首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
煤矿复垦区土壤水动力学特性对下渗过程的影响   总被引:2,自引:0,他引:2  
杨永刚  苏帅  焦文涛 《生态学报》2018,38(16):5876-5882
煤矿复垦区土壤水对植物生长、溶质运移以及土壤环境的变化起着至关重要的作用。定量揭示煤矿复垦区土壤水下渗过程是亟待诠释的关键科学问题。本研究通过测定典型矿区不同深度土壤非饱和导水率、容重、总孔隙度和粒径等水动力学参数,结合染色示踪试验,刻画矿区非饱和带土壤水运移过程。染色示踪结果显示30、60 L和90 L这3种实验下渗水量条件下,水流沿X方向侧向扩散的最大距离分别为10、30 cm和35 cm,沿Y方向侧向扩散的最大距离分别为10、25 cm和30 cm。互相关函数显示随着下渗水量增大,水流扩散作用也在加强,但过多水量并没有明显增加下渗深度和扩散距离。吸力大于300 hpa时,0.01—0.05 mm土壤粒径含量和非饱和导水率呈负相关关系;吸力和非饱和导水率采用指数函数拟合效果较好(r~20.9),对拟合参数a、b和土壤容重(x)进行回归分析:a=0.0015x~2-0.00499x+0.0004,b=0.0583x~2+0.1234x-0.072。同一吸力下土壤容重大的土样非饱和导水率较小;吸力值为300 hpa是非饱和导水率的转折点;非饱和导水率和土壤容重呈现负相关关系,和总孔隙度呈现正相关关系,且二者的相关性随吸力的增加而降低。  相似文献   

2.
Summary Four paddy soils from Thailand were included in this investigation. The soils are described as marine alluvial, fresh water alluvial, hydromorphic alluvial and hydromorphic non-calcareous brown soil. The hydraulic conductivity of water saturated soil was determined on puddled samples, and soil moisture retention curves were recorded for unpuddled samples. In a pot experiment rice variety RD-1 was grown on the soils under flooded and unflooded conditions. For the soils studied a negative relationship was found between the hydraulic conductivity and the ability of the soil to retain water against a given suction. The grain yield was higher under flooded conditions, while among the various soils studied in this experiment grain yield increased with decreasing water content in the suction range studied and increasing hydraulic conductivity of the soils. Better root development facilitated by more favourable physical conditions in highly permeable soils could be the possible reason for the yield increase.  相似文献   

3.
Dairy manure with a total solids content of 77.2g TS/l was separated by means of screening and coagulation-flocculation treatments, using CaO as coagulant and a cationic polyacrylamide as flocculant, obtaining liquid and solid fractions. The solid fraction separated contained 33.4% of the initial total mass of dairy manure plus chemical solutions, containing also 75.2% of the TS, 80.4% of the VS, 58.5% of the total Kjeldahl nitrogen (TKN) and 87.4% of the total phosphorus (P(T)) present in the initial dairy manure. 83.7% of the liquid fraction chemical oxygen demand (COD) was anaerobically biodegradable (COD(BD)). Methane production for the separated liquid fraction was 0.604l CH4 NCTP/g VS added, being 0.307 and 0.371l CH4 NCTP/g VS added for dairy manure and screened dairy manure, respectively. The characteristics of this liquid fraction would allow its treatment in high loading anaerobic reactors having shorter hydraulic retention times, smaller reactor size and a higher methane volumetric production rate than conventional anaerobic reactors treating either manure or screened manure.  相似文献   

4.
刘春利  邵明安 《应用生态学报》2008,19(11):2400-2407
采用地统计学中交互相关系数方法,对黄土高原六道沟流域农田、荒草地、林地、苜蓿地4种土地类型土壤剖面水力特性及其对水分分布的影响进行了分析.结果表明:研究区农田与荒草地的土壤特性相似,苜蓿地与林地相似;相同吸力条件下,土壤水分以农田最大、林地最小,而饱和导水率则相反;除土壤水分消耗期的林地和苜蓿地土壤水分随土层深度增加呈上升趋势外,其他时期各土地利用方式下土壤水分均随土层深度的增加而降低.土壤剖面饱和导水率与土壤含水量之间的影响程度依土壤水分条件而异:水分补偿期,剖面土壤饱和导水率对滞后其空间距离0~40 cm土层内的土壤含水量具有显著影响,而土壤水分含量对饱和导水率的影响范围为0~50 cm;水分稳定期,饱和导水率与土壤含水量的相互影响范围均在0~60 cm;水分补偿期和稳定期,二者之间为正相关;土壤水分消耗期,农田和荒草地饱和导水率与水分含量呈正相关,饱和导水率对土壤水分含量的影响范围在滞后其空间范围0~80 cm土层内,而土壤水分含量对饱和导水率的影响范围在0~60 cm内,林地和苜蓿地则呈负相关,相互影响范围均在0~60 cm土层内.  相似文献   

5.
A thermophilic upflow anaerobic sludge blanket (UASB) reactor was combined with a mesophilic aerobic fluidized bed (AFB) reactor for treatment of a medium strength wastewater with 2,700?mg COD?l?1. The COD removal efficiency reached 75% with a removal rate of 0.2 g COD?l?1 h?1 at an overall hydraulic retention time 14 hours. The distribution of microbial activity and its change with hydraulic retention time in the two reactors were investigated by measuring ATP concentration in the reactors and specific ATP content of the biomass. In the UASB reactor, the difference in specific ATP was significant between the sludge bed and blanket solution (0.02?mg ATP g VS?1 versus 0.85?mg ATP g VS?1) even though the ATP concentrations in these two zones were similar. A great pH gradient up to 4 was developed along the UASB reactor. Since a high ATP or biological activity in the blanket solution could only be maintained in a narrow pH range from 6.5 to 7.5, the sludge granules showed a high pH tolerance and buffering capacity up to pH 11. The suspended biomass in AFB reactor had a higher specific ATP than the biomass fixed in polyurethane carriers (1.6?mg ATP g VS?1 versus 1.1?mg ATP g VS?1), which implies a starvation status of the immobilized cells due to mass transfer limitation. The aerobes had to work under starvation conditions in this polishing reactor. The anaerobic biomass brought into AFB reactor contributed to an increase in suspended solids, but not the COD removal because of its fast deactivation under aerobic conditions. A second order kinetic model was proposed for ATP decline of the anaerobes. The results on distribution of microbial activity in the two reactors as well as its change with hydraulic retention time lead to further performance improvement of the combined anaerobic/aerobic reactor system.  相似文献   

6.
Many hydrocarbon‐contaminated soils contain nonaqueous phase liquid (NAPL) following releases from facilities such as underground storage tanks and pipelines. The recovery of free product by pumping from extraction wells or trenches is often an essential prerequisite step prior to further remedial actions. Vacuum‐enhanced NAPL recovery (sometimes referred to as dual‐phase extraction or bioslurping) has attracted recent attention because it offers a means to increase NAPL recovery rates compared with conventional methods, and to accomplish dewatering, while also facilitating vapor‐based unsaturated zone cleanup. A conceptual model is presented that recognizes the effects that vacuum‐enhanced recovery has on soil water and NAPL, with a focus on liquid residing at negative gage pressures and therefore lacking sufficient potential energy to flow into a conventional recovery well or trench. The imposition during vacuum‐enhanced recovery of subatmospheric pressures within the subsurface can reduce the required potential energy (i.e., the entry suction), allowing liquid to be extracted that hitherto had not been able to flow into the well; moreover, it induces both pneumatic and hydraulic gradients toward the vacuum source that increase the rate of water and NAPL recovery. This conceptual model was tested during a 3‐week‐long pilot study at a South Carolina industrial site at which diesel fuel had been discovered in a saprolite formation. During Phase 1 of the pilot study, conventional recovery (liquid only) was carried out from a well screened at the water table, while during Phase 2 dual‐phase extraction was performed at the same well. The application of 27 kPa vacuum resulted in an increase in NAPL recovery from negligible (Phase 1) to approximately 6.6 l/d (Phase 2), with a concurrent increase in water recovery from approximately 190 to 760 l/ d. Neutron moisture probe observations revealed that vadose‐zone liquids underwent redistribution toward the extraction well in response to the onset of Phase 2, also in accordance with the conceptual model. An understanding of soil physical relationships is crucial to the successful application of these and other in situ soil remediation technologies.  相似文献   

7.
Respirometry methods have been used for many years to assess the microbial activity of mainly heterotrophic bacteria. Using this technique, the consumption of oxygen and evolution of carbon dioxide for heterotrophic carbon catabolism can be used to assess microbial activity. In the case of autotrophic bioleaching bacteria, carbon dioxide is used as a carbon source resulting in the consumption of both oxygen and carbon dioxide. The use of such respirometry techniques at high temperatures (up to 80 degrees C) for the investigation of bioleaching Archaea, however, poses particular difficulties. At these elevated temperatures, the solubility of oxygen into the liquid phase is particularly poor. This work details specific methods by which high temperature constraints are overcome while monitoring the activity of thermophilic Archaea using a Micro-Oxymax respirometer (Columbus Instruments). The use of elevated headspace oxygen concentrations, in order to overcome low oxygen solubility, is demonstrated as well as the effect of such elevated oxygen concentrations on microbial oxygen consumption rates. The relative rates of oxygen and carbon dioxide consumption are also illustrated during the oxidation of a chalcopyrite concentrate. In addition, this paper details generic methods by which respirometry data can be used to quantify inhibitory effects of a compound such as Na(2)SO(4). The further use of such data in predicting minimum hydraulic reactor retention times for continuous culture bioleaching reactors, as a function of concentration of potentially inhibitory compounds, is also demonstrated.  相似文献   

8.
A metabolic model of the biological phosphorus removal process has been developed and validated previously for complex conversions during the process under anaerobic and aerobic conditions at different growth rates in sequencing batch reactors in steady state. For additional validation of the metabolic model, the model was applied to the dynamic conditions which occur during the start-up phase of the biological P removal in the presence and absence of non-polyP heterotrophic microorganisms. In a laboratory scale sequencing batch reactor, experiments were performed to examine the enrichment of the population with polyphosphate organisms during the start-up and the subsequent shift from non-polyP, heterotrophic organisms to polyP organisms in the sludge. The effect of different influent loading patterns for acetate and phosphate was studied. In these experiments, the maximal growth rate of the polyP organisms and the behavior of the internal storage compounds could be derived. The metabolic model was capable of describing the experimental results, without the need to adjust the kinetic or stoichiometric parameters obtained under steady state conditions. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
The technical feasibility of adopting the fixed-film reactor concept for biogas production from screened dairy manure was investigated. The methane production capability of laboratory-scale 4-L anaerobic reactors (conventional and fixed-film) receiving screened dairy manure and operated at 35 degrees C was compared. Dairy manure filtrate with 4.4% total solids (TS) and 3.4% volatile solids (VS) (average value) was prepared from 1:1 manure-water slurry. The feed material was added intermittently at loading rates ranging from 2.34 to 25 and 2.25 to 785 g VS/L d, respectively, for the conventional and fixed-film reactors. Maximum methane production rate (L CH(4)/L d) for the conventional reactor was 0.63 L CH(4)/L d achieved at a 6-day hydraulic retention time (HRT). For the fixed-film reactor the maximum production rate was 3.53 L CH(4)/L d when operated at a loading rate of 262 g VS/L d (3 h HRT). The fixed-film reactor was capable of sustaining a loading of 785 g VS/L d (1 h HRT). The fixed-film reactor performed much better than the conventional reactors. These results indicate that a large reduction of required reactor volume is possible through application of a fixed-film concept combined with a liquid-solid separation pretreatment of dairy manure.  相似文献   

10.
The feasibility of soil vapor extraction and bioventing technologies was examined for a petroleum hydrocarbon-contaminated site. The test site was highly contaminated with toluene, ethylbenzene, and xylene, due to leakage from petroleum storage tanks. Three respiration tests demonstrated that the test site conditions were appropriate for application of air-based remediation technologies. The oxygen consumption rates ranged from 4.32 to 7.68 %-O2/day and biodegradation rates ranged from 2.72 to 4.84?mg/kg-day in respiration tests. In a 120-day soil vapor extraction pilot test, high initial mass removals (with tailing effects) were observed. As expected for the soil vapor extraction, the volatilization rate was much higher than the biodegradation rate. In a bioventing trial, the biodegradation effect was predominant, but a tailing effect was not observed. From this study, the suggested sequence of remediation is to construct an integrated system of soil vapor extraction and bioventing and initially operate the soil vapor extraction system until the volatilization rate becomes smaller than the biodegradation rate. After that, the system needs to be changed over to a bioventing mode. Field demonstration supports the feasibility of the proposed integrated system.  相似文献   

11.
Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage—a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte‐dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year‐round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock‐dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5 years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short‐ and long‐term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon‐rich permafrost ecosystems.  相似文献   

12.
The feasibility of anaerobic treatment of wastewater containing methanethiol (MT), an extremely volatile and malodorous sulfur compound, was investigated in lab-scale bioreactors. Inoculum biomass originating from full-scale anaerobic wastewater treatment facilities was used. Several sludges, tested for their ability to degrade MT, revealed the presence of organisms capable of metabolizing MT as their sole source of energy. Furthermore, batch tests were executed to gain a better understanding of the inhibition potential of MT. It was found that increasing MT concentrations affected acetotrophic organisms more dramatically than methylotrophic organisms. Continuous reactor experiments, using two lab-scale upflow anaerobic sludge bed (UASB) reactors (R1 and R2), aimed to determine the maximal MT load and the effect of elevated sulfide concentrations on MT conversion. Both reactors were operated at a hydraulic retention time (HRT) of about 7 hours, a temperature of 30 degrees C, and a pH of between 7.3 and 7.6. At the highest influent MT concentration applied, 14 mM in R1, corresponding to a volumetric loading rate of about 50 mM MT per day, 87% of the organic sulfur was recovered as hydrogen sulfide (12.2 mM) and the remainder as volatile organic sulfur compounds (VOSCs). Upon decreasing the HRT to 3.5 to 4.0 h at a constant MT loading rate, the sulfide concentration in the reactor decreased to 8 mM and MT conversion efficiency increased to values near 100%. MT conversion was apparently inhibited by the high sulfide concentrations in the reactor. The specific MT degradation rate, as determined after 120 days of operation in R1, was 2.83 +/- 0.27 mmol MT g VSS(-1) day(-1). During biological desulfurization of liquid hydrocarbon phases, such as with liquefied petroleum gas (LPG), the combined removal of hydrogen sulfide and MT is desired. In R2, the simultaneous addition of sodium sulfide and MT was therefore studied and the effect of elevated sulfide concentrations was investigated. The addition of sodium sulfide resulted in enhanced disintegration of sludge granules, causing significant washout of biomass. Additional acetate, added to stimulate growth of methanogenic bacteria to promote granulation, was hardly converted at the termination of the experimental period.  相似文献   

13.
Most conventional digesters used for animal wastewater treatment include continuously stirred-tank reactors. While imperfect mixing patterns are more common than ideal ones in real reactors, anaerobic digestion models often assume complete mixing conditions. Therefore, their applicability appears to be limited. In this study, a mathematical model for anaerobic digestion of cattle manure was developed to describe the dynamic behavior of non-ideal mixing continuous flow reactors. The microbial kinetic model includes an enzymatic hydrolysis step and four microbial growth steps, together with the effects of substrate inhibition, pH and thermodynamic considerations. The biokinetic expressions were linked to a simple two-region liquid mixing model, which considered the reactor volume in two separate sections, the flow-through and the retention regions. Deviations from an ideal completely mixed regime were represented by changing the relative volume of the flow-through region (a) and the ratio of the internal exchange flow rate to the feed flow rate (b). The effects of the hydraulic retention time, the composition of feed, the initial conditions of the reactor and the degree of mixing on process performance can be evaluated by the dynamic model. The simulation results under different conditions showed that deviations from the ideal mixing regime decreased the methane yield and resulted in a reduced performance of the anaerobic reactors. The evaluation of the impact of the characteristic mixing parameters (a) and (b) on the anaerobic digestion of cattle manure showed that both liquid mixing parameters had significant effects on reactor performance.  相似文献   

14.
Over the last few decades, due to increase in grazing intensity, animal trampling has led to soil structure deterioration in Inner Mongolia, China. We investigated two different steppe ecosystems: Leymus chinensis (LCh, characterized by relatively higher precipitation) and Stipa grandis (SG) and two grazing intensities: ungrazed since 1979 (UG79) and grazed (continuously grazed, CG, at the Stipa grandis site and winter grazed, WG, at Leymus chinensis). Soil mechanical and hydraulic properties of semiarid steppe soils from each site and treatment were determined for soil aggregates and disturbed and bulk soil samples from different depths (4?C8, 18?C22, 30?C34 and 56?C60 cm for disturbed and bulk samples and 0?C15 cm for the aggregates). Grazing causes a significant increase in tensile strength of aggregates and in the precompression stress of the bulk soil as well as a decrease in air and saturated hydraulic conductivity, irrespective of the vegetation type. Furthermore, exclusion from grazing led to more pronounced recovery of soil strength and pore continuity and hydraulic conductivity at the LCh site but it also depended on the moisture conditions of the sites. Under wetter conditions as well as after repeated freezing and thawing the soil strength declined.  相似文献   

15.
The characteristics and development of thermophilic anaerobic sludge in upflow staged sludge bed (USSB) reactors were studied. The compartmentalized reactors were inoculated with partially crushed mesophilic granular sludge and then fed with either a mixture of volatile fatty acids (VFA) or a mixture of sucrose and VFA. The staged degradation of the soluble substrate in the various compartments led to a clear segregation of specific types of biomass along the height of the reactor, particularly in reactors fed with the sucrose-VFA mixture. Both the biological as well as the physical properties of the cultivated sludge were affected by the fraction of nonacidified substrate. The sludge in the first compartment of the reactor treating the sucrose-VFA mixture was whitish and fluffy, most likely resulting from the development of acidifying bacteria. Sludge granules which developed in the top part of this reactor possessed the highest acetogenic and methanogenic activity and the highest granule strength as well. The experiments also revealed that the conversion of the sucrose-VFA mixture into methane gradually deteriorated at prolonged operation at high organic loading rates (50 to 100 g COD . L(-1) . day(-1)). Stable long-term performance of a reactor can only be achieved by preserving the sludge segregation along the height of the reactor. In the reactor fed solely with the VFA mixture little formation of granular sludge occurred. In this reactor, large differences in sludge characteristics were also observed along the reactor height. Li(+)-tracer experiments indicated that the hydraulic regime in the USSB reactor is best characterized by a series of at least five completely mixed reactors. The formation of granular sludge was found to influence the liquid flow pattern. (c) 1996 John Wiley & Sons, Inc.  相似文献   

16.
In order to elucidate the capability of biomass developed in membrane bioreactors (MBR) to degrade and sorb emerging micropollutants, biodegradation (kbiol) and sorption (ksor) kinetic constants as well as solid–liquid partition coefficients (Kd) of 13 selected pharmaceutical and personal care products (PPCPs) were determined with MBR heterotrophic biomass adding a pulse (100 ppb of each compound) and following the liquid and solid phase concentrations over time. The results obtained were compared to literature data referring to conventional activated sludge (CAS) systems. Two experiments were performed: one in the MBR itself and the second one in a batch reactor with the same type and concentration of biomass as in the MBR. Overall, both biodegradation and sorption coefficients were in the same range as previously reported by other studies in CAS systems, indicating that MBR biomass does not show better capabilities for the biological degradation and/or sorption of PPCPs compared to the biomass developed in CAS reactors. Therefore, the higher PPCPs removal efficiencies found in MBRs are explained by the high biomass concentrations obtained at the long sludge retention times at which this type of reactors are usually operated.  相似文献   

17.
A rigorous steady-state model of anaerobic biofilm reactors taking into account acid-base and gas-phase equilibria in the reactor in conjunction with detailed chemical equilibria and mass transfer in acetate-utilizing methanogenic biofilms is presented. The performances of ideal completely stirred tank reactors (CSTRs) and plug-flow reactors, as well as reactors with nonideal hydraulic conditions, are simulated. Decreasing the surface loading rate increases the acetate removal efficiency, while decreasing the influent pH and increasing the buffering capacity improves the removal efficiency only if the bulk pH of the reactor shifts toward more optimal values between 6.8 to 7.0. The reactor can have negative or positive removal efficiencies depending on the start-up conditions. The respiration coefficient plays a critical role in determining the minimum influent pH required for reactor recovery after failure. Having multiple CSTRs-in-series generally increases the overall removal efficiency for the influent conditions investigated. Monitoring of the influent feed quality is critical for plug-flow reactors, becasue failure of the initial sections of the reactor may cause a cascading effect that may lead to a rapid reactor failure. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
The ground polluted with oil products was analyzed at a depth of 0.5–7.8 m (loamy soil), 11.5–13.0 m (gravelstone), 13.0–15.0 m (siltstone). It was shown that the distribution of oil products and microorganisms in the ground over the profile depends on the hydrogeological properties of the rock (porosity, hydraulic conductivity). The number of aerobic heterotrophic microorganisms varied from 106–107 CFU/g, the fraction of hydrocarbon-oxidizing ones increased with depth from 30 to 85%. The number of anaerobic microorganisms was comparable to the number of aerobic ones. The number of psychrotrophs and psychrophiles increases with depth; in the lower horizon these organisms prevail over the number of mesophiles.  相似文献   

19.
A new stability evaluating system for ANAMMOX comprising three instability indices i.e. coefficient of variation ratio, coefficient of range ratio and coefficient of regression function derivative was established. Three lab-scale ANAMMOX reactors viz upflow anaerobic sludge blanket (UASB) reactor, upflow stationary fixed film (USFF) reactor and anaerobic sequencing batch reactor (ASBR) were compared for their stability based on the established criterion against the hydraulic and substrate concentration shocks. The results showed that all ANAMMOX reactors under investigation were more tolerant to the hydraulic shock than substrate concentration shock. The UASB reactor was the most stable reactor configuration towards substrate concentration shock, followed by the USFF reactor and ASBR. However, the ASBR proved the most tolerant to hydraulic shock, followed by the UASB reactor and USFF reactor. In terms of stability, UASB reactor was more suitable configuration compared with USFF reactor. The instability indices proved to be effective and explicit for the evaluation of ANAMMOX systems.  相似文献   

20.
To sustain the performance of a land treatment system, soil hydraulic conductivity must be maintained. Biological clogging of soil pores tends to decrease hydraulic conductivity. The changes in soil biological properties and hydraulic conductivity were examined in repacked soil cores receiving weekly additions of wastewater with three C:N ratios for 28 weeks. We tested whether addition of a nitrification inhibitor (dicyandiamide, DCD) and polysaccharidase enzyme preparation (PEP) with wastewater would maintain hydraulic conductivity. Increases in wastewater C:N ratio increased soil microbial biomass, carbohydrate, and nematode population and decreased nitrate leaching and hydraulic conductivity, by up to 80%. While neither DCD nor PEP treatments lowered soil carbohydrate, both had increased hydraulic conductivity (in the range of 280–290%) in cores irrigated with high C:N wastewater, relative to `nil' treatment wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号