首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium (Ca2+)-mediated signaling events in fungal pathogens such as Cryptococcus neoformans are central to physiological processes, including those that mediate stress responses and promote virulence. The Cch1-Mid1 channel (CMC) represents the only high-affinity Ca2+ channel in the plasma membrane of fungal cells; consequently, cryptococci cannot survive in low-Ca2+ environments in the absence of CMC. Previous electrophysiological characterization revealed that Cch1, the predicted channel pore, and Mid1, a binding partner of Cch1, function as a store-operated Ca2+-selective channel gated by depletion of endoplasmic reticulum (ER) Ca2+ stores. Cryptococci lacking CMC did not survive ER stress, indicating its critical role in restoring Ca2+ homeostasis. Despite the requirement for Mid1 in promoting Ca2+ influx via Cch1, identification of the role of Mid1 remains elusive. Here we show that the C-terminal tail of Mid1 is a modulatory region that impinges on Cch1 channel activity directly and mediates the trafficking of Mid1 to the plasma membrane. This region consists of the last 24 residues of Mid1, and the functional expression of Mid1 in a human embryonic cell line (HEK293) and in C. neoformans is dependent on this domain. Substitutions of arginine (R619A) or cysteine (C621A) in the modulatory region failed to target Mid1 to the plasma membrane and prevented CMC activity. Interestingly, loss of a predicted protein kinase C (PKC)-phosphorylated serine residue (S605A) had no effect on Mid1 trafficking but did alter the kinetics of Cch1 channel activity. Thus, establishment of Ca2+ homeostasis in C. neoformans is dependent on a modulatory domain of Mid1.  相似文献   

2.
3.
Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here, we describe the identification and functional characterization of CaECM25, a gene that has not been reported before. We constructed Caecm25?/? mutants and investigated the role of the gene in morphogenesis, cell wall organization and virulence. CaECM25 deletion resulted in defects in cell separation, a slower growth rate, reduced filamentous growth and attenuated adherence to plastic surfaces. The Caecm25?/? mutant was also significantly less virulent than wild type when tested for systemic infection in mice. Therefore, CaECM25 plays important roles in morphogenesis, cell wall organization and virulence.  相似文献   

4.
Although the high affinity Ca2+ channel, Cch1, and its subunit Mid1 have been investigated and evaluated in yeast and some of filamentous fungi, little is known about the function of their homologs in the Aspergilli. Here, we have functionally characterized the yeast homologs, CchA and MidA, in Aspergillus nidulans using conditional and null deletion mutants. CchA and MidA not only have functional benefits of fast growth, which is consistent with Cch1 and Mid1 in yeast, but also have unique and complex roles in regulating conidiation, hyphal polarity and cell wall components in low-calcium environments. The defect of CchA or MidA resulted in a sharp reduction in the number of conidiospores, accompanied by abnormal metulae, and undeveloped-phialides at a higher density of inoculum. Most interestingly, these conidiation defects in mutants can, remarkably, be rescued either by extra-cellular Ca2+ in a calcineurin-dependent way or by osmotic stress in a calcineurin-independent way. Moreover, the fact that the phenotypic defects are not exacerbated by the presence of the double deletion, together with the Y2H assay, indicates that CchA and MidA may form a complex to function together. Our findings suggest that the high-affinity Ca2+ channel may represent a viable and completely unexplored avenue to reduce conidiation in the Aspergilli.  相似文献   

5.
Pathogenic fungi have developed mechanisms to cope with stresses imposed by hosts. For Cryptococcus spp., this implies active defense mechanisms that attenuate and ultimately overcome the onslaught of oxidative stresses in macrophages. Among cellular pathways within Cryptococcus neoformans'' arsenal is the plasma membrane high-affinity Cch1-Mid1 calcium (Ca2+) channel (CMC). Here we show that CMC has an unexpectedly complex and disparate role in mitigating oxidative stress. Upon inhibiting the Ccp1-mediated oxidative response pathway with antimycin, strains of C. neoformans expressing only Mid1 displayed enhanced growth, but this was significantly attenuated upon H2O2 exposure in the absence of Mid1, suggesting a regulatory role for Mid1 acting through the Ccp1-mediated oxidative stress response. This notion is further supported by the interaction detected between Mid1 and Ccp1 (cytochrome c peroxidase). In contrast, Cch1 appears to have a more general role in promoting cryptococci survival during oxidative stress. A strain lacking Cch1 displayed a growth defect in the presence of H2O2 without BAPTA [(1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, cesium salt] or additional stressors such as antimycin. Consistent with a greater contribution of Cch1 to oxidative stress tolerance, an intracellular growth defect was observed for the cch1Δ strain in the macrophage cell line J774A.1. Interestingly, while the absence of either Mid1 or Cch1 significantly compromises the ability of C. neoformans to tolerate oxidative stress, the absence of both Mid1 and Cch1 has a negligible effect on C. neoformans growth during H2O2 stress, suggesting the existence of a compensatory mechanism that becomes active in the absence of CMC.  相似文献   

6.
7.
Phospholipid biosynthetic pathways play crucial roles in the virulence of several pathogens; however, little is known about how phospholipid synthesis affects pathogenesis in fungi such as Candida albicans. A C. albicans phosphatidylserine (PS) synthase mutant, cho1Δ/Δ, lacks PS, has decreased phosphatidylethanolamine (PE), and is avirulent in a mouse model of systemic candidiasis. The cho1Δ/Δ mutant exhibits defects in cell wall integrity, mitochondrial function, filamentous growth, and is auxotrophic for ethanolamine. PS is a precursor for de novo PE biosynthesis. A psd1Δ/Δ psd2Δ/Δ double mutant, which lacks the PS decarboxylase enzymes that convert PS to PE in the de novo pathway, has diminished PE levels like those of the cho1Δ/Δ mutant. The psd1Δ/Δ psd2Δ/Δ mutant exhibits phenotypes similar to those of the cho1Δ/Δ mutant; however, it is slightly more virulent and has less of a cell wall defect. The virulence losses exhibited by the cho1Δ/Δ and psd1Δ/Δ psd2Δ/Δ mutants appear to be related to their cell wall defects which are due to loss of de novo PE biosynthesis, but are exacerbated by loss of PS itself. Cho1p is conserved in fungi, but not mammals, so fungal PS synthase is a potential novel antifungal drug target.  相似文献   

8.
The type II Ca2+/calmodulin-dependent protein kinases (CaMKs) are thought to play a vital role in cellular regulation in mammalian cells. Two genes CMK1 and CMK2 in the Candida albicans genome encode homologues of mammalian CaMKs. In this work, we constructed the cmk1Δ/Δ, the cmk2Δ/Δ and the cmk1Δ/Δcmk2Δ/Δ mutants and found that CaMKs function in cell wall integrity (CWI) and cellular redox regulation. Loss of either CMK1 or CMK2, or both resulted in increased expression of CWI-related genes under Calcofluor white (CFW) treatment. Besides, CaMKs are essential for the maintenance of cellular redox balance. Disruption of either CMK1 or CMK2, or both not only led to a significant increase of intracellular ROS levels, but also led to a decrease of the mitochondrial membrane potential (MMP), suggesting the important roles that CaMKs play in the maintenance of the mitochondrial function.  相似文献   

9.
In the human fungal pathogen Candida albicans, environmental pH has profound effects on morphogenesis and response to extracellular pH is clearly relevant to the pathogenicity of this fungus. Yeast cells have evolved a complex network of mechanisms in response to the environmental pH and they often require the integration of the Rim101 and calcineurin/Crz1 signaling pathways. Ca(2+) burst is a common cellular response when cells are exposed to environmental stresses; therefore, in this study, we asked whether it follows the same case under alkaline stress and whether this calcium change is regulated by Rim101p and Crz1p. We confirmed the calcium influx was activated by KOH stimuli using a flow cytometry-based method, but it was obviously abolished in cells lacking MID1 or CCH1. We also found that alkaline pH-induced activation of the PHO89 promoter was blocked without the same gene; moreover, the response was Crz1p- and Rim101p-dependent. Finally, we investigated the regulation role of Rim101p and Crz1p in calcium influx through MID1, CCH1 and YVC1 genes, which were all downregulated in rim101Δ/Δ and crz1Δ/Δ mutants. The important role of calcium influx in the alkaline stress response and its regulation suggested a potential integration effect of Rim101 and Crz1 signaling pathways in C. albicans.  相似文献   

10.
Autophagy plays a critical role in response to numerous cellular stresses, such as nutrient deprivation, hypoxia, starvation and organelle damage. The disruption of autophagy pathway affects multiple aspects of cellular stress response. Here we for the first time identified Ccz1 as an essential component for autophagy in Candida albicans. Our experiments demonstrated that loss of CCZ1 gene led to vacuolar fragmentation and disruption of the autophagy pathway. Our results also suggested that Ccz1 functioned in oxidative stress. In the ccz1Δ/Δ mutant, the levels of reactive oxidative species (ROS) sharply increased under H2O2 treatment. Further studies demonstrated that breakdown of the autophagic clearance pathway led to the accumulation of oxidative stress-damaged mitochondria, and consequently elevated cellular ROS levels in the ccz1Δ/Δ mutant. Furthermore, deletion of CCZ1 led to a significant defect in filamentous development at both 30 °C and 37 °C. The disruption of CCZ1 gene led to decreased capacity of macrophage killing and increased sensitivity to the macrophages. In addition, the ccz1Δ/Δ mutant exhibited attenuated virulence and decreased fungal burdens in the mouse systemic infection model, indicating that CCZ1 might provide a promising target for antifungal drugs development. In summary, our findings provide new insights into the understanding of autophagy-related gene in C. albicans.  相似文献   

11.
Previous studies attributed the yeast (Saccharomyces cerevisiae) cdc1(Ts) growth defect to loss of an Mn2+-dependent function. In this report we show that cdc1(Ts) temperature-sensitive growth is also associated with an increase in cytosolic Ca2+. We identified two recessive suppressors of the cdc1(Ts) temperature-sensitive growth which block Ca2+ uptake and accumulation, suggesting that cytosolic Ca2+ exacerbates or is responsible for the cdc1(Ts) growth defect. One of the cdc1(Ts) suppressors is identical to a gene, MID1, recently implicated in mating pheromone-stimulated Ca2+ uptake. The gene (CCH1) corresponding to the second suppressor encodes a protein that bears significant sequence similarity to the pore-forming subunit (alpha1) of plasma membrane, voltage-gated Ca2+ channels from higher eukaryotes. Strains lacking Mid1 or Cch1 protein exhibit a defect in pheromone-induced Ca2+ uptake and consequently lose viability upon mating arrest. The mid1delta and cch1delta mutants also display reduced tolerance to monovalent cations such as Li+, suggesting a role for Ca2+ uptake in the calcineurin-dependent ion stress response. Finally, mid1delta cch1delta double mutants are, by both physiological and genetic criteria, identical to single mutants. These and other results suggest Mid1 and Cch1 are components of a yeast Ca2+ channel that may mediate Ca2+ uptake in response to mating pheromone, salt stress, and Mn2+ depletion.  相似文献   

12.
13.
Iida K  Tada T  Iida H 《FEBS letters》2004,576(3):291-296
Saccharomyces cerevisiae has only one gene encoding a putative voltage-gated Ca2+ channel pore-forming subunit, CCH1, which is not possible to be cloned by conventional molecular cloning techniques using Escherichia coli. Here, we report the successful cloning of CCH1 in yeast by in vivo homologous recombination without using E. coli. Overexpression of the cloned CCH1 or MID1 alone, which encodes a putative stretch-activated Ca2+ channel component, does not increase Ca2+ uptake activity, but co-overexpression results in a 2- to 3-fold increase. Overexpression of CCH1 does not substantially complement the lethality and low Ca2+ uptake activity of a mid1 mutant and vice versa. These results indicate that co-overproduction of Cch1 and Mid1 is sufficient to increase Ca2+ uptake activity.  相似文献   

14.
The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2 +/Mn2 + homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2 + concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2 + confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2 +. The use of Pmr1p mutants either defective for Ca2 + or Mn2 + transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2 + requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2 + inside the Golgi lumen when Pmr1p exclusively transports Ca2 +. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2 + sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2 +/Ca2 + transport.  相似文献   

15.
16.
Candida albicans is usually a harmless human commensal. Because inflammatory responses are not normally induced by colonization, antimicrobial peptides are likely integral to first-line host defense against invasive candidiasis. Thus, C. albicans must have mechanisms to tolerate or circumvent molecular effectors of innate immunity and thereby colonize human tissues. Prior studies demonstrated that an antimicrobial peptide-resistant strain of C. albicans, 36082R, is hypervirulent in animal models versus its susceptible counterpart (36082S). The current study aimed to identify a genetic basis for antimicrobial peptide resistance in C. albicans. Screening of a C. albicans genomic library identified SSD1 as capable of conferring peptide resistance to a susceptible surrogate, Saccharomyces cerevisiae. Sequencing confirmed that the predicted translation products of 36082S and 36082R SSD1 genes were identical. However, Northern analyses corroborated that SSD1 is expressed at higher levels in 36082R than in 36082S. In isogenic backgrounds, ssd1Δ/ssd1Δ null mutants were significantly more susceptible to antimicrobial peptides than parental strains but had equivalent susceptibilities to nonpeptide stressors. Moreover, SSD1 complementation of ssd1Δ/ssd1Δ mutants restored parental antimicrobial peptide resistance phenotypes, and overexpression of SSD1 conferred enhanced peptide resistance. Consistent with these in vitro findings, ssd1 null mutants were significantly less virulent in a murine model of disseminated candidiasis than were their parental or complemented strains. Collectively, these results indicate that SSD1 is integral to C. albicans resistance to host defense peptides, a phenotype that appears to enhance the virulence of this organism in vivo.  相似文献   

17.
Maintenance of genome stability in eukaryotes involves a number of conserved proteins, including RecQ helicases, which play multiple roles at various steps in homologous recombination and DNA repair pathways. Sgs1 has been described as the only RecQ helicase in lower eukaryotes. However, recent studies revealed the presence of a second RecQ helicase, Hrq1, which is most homologous to human RECQL4. Here we show that hrq1Δ mutation resulted in increased mitotic recombination and spontaneous mutation in Saccharomyces cerevisiae, and sgs1Δ mutation had additive effects on the phenotypes of hrq1Δ. We also observed that the hrq1Δ mutant was sensitive to 4-nitroquinoline 1-oxide and cisplatin, which was not complemented by overexpression of Sgs1. In addition, the hrq1Δ sgs1Δ double mutant displayed synthetic growth defect as well as a shortened chronological life span compared with the respective single mutants. Analysis of the type of age-dependent Canr mutations revealed that only point mutations were found in hrq1Δ, whereas significant numbers of gross deletion mutations were found in sgs1Δ. Our results suggest that Hrq1 is involved in recombination and DNA repair pathways in S. cerevisiae independent of Sgs1.  相似文献   

18.
Most screening approaches produce compounds that target survival genes and are likely to generate resistance over time. Simply having more drugs does not address the potential emergence of resistance caused by target mutation, drug efflux pumps over-expression, and so on. There is a great need to explore new strategies to treat fungal infections caused by drug-resistant pathogens. In this study, we found that azole-resistant Candida albicans with CaCDR1 and CaCDR2 over-expression is hypersensitive against amphotericin B (AmB) by our high throughput synergy screening (HTSS). In contrast, Δcdr1 and Δcdr2 knockout strains were resistant to AmB. Moreover, clinical isolates with increased expression of CaCDR1 and CaCDR2 demonstrated susceptibility to AmB, which can also synergize with the efflux pumps inducer fluphenazine (FPZ). Finally, the increased drug susceptibility to AmB in azole-resistant C. albicans with drug efflux pumps over-expression was consistent with the elevated expression of CaERG11 and its associated ergosterols in clinical isolates. Our data implies that the level of ergosterol contents determines the susceptibility to azoles and AmB in C. albicans. Deep understanding of the above mechanisms would offer new hope to treat drug-resistant C. albicans.  相似文献   

19.
Vacuolar hydrolases have been thoroughly characterized in Saccharomyces cerevisiae, but their homologues in the fungal pathogen Candida albicans have received less attention. The genes APR1 and CPY1 of C. albicans encode putative vacuolar aspartic proteinase and serine carboxypeptidase, respectively. We examined properties of apr1Δ and cpy1Δ mutants, showing that Cpy1p molecular species detected in cell lysates of apr1Δ and its parental strain did not differ in molar mass. Processing of Cpy1p precursor is apparently independent of Apr1p. This is in contrast to S. cerevisiae, where vacuolar aspartic proteinase Pep4p is known to participate in the activation of other vacuolar hydrolases including serine carboxypeptidase. We also found that both apr1Δ and cpy1Δ strains are able to form hyphae in nutrient-rich filamentation media. However, proline as a sole nitrogen source induced filamentation only in cpy1Δ and its parental strain, but not in apr1Δ. This indicates the importance of Apr1p for the morphological transition under nitrogen-limited conditions. Despite that, the ability of apr1Δ to kill murine macrophages was not reduced under the conditions tested.  相似文献   

20.
Eugenol has antifungal activity and is recognised as having therapeutic potential. However, little is known of the cellular basis of its antifungal activity and a better understanding of eugenol tolerance should lead to better exploitation of eugenol in antifungal therapies. The model yeast, Saccharomyces cerevisiae, expressing apoaequorin was used to show that eugenol induces cytosolic Ca2+ elevations. We investigated the eugenol Ca2+ signature in further detail and show that exponentially growing cells exhibit Ca2+ elevation resulting exclusively from the influx of Ca2+ across the plasma membrane whereas in stationary growth phase cells Ca2+ influx from intracellular and extracellular sources contribute to the eugenol-induced Ca2+ elevation. Ca2+ channel deletion yeast mutants were used to identify the pathways mediating Ca2+ influx; intracellular Ca2+ release was mediated by the vacuolar Ca2+ channel, Yvc1p, whereas the Ca2+ influx across the plasma membrane could be resolved into Cch1p-dependent and Cch1p-independent pathways. We show that the growth of yeast devoid the plasma membrane Ca2+ channel, Cch1p, was hypersensitive to eugenol and that this correlated with reduced Ca2+ elevations. Taken together, these results indicate that a cch1p-mediated Ca2+ influx is part of an intracellular signal which protects against eugenol toxicity. This study provides fresh insight into the mechanisms employed by fungi to tolerate eugenol toxicity which should lead to better exploitation of eugenol in antifungal therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号