首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinosad bait is used to control western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), by killing flies before they oviposit. However, effects of different insecticide baits on management of reproductively mature flies are largely unknown. Objectives here were to determine mortality and oviposition of reproductively mature R. indifferens exposed to different insecticide baits for varying periods in the presence and absence of dried yeast extract and sucrose food. Spinosad bait (spinosad in a mix of protein, sugar, and other ingredients) was compared with acetamiprid, thiamethoxam, and imidacloprid in sucrose or Nu-Lure + sucrose bait. When flies were exposed to treatments and then offered cherries, Prunus avium (L.) L., for oviposition or when they were exposed to treatments and cherries simultaneously, both thiamethoxam bait and imidacloprid bait resulted in higher mortality and lower oviposition than spinosad bait and acetamiprid bait. Exposures to thiamethoxam bait and imidacloprid bait for six and 24 h were similarly effective, but 6-h exposures to spinosad bait and acetamiprid bait were less effective than 24-h exposures. There was little difference between sucrose and Nu-Lure + sucrose baits. When food was present, thiamethoxam bait and imidacloprid bait caused greater mortality and lower oviposition than spinosad bait and acetamiprid bait, but when food was absent, patterns were less consistent. Because of its ability to kill flies sooner after it is exposed to flies when food is present or absent, thiamethoxam or imidacloprid in sucrose or Nu-Lure bait may reduce infestations in cherries more than spinosad bait when mature R. indifferens are present in orchards.  相似文献   

2.
Sticky card captures of house flies, Musca domestica L. (Diptera: Muscidae), were used to compare efficacy of screen-covered baits containing sugar, sugar and 0.1% (Z)-9-tricosene, sugar and 1.0% (Z)-9-tricosene, Golden Malrin [1.1% methomyl and 0.049% (Z)-9-tricosene], and Quick-Bayt [0.5% imidacloprid and 0.1% (Z)-9-tricosene]. The QuickBayt treatment caught more flies per hour (mean = 116.5) than sugar alone (mean = 81.0), but the addition of (Z)-9-tricosene to sugar did not increase fly capture compared with sugar alone. More males (65% of total) than females were collected on the sticky cards for all treatments. Fly kill by plain sugar (control) and the commercial baits Golden Malrin, QuikStrike Fly Abatement strips (1.0% nithiazine), and QuickBayt was tested over a 90-min period. An average of 1.4, 5.6, 363.0, and 1,266.0 flies were killed using sugar, Golden Malrin, QuikStrike, and QuickBayt, respectively. The similarity between Golden Malrin and plain sugar reflects severe resistance to this once effective methomyl bait. A no-choice feeding assay using lab-reared methomyl-susceptible and methomyl-resistant house flies was conducted with and without (Z)-9-tricosene. Adult mortality was significantly higher in the methomyl-susceptible strain exposed to treatments containing methomyl. Lower consumption of the methomyl treatments by resistant flies suggested resistance was behavioral and mortality was not influenced by (Z)-9-tricosene for either fly strain.  相似文献   

3.
The toxicity of spinosad was determined in one susceptible and five insecticide-resistant laboratory strains of house fly, Musca domestica L. Spinosad was relatively slow-acting, but highly toxic to house flies. In a feeding bioassay, spinosad LC50 at 72 h was 0.51 microg of spinosad per gram of sugar, making it 6.3- and 3.5-fold more toxic to house flies compared with azamethiphos and methomyl, respectively. In topical application bioassay, the LD50 at 48 h of spinosad in susceptible house flies was 40 ng per 20 mg of house fly, making spinosad less toxic than the pyrethroid bioresmethrin synergized by piperonyl butoxide and the organophosphate dimethoate. The insecticide-resistant laboratory strains had resistance factors to spinosad at LC50 in feeding bioassay from 1.5 to 5.5 and at LD50 in topical application bioassay from 2.5 to 4.7, indicating that in house fly cross-resistance to the major insecticide classes will not initially be of major concern for the use of spinosad for house fly control. The toxicity of spinosad was also evaluated against 31 field populations of house flies collected from livestock farms across Denmark. The field populations were 2.2- to 7.5-fold resistant to spinosad at 72 h in feeding bioassay, but based on steep slopes in the bioassay and the limited variation of spinosad toxicity against the various field populations, we consider the field populations to be spinosad-susceptible. We propose a diagnostic dose of 12 microg of spinosad per gram of sugar in feeding bioassay with impregnated sugar for determination of resistant house flies, which is 10x the LC95 of the susceptible strain WHO and approximately = 2x the LD95 of the field populations. Spinosad showed no substantial cross-resistance to the pyrethroid bioresmethrin synergized by piperonyl butoxide, the anticholinesterases dimethoate, azamethiphos, methomyl, and spinosad in house fly field populations.  相似文献   

4.
The effects of spinosad bait and various insecticides, the presence of sugar in insecticides, and diet on feeding responses and mortality in western cherry fruit fly, Rhagoletis indifferens Curran (Dipt., Tephritidae), were determined. Numbers of feeding events on insecticides with sugar were greater than on insecticides alone, but there was only a small effect of diet on feeding responses to insecticides with sugar. Feeding durations on imidacloprid, thiamethoxam and acetamiprid with sugar were shorter than on sugar water and spinosad bait, as the neonicotinoids paralysed flies quickly. Flies that fed on sugar only (nitrogen‐starved) suffered higher mortalities when exposed to spinosad, thiamethoxam and azinphos‐methyl than to imidacloprid, acetamiprid and indoxacarb, and mortality in between these two groups of treatments when exposed to spinosad bait. Mortalities were greater when sugar was added to insecticides, and were higher in nitrogen‐starved than fully‐fed (yeast extract + sugar fed) flies. Flies that fed once on thiamethoxam were killed more quickly than those that fed once on spinosad bait and spinosad. Results suggest that thiamethoxam is comparable to spinosad in its effects on mortality, and that using it with sugar in bait may also have similar results as using spinosad bait or spinosad. One benefit of using thiamethoxam with sugar may be that it kills flies more quickly, before they can oviposit, than spinosad bait, although whether a fly will feed on it may depend on how much sugar or nitrogenous food it has eaten.  相似文献   

5.
Attraction and feeding responses of oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), were determined for different protein baits. In separate choice attraction assays for each species, significantly more flies arrived at stations with bait than water, but no differences existed among baits of GF-120 Fruit Fly Bait, GF-120 NF Naturalyte Fruit Fly Bait, Provesta 621 autolyzed yeast extract, and Mazoferm E802. In comparison with B. dorsalis, B. cucurbitae had 2.8 times more responders and a 4.8 times better discrimination between baits and water. In a second attraction assay with only B. dorsalis, volume of bait was negatively correlated to numbers of flies alighting on the bait. Feeding assays for both species demonstrated that time spent feeding and duration on a leaf were both significantly affected by bait type. B. dorsalis fed the longest on Provesta 621, with significantly less feeding on the other baits, and with all baits resulting in more feeding than water. The longest feeding times for B. cucurbitae resulted with Mazoferm E802 and Provesta 621, and all baits except GF-120 NF resulted in eliciting a significantly longer feeding duration than water. In separate toxicology assays for each species, significantly higher mortality resulted from bait formulations containing spinosad compared with blank baits, but no differences existed between GF-120 and GF-120 NF formulations. The differences are discussed between the two Bactrocera species primarily in regard to bait preference, extent of response, and previous work on laboratory flies.  相似文献   

6.
Effects of spinosad, spinosad bait, and the chloronicotinyl insecticides imidacloprid and thiacloprid on mortality of the adults and larvae of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), were determined in the laboratory and the field. Spinosad and spinosad bait caused higher adult mortality than imidacloprid, which caused higher mortality than thiacloprid. Only spinosad bait prevented oviposition. All materials were more toxic to adults when ingested than when topically applied. Spinosad bait had the greatest residual toxicity on leaves, killing 100% of adults when aged for 14 d in the field. When materials were sprayed on infested cherries, numbers of live larvae in fruit after 8 d were lower in imidacloprid and thiacloprid than in spinosad and spinosad bait treatments, which did not differ from the control, but all materials reduced larval emergence over 30 d. In the field, spinosad and spinosad bait were as effective in suppressing larval infestations as azinphos-methyl and carbaryl, whereas imidacloprid was effective in most cases and thiacloprid was generally less effective than azinphos-methyl and carbaryl. Overall, results in the laboratory and field show that spinosad and chloronicotinyl insecticides differed significantly in their effectiveness against adults and larvae of R. indifferens but that spinosad, spinosad bait, and imidacloprid seem to be acceptable substitutes for organophosphate and carbamate insecticides for controlling this fruit fly.  相似文献   

7.
The sterile insect technique (SIT) is used to control wild Mediterranean fruit fly introductions in California and Florida in the U.S. In the past, bait sprays containing malathion proved invaluable in treating new outbreaks or large populations before the use of SIT. Recently, a spinosad protein bait spray, GF-120, has been developed as a possible alternative to malathion, the standard insecticide in protein bait sprays. In this study, protein-deficient and protein-fed Vienna-7 (sterile, mass-reared, "male-only" strain) flies and wild males and females were evaluated to determine the effectiveness of the GF-120 protein bait containing spinosad with respect to bait attraction, feeding, and toxicology. There were no effects of diet or fly type on feeding duration in small laboratory cages. Wild flies, however, registered more feeding events than Vienna-7 males. Flies that fed longer on fresh bait died faster. Protein-deficient flies were more active and found the bait more often than protein-fed flies. Data suggest that adding protein to the diet of SIT flies may decrease their response to baits, therefore, reduce mortality, and thus, allow the concurrent use of SIT and bait sprays in a management or eradication program.  相似文献   

8.
Studies were conducted to determine attraction and feeding propensity of Mediterranean fruit fly, Ceratitis capitata (Wiedemann), to different protein bait mixtures with and without the insecticides malathion, spinosad, and phloxine B. Protein baits were more attractive to females than to males. Protein-starved females responded more than protein-fed females. The type of protein (USB® yeast hydrolysate enzymatic, Mazoferm®E802, Nu-Lure®Insect Bait, or Provesta® 621 autolyzed yeast extract) in the bait had a major influence on C. capitata attraction, which was strongest to fresh Provesta. Aged baits (four day-old) were not as attractive as fresh baits. In feeding propensity studies, highest response was observed for USB protein. On the basis of attraction and feeding responses Provesta (attraction and feeding) and USB (feeding) outperformed the standard Nu-Lure. Protein-starved flies were much more likely to feed on protein compared to protein-fed flies. For protein-starved flies, a mixture of Provesta and malathion repelled fruit flies, compared to a mixture of Provesta and spinosad or phloxine B. This was not the case with protein–fed flies. The wasp Fopius arisanus (Sonan), one of C. capitata's primary natural enemies in Hawaii, would not consume protein baits. Our studies suggest that spinosad or phloxine B, with low contact toxicity, mixed with protein baits offers a more environmentally friendly choice for control of C. capitata and conservation of F. arisanus, whereby the nontarget effects of broad spectrum contact poisons such as malathion can be avoided. Presumably, due to greater selectivity with spinosad and phloxine B bait treatments, the host would be killed, but not the natural enemy.  相似文献   

9.
Western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is the major quarantine pest of sweet cherry, Prunus avium (L.) L. (Rosaceae), in the Pacific northwest of the USA and in British Columbia in Canada. Although spinosad bait (GF‐120 NF Naturalyte® Fruit Fly Bait) is used for the control of R. indifferens in this region, the effects of alternate food sources on fly responses to this bait have not been studied. In this study, experiments were conducted to determine mortalities of flies exposed to hydrolyzed protein baits in the presence of sugar only and sugar + yeast extract food. All baits contained Entrust® (termed ‘spinosad alone’). When flies were exposed to GF‐120 with or without added ammonia compounds (uric acid, ammonium acetate, and ammonium carbonate) for 48 h, mortalities were higher in the presence of sugar only than in the presence of sugar + yeast extract, but when flies were exposed to spinosad alone, mortalities were similar in presence of either of the two foods. In another experiment comparing GF‐120, Nu‐Lure, Mazoferm, Baker's yeast extract, and spinosad alone, mortalities in the GF‐120, Mazoferm, and Baker's yeast extract treatments were higher in the presence of sugar only than in the presence of sugar + yeast extract, but in the Nu‐Lure and spinosad alone treatments, mortalities were similar in the presence of either of the two foods. Overall results suggest that the indirect effects of yeast extract food on mortality are dependent on bait type and that mortalities caused by spinosad alone and baits are similar. Nu‐Lure and spinosad alone may have an advantage over other treatments for fly control, because their effects do not appear to be affected by the presence of nitrogenous food.  相似文献   

10.
Abstract:  A bioassay to investigate quantitative phagostimulation and ingestion physiology of baits on individual fruit flies is presented. The study was undertaken using two fruit fly species: the Mediterranean fruit fly ( Ceratitis capitata ), a cosmopolitan insect pest, and the Ethiopian fruit fly ( Dacus ciliatus ), a quarantine insect in Israel. Our model bait suspension included spinosad as the toxic agent, and 1% yeast hydrolysate with 10% sucrose as phagostimulant. A preliminary toxicology study showed that the two fruit flies are highly sensitive to low concentrations of spinosad baited with this phagostimulant. The maximum concentration needed to kill 90% of the female flies was 4.2 and 8.5 p.p.m. for C. capitata and D. ciliatus , respectively. The bioassay was able to detect the ingestion of low volumes (e.g. 1  μ l) of tested solutions. The bioassay was also able to detect differences in intake of different concentrations of spinosad solutions and relate ingestion to fruit fly mortality. Additionally, the bioassay was sensitive enough to highlight differences in intake related to the physiological status of the fruit fly and fly species. The bioassay can also be used to follow ingestion kinetics of baits. We expect that this bioassay will contribute in the exploration of more efficient bait systems for fruit flies.  相似文献   

11.
The objective of this research was to examine the role and type of behavioural mechanisms that function in house fly, Musca domestica L. (Diptera: Muscidae), resistance to an imidacloprid‐containing commercial fly bait, QuickBayt®, using an insecticide‐susceptible and an imidacloprid‐resistant strain. Mortality and feeding behaviour were observed through choice bioassays of three post‐imidacloprid selected house fly generations to determine whether flies would consume the bait in the presence of an alternative food source. Mortality rates in choice containers progressively decreased in post‐selection flies as QuickBayt® no‐choice selections proceeded. There were no differences between the proportions of flies observed contacting QuickBayt® and sugar, respectively, a finding that eliminates repellency as a mechanism of stimulus‐dependent behavioural resistance. However, differences in QuickBayt® consumption and subsequent mortality between choice and no‐choice containers provided strong support for the evolution of consumption irritancy‐ or taste aversion‐related behavioural resistance. The results of this study support the responsible rotation of insecticide bait formulations for house fly control.  相似文献   

12.
The feeding toxicity of the natural insecticide spinosad in Provesta protein bait was evaluated for three economically important fruit fly species, the Mediterranean fruit fly, Ceratitis capitata (Wiedemann); the melon fly, Bactrocera cucurbitae Coquillett; and the oriental fruit fly, Bactrocera dorsalis Hendel. Both females and males were evaluated. Spinosad was remarkably similar in toxicity to all three fruit fly species. Male C. capitata (24 h LC50 values and 95% fiducial limits = 2.8 [2.60-3.0] mg/liter spinosad) were significantly, although only slightly more susceptible to spinosadthan females (4.2 [3.8-4.6] mg/liter). Male (5.5 [4.7-6.6] mg/liter) andfemale (4.3 [3.7-4.9] mg/liter) B. cucurbitae were equally susceptible to spinosad. Female (3.3 [3.1-3.6] mg/liter) and male (3.1 [2.9-3.3] mg/liter) B. dorsalis also were equally susceptible to spinosad. Provesta bait containing spinosad also was evaluated against two parasitoids of tephritid fruit flies, Fopius arisanus (Sonan) and Pysttalia fletcheri (Silvestri). These parasitoids did not feed on the bait, so a contact toxicity test was conducted. Significant amounts of mortality were found only after exposure of parasitoids to spinosad-coated glass vials with concentrations > or =500 mg/liter spinosad. Parasitoids were less susceptible than fruit flies to such a degree that use of spinosad in bait spray should be compatible with these parasitoid species. Because the fruit flies tested in this study were so susceptible to spinosad, this product seems to be promising as a bait spray additive and a replacement for malathion for control of these species.  相似文献   

13.
Laboratory and field assays using insecticides for organic pest management were conducted on the blueberry maggot, Rhagoletis mendax Curran. Topical exposure of flies to spinosad (Entrust), pyrethrum (PyGanic 1.4 EC), azadirachtin (Aza-Direct), and phosmet (Imidan 70-W) resulted in significantly higher mortality compared with the water control after 2 and 24 h. After 24 h, there were no significant differences in fly mortality among treatments of Entrust, PyGanic, or Imidan, whereas fly mortality to Aza-Direct was significantly lower. Another laboratory assay evaluated mortality of flies after residual exposure to these insecticides on leaves, after 24 and 48 h. In this assay, there were no significant differences in fly mortality after 48 h among treatments of PyGanic, Aza-Direct, and the water control, whereas significantly higher fly mortality resulted from exposure to Entrust and Imidan. A repellency assay found no measurable effects of Aza-Direct. Large-scale field trials found no treatment effect for number of adults of the blueberry maggot captured in sticky traps; however, there were significantly lower levels of fruit-infesting larvae in treated plots compared with the untreated control. Spinosad bait (GF-120 NF Naturalyte Fruit Fly Bait), Entrust, and PyGanic were not different from imidacloprid (Provado 1.6 F). However, there was a significantly higher infestation in the plot treated with azadirachtin (Agroneem) compared with Provado. Overall, the insecticides evaluated in these trials showed good ability to control blueberry maggot, suggesting that they can be incorporated in a blueberry maggot management program under organic standards.  相似文献   

14.
The housefly, Musca domestica L. (Diptera: Muscidae), is a pest of great veterinary and public health importance. In this study, the efficacy of metaflumizone granular fly bait was assessed on first generation (F1) housefly adults raised from flies collected at a cattle feedlot in Kansas. All bioassays were conducted as choice tests, with flies having ad libitum access to water, granular sugar and bait. A commercial methomyl-based bait (Golden MalrinTM) was used as positive control; no bait (water and granular sugar only) was used as negative control. Fly mortality was recorded on days 2, 7 and 14. The metaflumizone bait was significantly more slow-acting than the methomyl bait (mortality rates after 2 days of exposure were 49.9% and 57.9%, respectively). However, there were no significant differences in cumulative mortality later in the bioassays. Cumulative mortality rates on days 7 and 14 were 96.1% (metaflumizone), 91.4% (methomyl) and 99.0% (metaflumizone), 97.6% (methomyl), respectively. Our results demonstrate that the metaflumizone granular fly bait may be an effective modality for incorporation into management programmes for houseflies in and around livestock production facilities as well as in residential settings.  相似文献   

15.
Abstract:  Effects of feeding history on feeding responses of western cherry fruit fly, Rhagoletis indifferens Curran, to the commercial protein baits GF-120 and Nulure were determined in the laboratory. Flies were kept on 5% sucrose alone or yeast extract and sucrose (Y + S) for 3–7 or 14–16 days and exposed to 24-h-old GF-120 or Nulure drops on artificial leaves. Numbers and durations of feeding events on leaves and durations of non-feeding events were recorded over 1-h periods. Experiments were also conducted to determine effects of Y + S feeding sequences on responses to Nulure, of starvation after sucrose or Y + S feeding on responses to Nulure, and of feeding history on mortality after exposure to GF-120 and Nulure. Protein-deprived flies consistently fed more times on GF-120 and Nulure than protein-fed flies and fed longer. One day of exposure to Y + S or 16 h of starvation after exposure to sucrose caused greater feeding on Nulure than 7 days of exposure to Y + S or 16 h of starvation after exposure to Y + S. Durations of non-feeding events on leaves with sucrose or bait were similar in protein-deprived and -fed flies. Responses of 4- to 6-day-old flies kept on sucrose to 0- and 24-h-old GF-120 or Nulure were similar. More flies kept on sucrose were paralysed or dead at 6–32 h after exposure to GF-120 or Nulure with spinosad than flies kept on Y + S. Results show that complete or long periods of protein deprivation and starvation after sucrose feeding increased feeding responses to GF-120 and Nulure. The general lack of differences in durations of non-feeding events on leaves with sucrose or GF-120 or Nulure in protein-deprived and -fed flies suggests that most protein-deprived flies found baits through chance encounters following normal movement.  相似文献   

16.
In a field study in Hawaii, color-marked protein-deprived and protein-fed female melon flies, Bactrocera cucurbitae Coquillett, were released within canopies of unsprayed sorghum plants (a nonhost of melon flies) outside of a border area of unsprayed or bait-sprayed sorghum plants or open space that surrounded cucumbers, a favored host of melon flies. Application of bait spray to sorghum or sugarcane surrounding host plants of melon flies is a common practice for melon fly control in Hawaii. GF-120 Fruit Fly Bait spray proved very effective in preventing protein-deprived females from alighting on cucumbers (23% of released females were observed dead on bait-sprayed sorghum; 0% were observed alive on cucumbers), but proved less effective in suppressing protein-fed females (14% of released females were observed dead on bait-sprayed sorghum; 11% were observed alive on cucumbers). No females were found dead on unsprayed sorghum. Compared with open space surrounding cucumbers, the presence of unsprayed sorghum as surrounding border area neither significantly enhanced nor significantly inhibited the ability of either type of female with respect to finding cucumbers. Greenhouse cage assays revealed that compared with droplets of water, droplets of GF-120 Fruit Fly Bait spray were highly attractive to protein-deprived females within 1 h of bait spray application to sorghum, but lost about half of their attractiveness within 5 h and all of it within 24 h under the dry greenhouse conditions used for maintaining baited-sprayed sorghum plants in these assays. Laboratory cup assays showed that bait spray droplets remained highly toxic to protein-deprived females 24 h after application, but lost nearly half of their toxicity within 4 d under laboratory exposure and nearly all of it after approximately 8 mm of rainfall. Combined findings suggest that application of GF-120 Fruit Fly Bait spray to nonhost plants for melon fly control either be made often enough to overcome loss of attractiveness of bait spray droplets to females or that bait spray be applied to nonhost plants that are themselves attractive to the females.  相似文献   

17.
Two insecticide formulations containing the naturalyte insecticide spinosad, GF-120 Fruit Fly Bait and SpinTor 2 SC, were compared for control of apple maggot, Rhagoletis pomonella (Walsh), and blueberry maggot, Rhagoletis mendax Curran. In 2002 and 2003, larval infestation in blueberries and apples was significantly lower in plots treated with GF-120 (spinosad bait) or SpinTor than in untreated control plots. Fruit fly infestation in apples was reduced by 67% in 2002 after weekly application of GF-120 for 6 wk. Six weeks of GF-120 treatment reduced infestation in blueberries by 85% in 2002 and 98% in 2003. Plots treated weekly with the bait component of GF-120 for 6 wk had significantly higher infestation of blueberry maggot larvae compared with untreated plots in 2002. Observations of wild R. mendax flies revealed that similar numbers of flies landed on blueberry foliage treated with spinosad bait, the bait component alone, or water droplets. However, flies on spinosad bait and bait treated plants spent significantly more time within 5 cm of the treatment droplets compared with control (water) droplets. Overall, the results demonstrate a high degree of efficacy of baited spinosad formulations against these key pests of temperate fruit and suggest that GF-120 is an arrestant for foraging flies.  相似文献   

18.
A house fly strain, ALHF, was collected from a poultry farm in Alabama after a control failure with permethrin, and further selected in the laboratory with permethrin for five generations. The level of resistance to permethrin in ALHF was increased rapidly from an initial 260-fold to 1,800-fold after selection. Incomplete suppression of permethrin resistance by piperonyl butoxide (PBO) and S,S,S,-tributylphosphorotrithioate (DEF) reveals that P450 monooxygenase- and hydrolase-mediated detoxication, and one or more additional mechanisms are involved in resistance to permethrin. The ALHF strain showed a great ability to develop resistance or cross-resistance to different insecticides within and outside the pyrethroid group including some relatively new insecticides. Resistance to beta-cypermethrin, cypermethrin, deltamethrin, and propoxur (2,400-4,200-, 10,000-, and > 290-fold, respectively, compared with a susceptible strain, aabys) in ALHF house flies was partially or mostly suppressed by PBO and DEF, indicating that P450 monooxygenases and hydrolases are involved in resistance to these insecticides. Partial reduction in resistance with PBO and DEF implies that multiresistance mechanisms are responsible for resistance. Fifteen- and more than fourfold resistance and cross-resistance to chlorpyrifos and imidacloprid, respectively, were not effected by PBO or DEF, indicating that P450 monooxygenases and hydrolases are not involved in resistance to these two insecticides. Forty-nine-fold cross-resistance to fipronil was mostly suppressed by PBO and DEF, revealing that monooxygenases are a major mechanism of cross-resistance to fipronil. Multiresistance mechanisms in the ALHF house fly strain, however, do not confer cross-resistance to spinosad, a novel insecticide derived from the bacterium Saccharopolyspora spinosa. Thus, we propose that spinosad be used as a potential insecticide against house fly pests, especially resistant flies.  相似文献   

19.
The efficacy of male‐targeted and female‐targeted baits was compared when lures were presented together or singly in traps for capturing the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). For male‐targeted baits, either trimedlure or ceralure presented singly attracted large numbers of flies, supporting data from many previous reports. The present results are the first published data on the attractiveness of ceralure to a European population of C. capitata. The quaternary female bait consisting of ammonium carbonate, putrescine, trimethylamine and acetic acid was a potent attractant for female flies (and also showed some activity for males). Replacing acetic acid with ammonium acetate in the quaternary female bait did not influence activity. Traps with female‐targeted and male‐targeted baits together always showed a tendency of catching fewer flies than traps with only one type of bait. The decrease was significant in females, regardless of whether ceralure or trimedlure was the male‐targeted bait. In males, the tendency was the same for traps with trimedlure or ceralure alone, catching higher numbers than those with both male and female baits. Our present results suggest that both types of baits mutually decrease the numbers of the non‐target sex in the trap. In conclusion, it is advisable to use both male‐ and female‐targeted baits in separate and distant traps and not jointly in the same trap, lest the efficacy of detection or monitoring trials be compromised.  相似文献   

20.
Female houseflies (Musca domestica L.) from a susceptible and a multi-insecticide-resistant strain were used to evaluate the relative toxicity of an insecticide bait formulation of the carbamate insecticide methomyl. Individual flies were allowed to feed on bait granules for an unrestricted period or for 5 s. Resistant flies took longer than susceptible flies to initiate a feeding response. When allowed to feed continuously, those from the resistant strain spent longer feeding than susceptible ones. The time taken to knock-down (KD), including feeding times, was significantly greater for resistant than susceptible flies (P less than 0.001), but once the proboscis was withdrawn from the granule there was no difference in KD times between the strains. All flies from both strains were knocked down, and only a very small number of resistant and susceptible flies recovered. The toxic effects of methomyl on flies which were restricted to a 5 s feed ranged from no observed effect to KD in less than 1 min. After feeding for 5 s, 81% of resistant and 98% of susceptible flies developed signs of methomyl poisoning. More resistant than susceptible flies recovered from KD, giving final mortalities of 46% and 88% respectively. With both feeding regimes, some flies of both strains which had apparently recovered from KD had lost their ability to fly. Observations have also shown that 8% of resistant flies may have been repelled by methomyl granules. The implication of these results on the survival of M. domestica in intensive animal units following exposure to methomyl bait is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号