首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the hammerhead RNA self-cleaving domain   总被引:14,自引:0,他引:14  
Nine different hammerhead RNA self-cleaving domains consistent with the consensus secondary structure proposed by Keese and Symons (1987) were prepared and tested for cleavage. Each hammerhead was constructed from two oligoribonucleotides in two different configurations. Although cleavage was observed in all nine cases, the rates of cleavage varied by more than a thousand fold. The presence of RNA secondary structure incompatible with hammerhead formation in the individual oligos may be responsible for the large rate differences. We have also examined the degree of participation of a proposed dimer hammerhead intermediate in one case and conclude that, while such a four-stranded structure can form, it is not the preferred reaction intermediate.  相似文献   

2.
3.
Mutagenesis analysis of a self-cleaving RNA.   总被引:1,自引:10,他引:1       下载免费PDF全文
The hammerhead structural model proposed for sequences that mediate self-cleavage of certain RNAs contains base-paired three stems and 13 conserved bases. Insertion, deletion and base substitution mutations were carried out on a 58 base RNA containing the sequence of the single-hammerhead structure of the plus RNA of the virusoid of lucerne transient streak virus, and the effects on self-cleavage assessed. Results showed that there is flexibility in the sequence requirements for self-cleavage in vitro, but alterations of the conserved sequence or predicted secondary structure generally reduced the efficiency of self-cleavage.  相似文献   

4.
A model for the secondary structure of the self-cleaving RNA from hepatitis delta virus was tested. Specific base changes were introduced in each of four regions with the potential for base-pairing (stems I-IV), and for each variant sequence, a rate constant for cleavage was determined. In each stem, mutations that would interfere with Watson-Crick base-pairing also reduced the first-order rate constants by 10-10(4)-fold relative to the unmodified version. Within stems I and II and a shortened form of stem IV, compensatory changes resulted in rates of cleavage equal to or greater than the unaltered ribozyme sequence. Stem III compensatory mutants cleaved faster than the uncompensated mutants although they were not as active as the natural sequence, suggesting additional sequence-dependent requirements within this region. Structure probing of RNA containing the stem II mutations provided an independent confirmation of stem II in the ribozyme. The predictive value of the model was tested by designing two trans-acting ribozymes which were circularly permuted composites of genomic, antigenomic, and unique sequences. The core of these two catalytic RNAs was the same, but they otherwise differed in that, in one of them, a constraining tetraloop sequence was added to stem II. Both ribozymes catalyzed the trans cleavage of a substrate oligoribonucleotide, thus providing additional evidence for stem II and the proposed structure in general.  相似文献   

5.
Distinct structural models for the hammerhead ribozyme derived from single-crystal X-ray diffraction and fluorescence resonance energy transfer (FRET) measurements have been compared. Both models predict the same overall geometry, a wishbone shape with helices II and III nearly colinear and helix I positioned close to helix II. However, the relative orientations of helices I and II are different. To establish whether one of the models represents a kinetically active structure, a new crosslinking procedure was developed in which helices I and II of hammerhead ribozymes were disulfide-crosslinked via the 2' positions of specific sugar residues. Crosslinking residues on helices I and II that are close according to the X-ray structure did not appreciably reduce the catalytic efficiency. In contrast, crosslinking residues closely situated according to the FRET model dramatically reduced the cleavage rate by at least three orders of magnitude. These correlations between catalytic efficiencies and spatial proximities are consistent with the X-ray structure.  相似文献   

6.
Sequence requirements of the hammerhead RNA self-cleavage reaction.   总被引:51,自引:0,他引:51  
A previously well-characterized hammerhead catalytic RNA consisting of a 24-nucleotide substrate and a 19-nucleotide ribozyme was used to perform an extensive mutagenesis study. The cleavage rates of 21 different substrate mutations and 24 different ribozyme mutations were determined. Only one of the three phylogenetically conserved base pairs but all nine of the conserved single-stranded residues in the central core are needed for self cleavage. In most cases the mutations did not alter the ability of the hammerhead to assemble into a bimolecular complex. In the few cases where mutant hammerheads did not assemble, it appeared to be the result of the mutation stabilizing an alternate substrate or ribozyme secondary structure. All combinations of mutant substrate and mutant ribozyme were less active than the corresponding single mutations, suggesting that the hammerhead contains few, if any, replaceable tertiary interactions as are found in tRNA. The refined consensus hammerhead resulting from this work was used to identify potential hammerheads present in a variety of Escherichia coli gene sequences.  相似文献   

7.
Sequence-dependent structural variations of hammerhead RNA enzymes.   总被引:3,自引:10,他引:3       下载免费PDF全文
  相似文献   

8.
Secondary structure formation during RNA synthesis.   总被引:8,自引:5,他引:8       下载免费PDF全文
We observed the secondary structures that formed in an RNA molecule during its synthesis. Some of the secondary structures seen in nascent chains were observed to form, then to dissociate in favor of an alternative structure, and then to reform, as chain growth continued. The results show that secondary structures in an RNA molecule are in a state of dynamic equilibrium, and that the extension of a sequence by chain growth, or the reduction of a sequence by processing, may result in significant changes in the secondary structures that are present.  相似文献   

9.
A C Pease  D E Wemmer 《Biochemistry》1990,29(38):9039-9046
We have completely assigned the extreme low-field ring-NH nuclear magnetic resonance spectrum of a self-cleaving RNA in the absence of magnesium ions by experiments involving sequential Overhauser enhancements between adjacent base pairs. These assignments substantiate the hammerhead secondary folding model proposed by Symons and co-workers for this class of self-cleaving RNA [Hutchins, C. J., Rathjen, P. D., Forster, A. C., & Symons, R. H. (1986) Nucleic Acids Res. 14, 3627-3640; Forster, A. C. & Symons, R. H. (1987) Cell 49, 211-220; Kneese, P., & Symons, R. H. (1987) in Viroids and Viroid-like Pathogens (Semancick, J. S., Ed.) pp 1-47, CRC Press, Boca Raton, FL]. No resonances due to tertiary base pairs could be identified in the low-field spectrum, and addition of MgCl2 to the sample did not produce additional resonances in this region of the spectrum.  相似文献   

10.
We synthesized two types of chimeric RNAs between the catalytic RNA subunit of RNase P from Escherichia coli (M1 RNA) and a tRNA precursor (pre-tRNA); one had pre-tRNA at the 3' side to the M1 RNA (M1 RNA-pre-tRNA). The second had pre-tRNA at the 5' side of the M1 RNA (pre-tRNA-M1 RNA). Both molecules were self-cleaving RNAs. The self-cleavage of M1 RNA-pre-tRNA occurred at the normal site (5'-end of mature tRNA sequence) and proceeded under the condition of 10 mM Mg2+ concentration. This reaction at 10 mM Mg2+ was an intramolecular reaction (cis-cleavage), while, at 40 mM and 80 mM Mg2+, trans-cleavage partially occurred. The self-cleavage rate was strictly affected by the distance between the M1 RNA and the pre-tRNA in the molecule. The self-cleavage of pre-tRNA-M1 RNA occurred mainly at three sites within the mature tRNA sequence. This cleavage did not occur at 10 mM Mg2+. Use of M1 RNA-pre-tRNA molecule for the in vitro evolution of M1 RNA is discussed.  相似文献   

11.
The activity of the full-length hammerhead ribozyme requires a tertiary interaction between its distal loops leading to the closure of the molecule and its stabilization in the active conformation. In this study, the conformational changes accompanying the cis-cleavage reaction of Chrysanthemum chlorotic mottle viroid hammerhead ribozyme were investigated by high-pressure experiments on the complete cleavage reaction. Two activation volumes (ΔV(≠)) were measured, pointing to the presence of two different populations of molecules corresponding to fast-cleaving and slow-cleaving ribozymes in the reaction mixture. The fast population, with a small ΔV(≠) of 2.6 mL·mol(-1), most likely represents molecules in the near-active conformation, whereas the slow population, with a larger ΔV(≠) of 11.6 mL·mol(-1 , represents molecules that need a larger conformational change to induce activity. In addition, pH-dependence experiments suggest that the group whose deprotonation is required for activity intervenes in the formation of the transition state or in the chemistry of the reaction, but not in the conformational change that precedes it.  相似文献   

12.
Role of divalent metal ions in the hammerhead RNA cleavage reaction.   总被引:32,自引:0,他引:32  
S C Dahm  O C Uhlenbeck 《Biochemistry》1991,30(39):9464-9469
A hammerhead self-cleaving domain composed of two oligoribonucleotides was used to study the role of divalent metal ions in the cleavage reaction. Cleavage rates were measured as a function of MgCl2, MnCl2, and CaCl2 concentration in the absence or presence of spermine. In the presence of spermine, the rate vs metal ion concentration curves are broader, and lower concentrations of divalent ions are necessary for catalytic activity. This suggests that spermine can promote proper folding of the hammerhead and one or more divalent ions are required for the reaction. Six additional divalent ions were tested for their ability to support hammerhead cleavage. In the absence of spermine, rapid cleavage was observed with Co2+ while very slow cleavage occurred with Sr2+ and Ba2+. No detectable specific cleavage was observed with Cd2+, Zn2+, or Pb2+. However, in the presence of 0.5 mM spermine, rapid cleavage was observed with Zn2+ and Cd2+, and the rate with Sr2+ was increased, indicating that while these three ions could not promote proper folding of the hammerhead they were able to stimulate cleavage. These results suggest certain divalent ions either participate directly in the cleavage mechanism or are specifically involved in stabilizing the tertiary structure of the hammerhead. Additionally, an altered divalent metal ion specificity was observed when a unique phosphorothioate linkage was inserted at the cleavage site. The substitution of a sulfur for a nonbridging oxygen atom substantially reduced the affinity of an important Mg2+ ion necessary for efficient cleavage. In contrast, the reaction proceeds normally with Mn2+, presumably due to its ability to coordinate with both oxygen and sulfur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Hammerhead ribozymes were transcribed from a dsDNA template containing four random nucleotides between stems II and III, which replace the naturally occurring GAA nucleotides. In vitro selection was used to select hammerhead ribozymes capable of in cis cleavage using denaturing polyacrylamide gels for the isolation of cleaving sequences. Self-cleaving ribozymes were cloned after the first and second rounds of selection, sequenced and characterised. Only sequences containing 5'-HGAA-3', where H is A, C or U, between stems II and III were active; G was clearly not tolerated at this position. Thus, only three sequences out of the starting pool of 256 (4(4)) were active. The Michaelis-Menten parameters were determined for the in trans cleaving versions of these ribozymes and indicate that selected ribozymes are less efficient than the native sequence. We propose that the selected ribozymes accommodate the extra nucleotide as a bulge in stem II.  相似文献   

14.
Proton nuclear magnetic resonance (n.m.r.) experiments were used to probe base-pair formation in several hammerhead RNA enzyme (ribozyme) domains. The hammerhead domains consist of a 34 nucleotide ribozyme bound to a complementary 13 nucleotide non-cleavable DNA substrate. Three hammerhead domains were studied that differ in the sequence and stability of one of the helices involved in recognition of the substrate by the ribozyme. The n.m.r. data show a 1:1 stoichiometry for the ribozyme-substrate complexes. The imino proton resonances in the hammerhead complexes were assigned by two-dimensional nuclear Overhauser effect experiments. These data confirm the presence of two of the three helical regions in the hammerhead domain, predicted from phylogenetic data; and are also consistent with the formation of the third helix. Since a divalent cation is required for efficient catalytic activity of the hammerhead domain, the magnesium ion dependence of the n.m.r. spectra was studied for two of the hammerhead complexes. One of the complexes showed very large spectral changes upon addition of magnesium ions. However, the complex that has the most C.G base-pairs in one of the recognition helices shows essentially no spectral (and therefore presumably structural) changes upon addition of magnesium. These data are consistent with a model where the magnesium binding site already exists in the magnesium-free complex, suggesting that the magnesium ion serves primarily a catalytic, and not a structural, role under the conditions used here.  相似文献   

15.
The hammerhead ribozyme undergoes a well-defined two-stage folding process induced by the sequential binding of two magnesium ions. These probably correspond to the formation of domain 2 (0-500 microM magnesium ions) and domain 1 (1-20 mM magnesium ions), respectively. In this study we have used fluorescence resonance energy transfer (FRET) to analyze the ion-induced folding of a number of variants of the hammerhead ribozyme. We find that both A14G and G8U mutations are highly destabilizing, such that these species are essentially unfolded under all conditions. Thus they appear to be blocked in the first stage of the folding process, and using uranyl-induced photocleavage we show that the core is completely accessible to this probe under these conditions. Changes at G5 do not affect the first transition but appear to provide a blockage at the second stage of folding; this is true of changes in the sugar (removal of the 2'-hydroxyl group) and base (G5C mutation, previously studied by comparative gel electrophoresis). Arrest of folding at this intermediate stage leads to a pattern of uranyl-induced photocleavage that is changed from the wild-type, but suggests a structure less open than the A14G mutant. Specific photocleavage at G5 is found only in the wild-type sequence, suggesting that this ion-binding site is formed late in the folding process. In addition to folding that is blocked at selected stages, we have also observed misfolding. Thus the A13G mutation appears to result in the ion-induced formation of a novel tertiary structure.  相似文献   

16.
We have previously shown that a protein derived from the p7 nucleocapsid (NC) protein of HIV type-1 increases kcat/Km and kcat for cleavage of a cognate substrate by a hammerhead ribozyme. Here we show directly that the increase in kcat/Km arises from catalysis of the annealing of the RNA substrate to the ribozyme and the increase in kcat arises from catalysis of dissociation of the RNA products from the ribozyme. A peptide polymer derived from the consensus sequence of the C-terminal domain of the hnRNP A1 protein (A1 CTD) provides similar enhancements. Although these effects apparently arise from non-specific interactions, not all non-specific binding interactions led to these enhancements. NC and A1 CTD exert their effects by accelerating attainment of the thermodynamically most stable species throughout the ribozyme catalytic cycle. In addition, NC protein is shown to resolve a misfolded ribozyme-RNA complex that is otherwise long lived. These in vitro results suggest that non-specific RNA binding proteins such as NC and hnRNP proteins may have a biological role as RNA chaperones that prevent misfolding of RNAs and resolve RNAs that have misfolded, thereby ensuring that RNA is accessible for its biological functions.  相似文献   

17.
Minimum ribonucleotide requirement for catalysis by the RNA hammerhead domain.   总被引:10,自引:0,他引:10  
Several mixed DNA/RNA and 2'-O-methylribonucleotide/RNA analogues derived from the "hammerhead" domain of RNA catalysis have been prepared to study the minimum ribonucleotide requirement for catalytic activity. Oligodeoxyribonucleotides containing from seven to as few as four ribonucleotides are active in cleaving a substrate RNA. Predominantly deoxyribonucleotide-containing analogues have kcat values 20-300 and kcat/KM values approximately 100-2000 times lower than those of all-RNA ribozyme. In the case of predominantly 2'-O-methyl analogues, at least five ribonucleotides are needed to assure catalytic activity. In addition, both predominantly deoxyribonucleotide and 2'-O-methyl oligomers are at least 3 orders of magnitude more stable than an all-RNA ribozyme in incubations with RNase A and a yeast extract. These results suggest that the ribophosphate backbone is not a strict requirement for ribozyme-type catalysis. The identification of the four required ribonucleotides in the hammerhead catalytic domain provides valuable information for the rational design of chemical species having ribonuclease activities.  相似文献   

18.
19.
The thermodynamics of RNA secondary structure formation in small model systems provides a database for predicting RNA structure from sequence. Methods for making these measurements are reviewed with emphasis on optical methods and treatment of experimental errors. Analysis of experimental results in terms of simple nearest-neighbor models is presented. Some measured sequence dependences of non-Watson-Crick motifs are discussed. © 1998 John Wiley & Sons, Inc. Biopoly 44: 309–319, 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号