首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S-Adenosylmethionine synthetase from Escherichia coli is shown to require 2 divalent metal ions/enzyme subunit for maximal enzymatic activity. In the absence of substrate, the tetrameric enzyme binds 1 Mn(II) ion/subunit, whereas in the presence of a nucleotide substrate, adenylylimidodiphosphate, or the product pyrophosphate, there are two Mn(II)-binding sites/subunit. Electron paramagnetic resonance spectra of Mn(II) bound to the enzyme reveal a spin exchange interaction between 2 Mn(II) ions in complexes of enzyme and Mn(II) which also contain adenosylmethionine, K+, and either pyrophosphate or imidotriphosphate. Since a spin exchange interaction requires orbital overlap between the 2 ions, the metal ions must be bound close to one another, and they may share a common ligand.  相似文献   

2.
Phenol is metabolized in a denitrifying bacterium in the absence of molecular oxygen via para-carboxylation to 4-hydroxybenzoate (biological Kolbe-Schmitt synthesis). The enzyme system catalyzing the presumptive carboxylation of phenol, tentatively named 'phenol carboxylase', catalyzes an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate (specific activity 0.1 mumol 14CO2 incorporated into 4-hydroxybenzoate x min-1 x mg-1 cell protein) which is considered a partial reaction of the overall enzyme catalysis; 14C from [14C]phenol was not exchanged into 4-hydroxybenzoate ring positions to a significant extent. The 14CO2 isotope exchange reaction was studied in vitro. The reaction was dependent on the substrates CO2 and 4-hydroxybenzoate and required K+ and Mn2+. The actual substrate was CO2 rather than HCO3-. The apparent Km values were 1 mM dissolved CO2, 0.2 mM 4-hydroxybenzoate, 2 mM K+, and 0.1 mM Mn2+. The cationic cocatalysts could be substituted by ions of similar ionic radius: K+ could be replaced to some extent by Rb+, but not by Li+, Na+, Cs+, or NH4+; Mn2+ could be replaced to some extent by Fe2+ greater than Mg2+, Co2+, but not by Ni2+, Zn2+, Ca2+, or Cu2+. The exchange reaction was not strictly specific for 4-hydroxybenzoate, however it required a p-hydroxyl group; derivatives of 4-hydroxybenzoate with OH, CH3 or Cl substituents in m-position did react, whereas those with substitutions in the o-position were inactive or were inhibitory. The enzyme was induced when cells were grown on phenol, but not on 4-hydroxybenzoate. Comparison of SDS/PAGE protein patterns of cells grown on phenol or 4-hydroxybenzoate revealed several additional protein bands in phenol-grown cells. The possible role of similar enzymes in the anaerobic metabolism of phenolic compounds is discussed.  相似文献   

3.
3-Deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase catalyzes the net condensation of phosphoenolpyruvate and d-arabinose 5-phosphate to form KDO8P and inorganic phosphate (Pi). Two classes of KDO8P synthases have been identified. The Class I KDO8P synthases (e.g. Escherchia coli KDO8P synthase) catalyze the condensation reaction in a metal-independent fashion, whereas the Class II enzymes (e.g. Aquifex aeolicus) require metal ions for catalysis. Helicobacter pylori (H. pylori) KDO8P synthase, a Zn2+-dependent metalloenzyme, has recently been found to be a Class II enzyme and has a high degree of clinical significance since it is an attractive molecular target for the design of novel antibiotic therapy. Although the presence of a divalent metal ion in Class II KDO8P synthases is essential for catalysis, there is a paucity of mechanistic information on the role of the metal ions and functional differences as compared with Class I enzymes. Using H. pylori KDO8P synthase as a prototypical Class II enzyme, a steady-state and transient kinetic approach was undertaken to understand the role of the metal ion in catalysis and define the kinetic reaction pathway. Metal reconstitution experiments examining the reaction kinetics using Zn2+, Cd2+, Cu2+, Co2+, Mn2+, and Ni2+ yielded surprising results in that the Cd2+ enzyme has the greatest activity. Unlike Class-I KDO8P synthases, the Class II metallo-KDO8P synthases containing Zn2+, Cd2+, Cu2+, and Co2+ show cooperativity. This study presents the first detailed kinetic characterization of a metal-dependent Class II KDO8P synthase and offers mechanistic insight for how the divalent metal ions modulate catalysis through effects on chemistry as well as quaternary protein structure.  相似文献   

4.
An intracellular hexose 6-phosphate:phosphohydrolase (EC 3.1.3.2) has been purified from Streptococcus lactis K1. Polyacrylamide disc gel electrophoresis of the purified enzyme revealed one major activity staining protein and one minor inactive band. The Mr determined by gel permeation chromatography was 36,500, but sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single polypeptide of apparent Mr 60,000. The enzyme exhibited a marked preference for hexose 6-phosphates, and the rate of substrate hydrolysis (at 5 mM concentration) decreased in the order, galactose 6-phosphate greater than 2-deoxy-D-glucose 6-phosphate greater than fructose 6-phosphate greater than mannose 6-phosphate greater than glucose 6-phosphate. Hexose 1-phosphates, p-nitrophenylphosphate, pyrophosphate, and nucleotides were not hydrolyzed at a significant rate. In addition, the glycolytic intermediates comprising the intracellular phosphoenolpyruvate potential in the starved cells (phosphoenolpyruvate and 2- and 3-phosphoglyceric acids) were not substrates for the phosphatase. Throughout the isolation, the hexose 6-phosphate:phosphohydrolase was stabilized by Mn2+ ion, and the purified enzyme was dependent upon Mn2+, Mg2+, Fe2+, or Co2+ for activation. Other divalent metal ions including Pb2+, Cu2+, Zn2+, Cd2+, Ca2+, Ba2+, Sr2+, and Ni2+ were unable to activate the enzyme, and the first four cations were potent inhibitors. Enzymatic hydrolysis of 2-deoxy-D-glucose 6-phosphate was inhibited by fluoride when Mg2+ was included in the assay, but only slight inhibition occurred in the presence of Mn2+, Fe2+, or Co2+. The inhibitory effect of Mg2+ plus fluoride was specifically and completely reversed by Fe2+ ion. The hexose 6-phosphate:phosphohydrolase catalyzes the in vivo hydrolysis of 2-deoxy-D-glucose 6-phosphate in stage II of the phosphoenolpyruvate-dependent futile cycle in S. lactis (J. Thompson and B. M. Chassy, J. Bacteriol. 151:1454-1465, 1982).  相似文献   

5.
The plastidic class I and cytosolic class II aldolases of Euglena gracilis have been purified to apparent homogeneity. In autotrophically grown cells, up to 81% of the total activity is due to class I activity, whereas in heterotrophically grown cells, it is only 7%. The class I aldolase has been purified to a specific activity of 20 units/mg protein by anion-exchange chromatography, affinity chromatography, and gel filtration. The native enzyme (molecular mass 160 kD) consisted of four identical subunits of 40 kD. The class II aldolase was purified to a specific activity of 21 units/mg by (NH4)2SO4 fractionation, anion-exchange chromatography, chromatography on hydroxylapatite, and gel filtration. The native enzyme (molecular mass 80 kD) consisted of two identical subunits of 38 kD. The Km (fructose-1,6-bisphosphate) values were 12 [mu]M for the class I enzyme and 175 [mu]M for the class II enzyme. The class II aldolase was inhibited by 1 mM ethylenediaminetetraacetate (EDTA), 0.8 mM cysteine, 0.5 mM Zn2+, or 0.5 mM Cu2+. Na+, K+, Rb+, and NH4+ (but not Li+ or Cs+) enhanced the activity up to 7-fold. After inactivation by EDTA, the activity could be partially restored by Mn2+, Cu2+, or Co2+. A subclassification of class II aldolases is proposed based on (a) activation/inhibition by Cys and (b) activation or not by divalent ions.  相似文献   

6.
A new reactive adenine nucleotide has been synthesized: 2-[(4-bromo-2,3-dioxobutyl)thio]-adenosine 5'-monophosphate (2-BDB-TAMP). Adenosine 5'-monophosphate 1-oxide was synthesized by reaction of AMP with m-chloroperoxybenzoic acid. Treatment with NaOH followed by reaction with carbon disulfide yielded 2-thioadenosine 5'-monophosphate (TAMP). The final product was generated by reaction of TAMP with 1,4-dibromobutanedione. The structure of 2-BDB-TAMP was determined by UV, 1H NMR, and 13C NMR spectroscopy as well as by bromide and phosphorus analysis. Rabbit muscle pyruvate kinase is inactivated by 2-BDB-TAMP at pH 7.0 and 25 degrees C. The inactivation rate exhibits a nonlinear dependence on the reagent concentration with KI = 0.57 mM. Protection against inactivation is provided by ADP and ATP, in the presence of Mn2+, as well as by phosphoenolpyruvate, in the presence of K+; in addition, partial protection is provided by AMP plus Mn2+. Incubation of pyruvate kinase with 0.075 mM 2-BDB-TAMP for 70 min in the absence of protective ligands leads to incorporation of 1.55 mol of reagent/mol of enzyme subunit when the enzyme is 53% inactive. In the presence of ADP and Mn2+, only 0.96 mol of reagent/mol of subunit is incorporated at 70 min, while the enzyme retains 100% activity. Similar results were obtained in the presence of ATP plus Mn2+. Assuming that the groups modified in the absence of ligands include those modified in the presence of the nucleotides, the 53% inactivation can be attributed to the modification of 0.59 (1.55-0.96) group per enzyme subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
An extra-ribosomal cAMP-independent protein kinase from cryptobiotic embryos of Artemia salina has been purified to near homogeneity by gel filtration on Bio-Gel A-0.5 m, ion-exchange chromatography on DEAE-cellulose and phosphocellulose P11 and affinity chromatography on casein-Sepharose 4B and ATP-agarose. The enzymatic activity has a broad optimum at pH 7-8. Maximal activity is obtained in the presence of 5-6 mM MgCl2. The activity is inhibited by Mn2+, Ca2+ and K+. The enzyme has an Mr of 127 000, utilizes both ATP and GTP as phosphoryl donors and is completely inhibited by heparin and poly(L-glutamic acid). According to its properties, the enzyme can be classified as a casein kinase type II. Although the enzyme is associated with ribosomes, ribosomal proteins are not among the main substrates. The kinase is able to phosphorylate both the alpha and the beta subunits of initiation factor eIF2 using ATP or GTP as phosphoryl donors. The function of phosphorylation in the initiation of protein synthesis is discussed.  相似文献   

8.
Poly(A) polymerase has been purified to near homogeneity from the cytoplasm of Artemia salina cryptobiotic gastrulae by ion-exchange chromatography on DEAE-cellulose, DEAE-Sepharose CL-6B and phosphocellulose P11, gel filtration on CL-Sepharose 6B, affinity chromatography on poly(A)-Sepharose 4B and ATP-agarose. The enzyme is fully dependent on exogeneous oligo(riboadenylic acid) and is free of any nuclease or other enzyme activities. In standard assay conditions the enzyme preparation has a specific activity of 5.6 mumol AMP . h-1 . (mg protein)-1. Sodium dodecyl sulphate/polyacrylamide gel electrophoresis reveals the presence of only two proteins with Mr 94 000 and 70 000. The Mr-70 000 protein has been identified as poly(A) polymerase. The enzyme is exclusively activated by Mn2+. Addition of Ca2+, Mg2+, Zn2+, NH4+, K+ or Na+ inhibits the enzymatic reaction. The activity is specific for ATP and competitive inhibition is observed in the presence of other ribonucleoside 5'-triphosphates. AMP incorporation is time-dependent and is increased non-linearly with protein and primer concentration.  相似文献   

9.
G Michaels  Y Milner  G H Reed 《Biochemistry》1975,14(14):3213-3219
Pyruvate, orthophosphate dikinase (EC 2.7.9.1) carries out its catalytic function in three successive partial reactions, the final step being the reaction of pyruvate with a stable phosphoenzyme intermediate to give phosphoenolpyruvate and free enzyme (Evans, H.J., and Wood, H. G. (1968), Proc. Natl. Acad. Sci. U.S.A. 61, 1448). Interactions of oxalate, a structural analog of enolpyruvate, with the phosphorylated form of the enzyme have been investigated by kinetic inhibition measurements and by magnetic resonance studies of manganous ion complexes with the enzyme. Oxalate inhibits the reaction catalyzed by pyruvate, phosphate dikinase, and the inhibition is linearly competitive with respect to pyruvate. The inhibitor constant for oxalate of 25 mu-M is fourfold lower than the Michaelis constant for pyruvate. The enhancement in the longitudinal relaxation rate of water protons (PRR) which occurs upon binding of Mn(II) to the enzyme has been used to monitor binding of oxalate to Mn(II)-enzyme complexes. PRR titrations indicate that the dissociation constant of oxalate from the Mn(II) complex of the free form of the enzyme is an order of magnitude weaker than the kinetically determined Ki. On the other hand, titrations of solutions which contain the phosphorylated form of the enzyme reveal a much stronger binding of oxalate. Moreover, the strength of oxalate binding to the phosphorylated enzyme is a function both of the species and of the concentration of monovalent cations in the solution. In the presence of Tl+, which has the most favorable activator constant for the final partial reaction, the dissociation constant for oxalate from its complex with the phosphorylated enzyme is less than 1 mu-M. Electron paramagnetic resonance (EPR) spectra for the enzyme-bound Mn(II) are sensitive to structural perturbations which occur upon binding of substrates or of oxalate to the enzyme. The EPR spectrum for the Mn(II)-phosphoenzyme-oxalate species is distinguished from spectra for other complexes of the enzyme by unusually narrow line widths and consequent resolution of fine structure from electronic quadrupole splitting. The narrow lines in the EPR spectrum are indicative of a rigid, pseudocrystalline environment for the bound Mn(II). The magnitude and frequency dependence of the PRR for the Mn(II)-phosphoenzyme-oxalate complex indicate that if any water molecules are bound to the Mn(II), their exchange with the bulk water is severely retarded. The kinetic and magnetic resonance studies support the hypothesis that oxalate mimics the reactive intermediate, enolpyruvate, in a complex with the phosphorylated enzyme which may resemble the structure of the transition state of the final partial reaction.  相似文献   

10.
J L Kofron  D E Ash  G H Reed 《Biochemistry》1988,27(13):4781-4787
Electron paramagnetic resonance spectroscopy has been used to investigate the structure of the complex of manganous ion with the phosphorylated form of pyruvate,phosphate dikinase (Ep) and the inhibitor oxalate. Oxalate, an analogue of the enolate of pyruvate, is competitive with respect to pyruvate in binding to the phosphorylated form of the enzyme [Michaels, G., Milner, Y., & Reed, G.H. (1975) Biochemistry 14, 3213-3219]. Superhyperfine coupling between the unpaired electrons of Mn(II) and ligands specifically labeled with 17O has been used to identify oxygen ligands to Mn(II) in the complex with oxalate and the phosphorylated form of the enzyme. Oxalate binds at the active site as a bidentate chelate with Mn(II). An oxygen from the 3'-N-phosphohistidyl residue of the protein is in the coordination sphere of Mn(II), and at least two water molecules are also bound to Mn(II) in the complex. Oxalate also binds directly to Mn(II) in a complex with nonphosphorylated enzyme. The structure for the Ep-Mn(II)-oxalate complex implies that simultaneous coordination of a phospho group and of the attacking nucleophile to the divalent cation is likely an important factor in catalysis of this phospho-transfer reaction.  相似文献   

11.
The manganese peroxidase (MnP), from the lignin-degrading fungus Phanerochaete chrysosporium, an H2O2-dependent heme enzyme, oxidizes a variety of organic compounds but only in the presence of Mn(II). The homogeneous enzyme rapidly oxidizes Mn(II) to Mn(III) with a pH optimum of 5.0; the latter was detected by the characteristic spectrum of its lactate complex. In the presence of H2O2 the enzyme oxidizes Mn(II) significantly faster than it oxidizes all other substrates. Addition of 1 M equivalent of H2O2 to the native enzyme in 20 mM Na-succinate, pH 4.5, yields MnP compound II, characterized by a Soret maximum at 416 nm. Subsequent addition of 1 M equivalent of Mn(II) to the compound II form of the enzyme results in its rapid reduction to the native Fe3+ species. Mn(III)-lactate oxidizes all of the compounds which are oxidized by the enzymatic system. The relative rates of oxidation of various substrates by the enzymatic and chemical systems are similar. In addition, when separated from the polymeric dye Poly B by a semipermeable membrane, the enzyme in the presence of Mn(II)-lactate and H2O2 oxidizes the substrate. All of these results indicate that the enzyme oxidizes Mn(II) to Mn(III) and that the Mn(III) complexed to lactate or other alpha-hydroxy acids acts as an obligatory oxidation intermediate in the oxidation of various dyes and lignin model compounds. In the absence of exogenous H2O2, the Mn-peroxidase oxidized NADH to NAD+, generating H2O2 in the process. The H2O2 generated by the oxidation of NADH could be utilized by the enzyme to oxidize a variety of other substrates.  相似文献   

12.
P Bhargava  D Chatterji 《FEBS letters》1988,241(1-2):33-37
The binding affinity between the substrates ATP and UTP with the purified yeast RNA polymerase II have been studied here in the presence and absence of Mn2+. In the absence of template DNA, both ATP and UTP showed tight binding with the enzyme without preference for any specific nucleotide, unlike Escherichia coli RNA polymerase. Fluorescence titration of the tryptophan emission of the enzyme by nucleoside triphosphate substrates gave an estimated Kd value around 65 microM in the absence of Mn2+ whereas in the presence of Mn2+, the Kd was 20 microM. The effect of substrates on the longitudinal relaxation of the HDO proton in enzyme-substrate complex also yielded a similar Kd value.  相似文献   

13.
Adrenal cortex mitochondria prepared by a standard method do not exhibit malic enzyme activity. Addition of physiological concentrations of Ca2+ and Mg2+ enables these mitochondria to reduce added NADP+ by malate to form free NADPH. Half-maximum activation of the mitochondrial malic enzyme requires 0.3 mM Ca2+ and 1 mM Mg2+. Solubilized mitochondrial malic enzymes is independent of Ca2+ and has a K M of 0.2 mM for Mg2+. The Ca2+ effect is dependent on an initial period of active Ca2+ uptake which also causes other changes in respiratory properties similar to those observed with mitochondria from other tissues. After Ca2+ accumulation has taken place, free Ca2+, but not additional accumulation, is still required for malic enzyme activity. The requirement for Mg2+ can be met by Mn2+ (1 mM). This concentration of Mn2+ alone yielded only a slight activation of mitochondrial malic enzyme while higher concentrations of Mn2+ alone gave good activation of the mitochondrial malic enzy.e The NADPH generated by the Ca2+-Mg2+ activated malic enzyme effectively supports the 11beta-hydroxylation of deoxycorticosterone, whereas in the presence of malate, or malate plus Mg2+ but absence of Ca2+, the energy linked transhydrogenase supplies all the required NADPH. The activated malic enzyme appears to be more efficient than transhydrogenase in generating NADPH to support 11beta-hydroxylation. Cyanide and azide have been found to inhibit solubilized mitochondrial malic enzyme.  相似文献   

14.
15.
Purified Na+, K(+)-ATPase was phosphorylated by [gamma-32P]ATP in a medium containing dimethylsulfoxide and 5 mM Mg2+ in the absence of Na+ and K+. Addition of K+ increased the phosphorylation levels from 0.4 nmol phosphoenzyme/mg of protein in the absence of K+ to 1.0 nmol phosphoenzyme/mg of protein in the presence of 0.5 mM K+. Higher velocities of enzyme phosphorylation were observed in the presence of 0.5 mM K+. Increasing K+ concentrations up to 100 mM lead to a progressive decrease in the phosphoenzyme (EP) levels. Control experiments, that were performed to determine the contribution to EP formation from the Pi inevitably present in the assays, showed that this contribution was of minor importance except at high (20-100 mM) KCl concentrations. The pattern of EP formation and its KCl dependence is thus characteristic for the phosphorylation of the enzyme by ATP. In the absence of Na+ and with 0.5 mM K+, optimal levels (1.0 nmol EP/mg of protein) were observed at 20-40% dimethylsulfoxide and pH 6.0 to 7.5. Addition of Na+ up to 5 mM has no effect on the phosphoenzyme level under these conditions. At 100 mM Na+ or higher the full capacity of enzyme phosphorylation (2.2 nmol EP/mg of protein) was reached. Phosphoenzyme formed from ATP in the absence of Na+ is an acylphosphate-type compound as shown by its hydroxylamine sensitivity. The phosphate radioactivity was incorporated into the alpha-subunit of the Na+, K(+)-ATPase as demonstrated by acid polyacrylamide gel electrophoresis followed by autoradiography.  相似文献   

16.
Co(II)-glyoxalase I has been prepared by reactivation of apoenzyme from human erythrocytes with Co2+. The visible absorption spectrum showed maxima at 493 and 515 nm and shoulders at 465 and 615 nm. The absorption coefficients at 493 and 515 nm were 35 and 33 M-1 cm-1/cobalt ion, respectively; i.e. 70 and 66 M-1 cm-1 for the dimeric metalloprotein. The product of the enzymatic reaction, S-D-lactoylglutathione, although binding to Co(II)-glyoxalase I, had no demonstrable effect on the visible absorption spectrum, indicating binding outside the first coordination sphere of the metal. The EPR spectrum at 3.9 K was characterized by g1 approximately 6.6, g2 approximately 3.0, and g3 approximately 2.5, and eight hyperfine lines with A1 = 0.025 cm-1. Binding of the strong competitive inhibitor S-p-bromobenzylglutathione to Co(II)-glyoxalase I gave three g values: 6.3, 3.4, and 2.5, indicating a conformational change affecting the environment of the metal ion. Both optical and EPR spectra strongly suggest a high spin Co2+ with octahedral coordination in the active site of the enzyme. The similarities in kinetic properties between native Zn(II)-glyoxalase I and enzyme substituted with Mg2+, Mn2+, or Co2+ is consistent with the view that these enzyme forms have the same metal coordination in the protein.  相似文献   

17.
Gastric acid secretion results from the activity of a specific ATPase, the (H+,K+)-ATPase. This enzyme, discovered in 1973, exchanges H+ for K+. It has two ATP binding sites, both involved in enzyme activity, whose affinities vary as a function of the H+ and K+ concentrations. Hydrolysis of ATP at the highest affinity site leads to the synthesis of a covalent aspartyl phosphate which accumulates in the absence of K+. The presence of this cation accelerates dephosphorylation resulting in the stimulation of ATPase (and PNPPase) activity. The structure of membranous (H+,K+)-ATPase is poorly defined. n-Octylglucoside solubilizes an active enzyme of 390-420 kDa which can be partly depolymerized using cholate. The monomer, characterized in SDS has a 95 kDa molecular mass and is inactive. In the presence of magnesium, (H+,K+)-ATPase catalyzes the active and neutral exchange of H+ for K+ at the expense of ATP. In the absence of ATP, (H+,K+)-ATPase acts as a passive transporter exchanging K+ for K+ at maximal rate and H+ for K+ at a 20 times slower rate.  相似文献   

18.
Sarcoplasmic phosphorylase phosphatase extracted from ground skeletal muscle was recovered in a high molecular weight from (Mr = 250000). This enzyme has been purified from extracts by anion-exchange and gel chromatography to yield a preparation with three major protein components of Mr 83000, 72000, and 32000 by sodium dodecyl sulfate gel electrophoresis. The phosphorylase phosphatase activity of the complex form was activated more than 10-fold by Mn2+, with a K0.5 of 10(-5) M, but not by Mg2+ or Ca2+. Manganese activation occurred over a period of several minutes and resulted primarily in an increase in Vmax of a phosphatase that was sensitive to trypsin. Activation persisted after gel filtration, and the active form of the enzyme did not contain bound manganese measured by using 54Mn2+. A contaminating p-nitrophenylphosphatase was activated by either Mn2+ (K0.5 of 10(-4) M) or Mg2+ (K0.5 of 10(-3) M). Unlike the protein phosphatase this enzyme was inactive following removal of the metal ions by gel filtration. The phosphatase complex could be dissociated into its component subunits by precipitation with 50% acetone at 20 degrees C in the presence of an inert divalent cation, reducing agent, and bovine serum albumin. Two catalytic subunits were quantitatively recovered; one of Mr 83000 was a trypsin-sensitive manganese-activated phosphatase and the second of Mr 32000 was trypsin-stable and metal ion dependent. Both enzymes were effective in catalyzing the dephosphorylation of either phosphorylase a or the regulatory subunit of adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase, but neither subunit possessed p-nitrophenylphosphatase activity.  相似文献   

19.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

20.
Using physical techniques, circular dichroism and intrinsic and extrinsic fluorescence, the binding of divalent cations to soluble protein kinase C and their effects on protein conformation were analyzed. The enzyme copurifies with a significant concentration of endogenous Ca2+ as measured by atomic absorption spectrophotometry, however, this Ca2+ was insufficient to support enzyme activity. Intrinsic tryptophan fluorescence quenching occurred upon addition to the soluble enzyme of the divalent cations, Zn2+, Mg2+, Ca2+ or Mn2+, which was irreversible and unaffected by monovalent cations (0.5 M NaCl). Far ultraviolet (200-250 nm) circular dichroism spectra provided estimations of secondary structure and demonstrated that the purified enzyme is rich in alpha-helices (42%) suggesting a rather rigid structure. At Ca2+ or Mg2+ concentrations similar to those used for fluorescence quenching, the enzyme undergoes a conformational transition (42-24% alpha-helix, 31-54% random structures) with no significant change in beta-sheet structures (22-26%). Maximal effects on 1 microM enzyme were obtained at 200 microM Ca2+ or 100 microM Mg2+, the divalent cation binding having a higher affinity for Mg2+ than for Ca2+. The Ca2(+)-induced transition was time-dependent, while Mg2+ effects were immediate. In addition, there was no observed energy transfer for protein kinase C with the fluorescent Ca2(+)-binding site probe, terbium(III). This study suggests that divalent cation-induced changes in soluble protein kinase C structure may be an important step in in vitro analyses that has not yet been detected by standard biochemical enzymatic assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号