首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Research into human metabolism is expanding rapidly due to the emergence of metabolism as a key factor in common diseases. Mathematical modeling of human cellular metabolism has traditionally been performed via kinetic approaches whose applicability for large-scale systems is limited by lack of kinetic constants data. An alternative computational approach bypassing this hurdle called constraint-based modeling (CBM) serves to analyze the function of large-scale metabolic networks by solely relying on simple physical-chemical constraints. However, while extensive research has been performed on constraint-based modeling of microbial metabolism, large-scale modeling of human metabolism is still in its infancy. Utilizing constraint-based modeling to model human cellular metabolism is significantly more complicated than modeling microbial metabolism as in multi-cellular organisms the metabolic behavior varies across cell-types and tissues. It is further complicated due to lack of data on cell type- and tissue-specific metabolite uptake from the surrounding microenvironments and tissue-specific metabolic objective functions. To overcome these problems, several studies suggested CBM methods that integrate metabolic networks with gene expression data that is easily measurable under various conditions. This specific objective functions are expected to improve the prediction accuracy of the presented methods. Such objective functions may be derived based on computational learning that would give optimal correspondence between predicted and measured metabolic phenotypes (Burgard, 2003).

The CBM methods presented here open the way for future computational investigations of metabolic disorders given the relevant expression data. A first attempt to visualize and interpret changes in gene expression data measured following gastric bypass surgery via a genome-scale metabolic network was done by Duarte et al (Duarte, 2007). Another potential application would be the prediction of diagnostic biomarkers for metabolic diseases that could be identified via biofluid metabolomics (Kell, 2007). Towards this goal, we have recently developed a CBM method for predicting metabolic biomarkers for in-born errors of metabolism by searching for changes in metabolite uptake and secretion rate due to genetic alterations (Shlomi, 2009). Incorporating cell type- and tissue-specific gene expression data within this framework can potentially improve the identification of diagnostic biomarkers. Overall, the methods presented here lay the foundation for studying normal and abnormal human cellular metabolism in tissue-specific manner based on commonly measured gene expression data.  相似文献   

2.
3.
4.
5.
Tryptophan is utilized in various metabolic routes including protein synthesis, serotonin, and melatonin synthesis and the kynurenine pathway. Perturbations in these pathways have been associated with neurodegenerative diseases and cancer. Here we present a comprehensive kinetic model of the complex network of human tryptophan metabolism based upon existing kinetic data for all enzymatic conversions and transporters. By integrating tissue-specific expression data, modeling tryptophan metabolism in liver and brain returned intermediate metabolite concentrations in the physiological range. Sensitivity and metabolic control analyses identified expected key enzymes to govern fluxes in the branches of the network. Combining tissue-specific models revealed a considerable impact of the kynurenine pathway in liver on the concentrations of neuroactive derivatives in the brain. Moreover, using expression data from a cancer study predicted metabolite changes that resembled the experimental observations. We conclude that the combination of the kinetic model with expression data represents a powerful diagnostic tool to predict alterations in tryptophan metabolism. The model is readily scalable to include more tissues, thereby enabling assessment of organismal tryptophan metabolism in health and disease.  相似文献   

6.
Mechanisms through which tissues are formed and maintained remain unknown but are fundamental aspects in biology. Tissue-specific gene expression is a valuable tool to study such mechanisms. But in many biomedical studies, cell lines, rather than human body tissues, are used to investigate biological mechanisms Whether or not cell lines maintain their tissue-specific characteristics after they are isolated and cultured outside the human body remains to be explored. In this study, we applied a novel computational method to identify core genes that contribute to the differentiation of cell lines from various tissues. Several advanced computational techniques, such as Monte Carlo feature selection method, incremental feature selection method, and support vector machine (SVM) algorithm, were incorporated in the proposed method, which extensively analyzed the gene expression profiles of cell lines from different tissues. As a result, we extracted a group of functional genes that can indicate the differences of cell lines in different tissues and built an optimal SVM classifier for identifying cell lines in different tissues. In addition, a set of rules for classifying cell lines were also reported, which can give a clearer picture of cell lines in different issues although its performance was not better than the optimal SVM classifier. Finally, we compared such genes with the tissue-specific genes identified by the Genotype-tissue Expression project. Results showed that most expression patterns between tissues remained in the derived cell lines despite some uniqueness that some genes show tissue specificity.  相似文献   

7.
8.
A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia.  相似文献   

9.
Ornithine aminotransferase (l-ornithine 2-oxoacid aminotransferase, OAT) is widely expressed in organs, but studies in mice have focused primarily on the intestine, kidney and liver because of the high OAT-specific activity in these tissues. This study aimed to investigate OAT activity in adult mouse tissues to assess the potential contribution to ornithine metabolism and to determine OAT control during postnatal development. OAT activity was widely distributed in mouse tissues. Sexual dimorphism was observed for most tissues in adults, with greater activity in females than in males. The contribution of skeletal muscles to total OAT activity (34 % in males and 27 % in females) was the greatest (50 %) of the investigated tissues in pre-weaned mice and was similar to that of the liver in adults. OAT activity was found to be regulated in a tissue-specific manner during postnatal development in parallel with large changes in the plasma testosterone and corticosterone levels. After weaning, OAT activity markedly increased in the liver but dropped in the skeletal muscle and adipose tissue. Anticipating weaning for 3 days led to an earlier reduction of OAT activity in skeletal muscles. Orchidectomy in adults decreased OAT activity in the liver but increased it in skeletal muscle and adipose tissue. We concluded that the contribution of skeletal muscle to mouse ornithine metabolism may have been underestimated. The regulation of OAT in skeletal muscles differs from that in the liver. The present findings suggest important and tissue-specific metabolic roles for OAT during postnatal development in mice.  相似文献   

10.
We measured the energetic cost of metamorphosis in the fruitfly, Drosophila melanogaster. Metabolic rates decreased rapidly in the first 24 h and remained low until shortly before eclosion, when the rates increased rapidly, thus creating a U-shaped metabolic curve. The primary fuel used during metamorphosis was lipid, which accounted for >80% of total metabolism. The total energy consumed during metamorphosis was lowest at 25 °C, compared to 18 and 29 °C, due to differences in metabolic rates and the length of pupal development. Temperature differentially affected metabolic rates during different stages of metamorphosis. Prepupal and late pupal stages exhibited typical increases in metabolic rate at high temperatures, whereas metabolic rates were independent of temperature during the first 2/3 of pupal development.We tested two hypotheses for the underlying cause of the U-shaped metabolic curve. The first hypothesis was that pupae become oxygen restricted as a result of remodeling of the larval tracheal system. We tested this hypothesis by exposing pupae to hypoxic and hyperoxic atmospheres, and by measuring lactic acid production during normoxic development. No evidence for oxygen limitation was observed. We also tested the hypothesis that the U-shaped metabolic curve follows changes in metabolically active tissue, such that the early decrease in metabolic rates reflects the histolysis of larval tissues, and the later increase in metabolic rates is associated with organogenesis and terminal differentiation of adult tissues. We assayed the activity of a mitochondrial indicator enzyme, citrate synthase, and correlated it with tissue-specific developmental events during metamorphosis. Citrate synthase activity exhibited a U-shaped curve, suggesting that the pattern of metabolic activity is related to changes in the amount of potentially active aerobic tissue.  相似文献   

11.

Background

Variation in gene expression is extensive among tissues, individuals, strains, populations and species. The interactions among these sources of variation are relevant for physiological studies such as disease or toxic stress; for example, it is common for pathologies such as cancer, heart failure and metabolic disease to be associated with changes in tissue-specific gene expression or changes in metabolic gene expression. But how conserved these differences are among outbred individuals and among populations has not been well documented. To address this we examined the expression of a selected suite of 192 metabolic genes in brain, heart and liver in three populations of the teleost fish Fundulus heteroclitus using a highly replicated experimental design.

Results

Half of the genes (48%) were differentially expressed among individuals within a population-tissue group and 76% were differentially expressed among tissues. Differences among tissues reflected well established tissue-specific metabolic requirements, suggesting that these measures of gene expression accurately reflect changes in proteins and their phenotypic effects. Remarkably, only a small subset (31%) of tissue-specific differences was consistent in all three populations.

Conclusions

These data indicate that many tissue-specific differences in gene expression are unique to one population and thus are unlikely to contribute to fundamental differences between tissue types. We suggest that those subsets of treatment-specific gene expression patterns that are conserved between taxa are most likely to be functionally related to the physiological state in question.  相似文献   

12.
13.
Creatine kinase is involved in the integration of high-energy metabolism in various tissues. In this study the tissue-specific distribution of the mitochondrial isoform was investigated, both by electrophoresis of rat tissue extracts, and by ultrastructural localisation of creatine kinase activity. Furthermore, the influence of uncoupling of oxidative phosphorylation on mitochondrial creatine kinase activity associated with intermembrane contacts was investigated by enzyme cytochemistry and morphometric analysis. The results of the cytochemical survey indicate that contact sites are a prerequisite for creatine kinase to demonstrate enzymatic activity. Moreover, the extent of creatine kinase active membrane contacts depends on the metabolic state of the mitochondrion, as shown for heart mitochondria in vivo and in vitro, before and after treatment with dinitrophenol.  相似文献   

14.
Xu Q  Modrek B  Lee C 《Nucleic acids research》2002,30(17):3754-3766
We have developed an automated method for discovering tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs). Using this approach, we have identified 667 tissue-specific alternative splice forms of human genes. We validated our muscle-specific and brain-specific splice forms for known genes. A high fraction (8/10) were reported to have a matching tissue specificity by independent studies in the published literature. The number of tissue-specific alternative splice forms is highest in brain, while eye-retina, muscle, skin, testis and lymph have the greatest enrichment of tissue-specific splicing. Overall, 10-30% of human alternatively spliced genes in our data show evidence of tissue-specific splice forms. Seventy-eight percent of our tissue-specific alternative splices appear to be novel discoveries. We present bioinformatics analysis of several tissue-specific splice forms, including automated protein isoform sequence and domain prediction, showing how our data can provide valuable insights into gene function in different tissues. For example, we have discovered a novel kidney-specific alternative splice form of the WNK1 gene, which appears to specifically disrupt its N-terminal kinase domain and may play a role in PHAII hypertension. Our database greatly expands knowledge of tissue-specific alternative splicing and provides a comprehensive dataset for investigating its functional roles and regulation in different human tissues.  相似文献   

15.
The frequencies of autosomal trisomies in extraembryonic human tissues were estimated in the cases of different abnormalities of prenatal development, from the confined placental mosaicism (CPM) with either relatively normal embryogenesis or restricted intrauterine growth to spontaneous abortion. A tissue-specific compartmentalization was found to be characteristic of cell lines with trisomies for individual autosomes. Analysis of various phenotypical effects of chromosomal aberrations associated with mosaicism is necessarily required to understand the mechanisms and factors responsible for tissue chromosomal mosaicism. Based on analysis of the cell karyotype during prenatal diagnosing of chromosome aberrations in tissues of both extraembryonic and embryonic origin, in 1996, Wolstenholme proposed a model of CPM for individual chromosomes. According to the model, the distribution of cell lines with autosomal trisomies between extraembryonic tissues depends on the ratio between meiotic and mitotic mutations early in embryonic development. However, the model cannot be used to study tissue chromosomal mosaicism in spontaneous abortions, because little information is available on cell karyotype in embryonic tissues themselves after intrauterine fetal death. In this work, a model of tissue-specific chromosomal mosaicism was suggested based on the data on cell karyotype determined in extraembryonic tissues alone, which can be helpful in evaluating the contribution of tissue chromosomal differences into the etiology of early intrauterine death. Along with the experimental evidence, comparative analysis of the two models indicated that the meiotic chromosome nondisjunction plays the major role in trisomy formation and the resultant spontaneous arrest of embryonic development. Other factors responsible for tissue-specific distribution of chromosomal aberrations are also discussed. These are differences in cell proliferative activity, as well as changes in compartmentalization and migration of cells with abnormal karyotypes.  相似文献   

16.
I N Lebedev  S A Nazarenko 《Genetika》2001,37(11):1459-1474
The frequencies of autosomal trisomies in extraembryonic human tissues were estimated in the cases of different abnormalities of prenatal development, from the confined placental mosaicism (CPM) with either relatively normal embryogenesis or restricted intrauterine growth to spontaneous abortion. A tissue-specific compartmentalization was found to be characteristic of cell lines with trisomies for individual autosomes. Analysis of various phenotypical effects of chromosomal aberrations associated with mosaicism is necessarily required to understand the mechanisms and factors responsible for tissue chromosomal mosaicism. Based on analysis of the cell karyotype during prenatal diagnosing of chromosome aberrations in tissues of both extraembryonic and embryonic origin, in 1996, Wolstenholme proposed a model of CPM for individual chromosomes. According to the model, the distribution of cell lines with autosomal trisomies between extraembryonic tissues depends on the ratio between meiotic and mitotic mutations early in embryonic development. However, the model cannot be used to study tissue chromosomal mosaicism in spontaneous abortions, because little information is available on cell karyotype in embryonic tissues themselves after intrauterine fetal death. In this work, a model of tissue-specific chromosomal mosaicism was suggested based on the data on cell karyotype determined in extraembryonic tissues alone, which can be helpful in evaluating the contribution of tissue chromosomal differences into the etiology of early intrauterine death. Along with the experimental evidence, comparative analysis of the two models indicated that the meiotic chromosome nondisjunction plays the major role in trisomy formation and the resultant spontaneous arrest of embryonic development. Other factors responsible for tissue-specific distribution of chromosomal aberrations are also discussed. These are differences in cell proliferative activity, as well as changes in compartmentalization and migration of cells with abnormal karyotypes.  相似文献   

17.
We have systematically examined the domain composition across a comprehensive set of tissue-specific, midrange and housekeeping genes as defined by their mode of expression in 52 normal mouse tissues. We show a definite correlation between the number of domains and the degree of tissue specificity. This trend is further supported by a novel analysis involving the time of origin of each domain. Genes containing metazoan-specific domains are more prevalent in signal transduction and cell-communication pathways, and are depleted in primary metabolism. Our analyses suggest that highly modular gene products have been recruited for tissue-specific functions that are required in complex organisms.  相似文献   

18.
杨敏  张静 《生物信息学》2014,12(1):65-71
转录调控是基因表达调控的主要过程,而转录调控模体使用的差异性可能是导致基因组织特异性的因素之一.本文提出一种不同组织基因调控差异性的统计分析方法,首先结合泊松分布和主成分分析提取基因启动子中过表达模体作为潜在的转录因子结合位点.基于这些位点通过Wilcoxon秩和检验获得不同组织基因结构的差异性.再用超几何分布确定出现次数显著的模体作为组织基因的特有模体,并分析特有模体的碱基特征及在启动子序列中的位置分布.将特有模体与TRANSFAC数据库进行对照,得到潜在的调控组织特异性基因的转录因子结合位点.以人管家基因及30个组织特异性基因为分析对象,得到不同组织调控模体使用的差异性信息.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号