but these cannot account for the inhibition. (4) Inhibition parallels the dual protonated or positively charged ethylenediamine concentration (charge distance 3.7 A). (5) Direct investigation of interaction with activating cations (Na+, K+, Mg+, triallylamine) has been made via binding studies. All these cations drive ethylenediamine from the enzyme, but K+ and Mg+ with the highest efficiency and specificity. Ethylenediamine binding is ouabain-insensitive, however. (6) Ethylenediamine neither inhibits the transition to the phosphorylation enzyme conformation, nor does it affect the rate of dephosphorylation. Hence, we provisionally conclude that ethylenediamine inhibits the phosphoryl transfer between the ATP binding and phosphorylation site through occupation of cation activation sites, which are 3-4 A apart.  相似文献   

20.
D L Clough 《Life sciences》1985,37(9):799-807
In the present study, rat renal Na+,K+-ATPase was found to be more sensitive to inhibition by high Na+ concentrations (100-400 mM) than was rat cardiac Na+,K+-ATPase. K+ was more effective in reversing the inhibition by Na+, of cardiac relative to renal Na+,K+-ATPase. Rat renal Na+,K+-ATPase was also more sensitive than cardiac Na+,K+-ATPase to inhibition by vanadate over this range of Na+ concentrations. These results support the hypothesis that vanadate may selectively regulate Na+,K+-ATPase in the kidney, and they may also help explain the natriuretic and diuretic effects of vanadate in rats. Inhibition of renal Na+,K+ATPase by Na+, may also help explain, in part, the natriuretic and diuretic effects of acute saline loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号