首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hippocampus dentate gyrus (DG) is characterized by neuronal plasticity processes in adulthood, and polysialylation of NCAM promotes neuronal plasticity. In previous investigations we found that alpha-tocopherol increased the PSA-NCAM-positive granule cell number in adult rat DG, suggesting that alpha-tocopherol may enhance neuronal plasticity. To verify this hypothesis, in the present study, structural remodeling in adult rat DG was investigated under alpha-tocopherol supplementation conditions. PSA-NCAM expression was evaluated by Western blotting, evaluation of PSA-NCAM-positive granule cell density, and morphometric analysis of PSA-NCAM-positive processes. In addition, the optical density of synaptophysin immunoreactivity and the synaptic profile density, examined by electron microscopy, were evaluated. Moreover, considering that PSA-NCAM expression has been found to be related to PKCdelta activity and alpha-tocopherol has been shown to inhibit PKC activity in vitro, Western blotting and immunohistochemistry followed by densitometry were used to analyze PKC. Our results demonstrated that an increase in PSA-NCAM expression and optical density of DG molecular layer synaptophysin immunoreactivity occurred in alpha-tocopherol-treated rats. Electron microscopy analysis showed that the increase in synaptophysin expression was related to an increase in synaptic profile density. In addition, Western blotting revealed a decrease in phospho-PKC Pan and phospho-PKCdelta, demonstrating that alpha-tocopherol is also able to inhibit PKC activity in vivo. Likewise, immunoreactivity for the active form of PKCdelta was lower in alpha-tocopherol-treated rats than in controls, while no changes were found in PKCdelta expression. These results demonstrate that alpha-tocopherol is an exogenous factor affecting neuronal plasticity in adult rat DG, possibly through PKCdelta inhibition.  相似文献   

2.
The lithium-pilocarpine model of epilepsy reproduces in rodents several features of human temporal lobe epilepsy, by inducing an acute status epilepticus (SE) followed by a latency period. It has been proposed that the neuronal network reorganization that occurs during latency determines the subsequent appearance of spontaneous recurrent seizures. The aim of this study was to evaluate neuronal and glial responses during the latency period that follows SE. Given the potential role of astrocytes in the post-SE network reorganization, through the secretion of synaptogenic molecules such as thrombospondins, we also studied the effect of treatment with the α2δ1 thrombospondin receptor antagonist gabapentin. Adult male Wistar rats received 3 mEq/kg LiCl, and 20 h later 30 mg/kg pilocarpine. Once SE was achieved, seizures were stopped with 20 mg/kg diazepam. Animals then received 400 mg/kg/day gabapentin or saline for either 4 or 14 days. In vitro experiments were performed in dissociated mixed hippocampal cell culture exposed to glutamate, and subsequently treated with gabapentin or vehicle. During the latency period, the hippocampus and pyriform cortex of SE-animals presented a profuse reactive astrogliosis, with increased GFAP and nestin expression. Gliosis intensity was dependent on the Racine stage attained by the animals and peaked 15 days after SE. Microglia was also reactive after SE, and followed the same pattern. Neuronal degeneration was present in SE-animals, and also depended on the Racine stage and the SE duration. Polysialic-acid NCAM (PSA-NCAM) expression was increased in hippocampal CA-1 and dentate gyrus of SE-animals. Gabapentin treatment was able to reduce reactive gliosis, decrease neuronal loss and normalize PSA-NCAM staining in hippocampal CA-1. In vitro, gabapentin treatment partially prevented the dendritic loss and reactive gliosis caused by glutamate excitotoxicity. Our results show that gabapentin treatment during the latency period after SE protects neurons and normalizes PSA-NCAM probably by direct interaction with neurons and glia.  相似文献   

3.
Summary of the aims Women with epilepsy using antiepileptic drug valproic acid (VPA) often suffer from reproductive endocrine disorders, menstrual disorders and polycystic ovaries. Valproic acid exerts anticonvulsive effects via gamma amino butyric acid (GABA) neurotransmitter system, which also acts as a neurochemical regulator of gonadotropin-releasing hormone (GnRH) neurons and suggests possibility of valproic acid mediated interruption in gonadotropin releasing hormone pulse generator in hypothalamus. The aim of this study was to investigate the effects of valproic acid treatment on the expression of gonadotropin releasing hormone, gamma amino butyric acid and polysialylated form of neural cell adhesion molecule (PSA-NCAM) a marker of neuronal plasticity in the median preoptic area (mPOA) and median eminence-arcuate (ME-ARC) region having GnRH neuron cell bodies and axon terminals, respectively. Methods Three-month-old virgin Wistar strain female rats received VPA (i.p.) at a dose of 300 mg/kg once a day for 12 weeks; control group received an equivalent volume of vehicle. GnRH, GABA and PSA-NCAM expressions were studied by immunohistofluorescence technique from mPOA and ME-ARC region of hypothalamus. Ovarian histology was also studied using Mayer’s Haematoxylin-Eosin staining method. Results GnRH and PSA-NCAM staining was much higher in mPOA and ME-ARC region from vehicle treated control proestrous rats, whereas VPA treatment significantly enhanced GABA expression, and reduced both GnRH and PSA-NCAM expression. Mayer’s Haematoxylin-Eosin staining of mid-ovarian sections revealed significantly higher number of ovarian follicular cysts in VPA treated rats. Conclusions Our findings of alterations in GnRH and GABA expression and GnRH neuronal plasticity marker PSA-NCAM as well as changes in ovarian histology suggest that treatment with VPA disrupts hypothalamo-hypophyseal-gonadal axis (HPG) at the level of GnRH pulse generator in hypothalamus.  相似文献   

4.
The expression of neuroplasticity markers was analyzed in four brain regions, namely cerebral hemispheres (CH), cerebellum (CB), brain stem (BS) and diencephalon (DC) from insulin-induced hypoglycemic young adult rats. Significant decrease in neural cell adhesion molecule (NCAM) isoforms and growth-associated protein-43 (GAP-43) was observed following hypoglycemic injury from majority of brain regions studied. The glial fibrillary acidic protein (GFAP) level increased significantly in cerebral hemispheres and diencephalon regions, whereas, synaptophysin level increased in cerebellum, brain stem and diencephalon regions. The selective downregulation of the neuronal plasticity marker proteins (GAP-43 and NCAM), and enhanced expression of GFAP and synaptophysin suggests that in acute hypoglycemia, mechanisms other than energy failure may also contribute to neuronal cell damage in the brain.  相似文献   

5.
Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss.  相似文献   

6.
Polysialic acid (PSA), a carbohydrate polymer attached to the neural cell adhesion molecule (NCAM), promotes neural plasticity and tumor malignancy, but its mode of action is controversial. Here we establish that PSA controls tumor cell growth and differentiation by interfering with NCAM signaling at cell-cell contacts. Interactions between cells with different PSA and NCAM expression profiles were initiated by enzymatic removal of PSA and by ectopic expression of NCAM or PSA-NCAM. Removal of PSA from the cell surface led to reduced proliferation and activated extracellular signal-regulated kinase (ERK), inducing enhanced survival and neuronal differentiation of neuroblastoma cells. Blocking with an NCAM-specific peptide prevented these effects. Combinatorial transinteraction studies with cells and membranes with different PSA and NCAM phenotypes revealed that heterophilic NCAM binding mimics the cellular responses to PSA removal. In conclusion, our data demonstrate that PSA masks heterophilic NCAM signals, having a direct impact on tumor cell growth. This provides a mechanism for how PSA may promote the genesis and progression of highly aggressive PSA-NCAM-positive tumors.  相似文献   

7.
In the mammalian brain, ongoing neurogenesis via the rostral migratory stream (RMS) maintains neuronal replacement in the olfactory bulb throughout life. Mechanisms that regulate the final number of new neurons in this system include proliferation, migration and apoptosis. Here we show that the polysialylated isoforms of the neural cell adhesion molecule (PSA-NCAM) act as a pro-survival molecule in immature newborn neurons. Confocal microscopic analysis revealed a threefold increase in TUNEL-positive cells in the subventricular zone (SVZ) and the RMS of transgenic animals lacking the gene encoding NCAM (NCAM(-/-)), as compared with wild types. The enhanced apoptotic cell death occurred specifically in the population of mCD24-positive newborn neurons, but not in GFAP-positive astrocytes. Using in vitro cultures of purified SVZ-derived neurons, we demonstrate that the loss or inactivation of PSA on NCAM, as well as the deletion of NCAM, lead to reduced survival in response to neurotrophins including BDNF and NGF. These changes in cell survival are accompanied by an upregulation of p75 neurotrophin receptor expression in vitro as well as in vivo. Furthermore, the negative effects of PSA-NCAM inactivation on cell survival could be prevented by the pharmacological blockade of the p75 receptor-signaling pathway. We propose that PSA-NCAM may promote survival by controlling the expression of the p75 receptor in developing neurons.  相似文献   

8.
A characteristic feature of neurogenic sites in the postnatal brain is the expression of the polysialylated forms of the neural cell adhesion molecule (PSA-NCAM). To investigate the role of PSA-NCAM in generation of neuronal populations, we developed an in vitro model where neurogenesis occurs in primary cortical cultures following serum withdrawal. We show that removal or inactivation of the PSA tail of NCAM in these cultures leads to a significant decrease in the number of newly generated neurons. Similarly, cultures prepared from NCAM knock-out mice exhibit a significantly reduced neurogenesis. Pulse-chase experiments using the proliferation marker BrdU reveal that the lack of PSA does not affect the mitotic rate of neural progenitors but rather, it reduces the early survival of newly generated neurons. These results suggest that, in addition to its role in the migration of neuronal progenitors, PSA-NCAM is required for the adequate survival of these cells.  相似文献   

9.
Hippocampus dentate gyrus (DG) is characterized by neuronal plasticity processes in adulthood, and polysialylation of NCAM promotes neuronal plasticity. In previous investigations we found that α‐tocopherol increased the PSA‐NCAM‐positive granule cell number in adult rat DG, suggesting that α‐tocopherol may enhance neuronal plasticity. To verify this hypothesis, in the present study, structural remodeling in adult rat DG was investigated under α‐tocopherol supplementation conditions. PSA‐NCAM expression was evaluated by Western blotting, evaluation of PSA‐NCAM‐positive granule cell density, and morphometric analysis of PSA‐NCAM‐positive processes. In addition, the optical density of synaptophysin immunoreactivity and the synaptic profile density, examined by electron microscopy, were evaluated. Moreover, considering that PSA‐NCAM expression has been found to be related to PKCδ activity and α‐tocopherol has been shown to inhibit PKC activity in vitro, Western blotting and immunohistochemistry followed by densitometry were used to analyze PKC. Our results demonstrated that an increase in PSA‐NCAM expression and optical density of DG molecular layer synaptophysin immunoreactivity occurred in α‐tocopherol‐treated rats. Electron microscopy analysis showed that the increase in synaptophysin expression was related to an increase in synaptic profile density. In addition, Western blotting revealed a decrease in phospho‐PKC Pan and phospho‐PKCδ, demonstrating that α‐tocopherol is also able to inhibit PKC activity in vivo. Likewise, immunoreactivity for the active form of PKCδ was lower in α‐tocopherol‐treated rats than in controls, while no changes were found in PKCδ expression. These results demonstrate that α‐tocopherol is an exogenous factor affecting neuronal plasticity in adult rat DG, possibly through PKCδ inhibition. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

10.
Astrogliosis is a process that involves morphological and biochemical changes associated with astrocyte activation in response to cell damage in the brain. The upregulation of intermediate filament proteins including glial fibrillary acidic protein (GFAP), nestin and vimentin are often used as indicators for astrogliosis. Although connexin43 (Cx43), a channel protein widely expressed in adult astrocytes, exhibits enhanced immunoreactivity in the peri-lesion region, its role in astrogliosis is still unclear. Here, we correlated the temporal and spatial expression of Cx43 to the activation of astrocytes and microglia in response to an acute needle stab wound in vivo. We found large numbers of microglia devoid of Cx43 in the needle wound at 3 days post injury (dpi) while reactive astrocytes expressing Cx43 were present in the peripheral zone surrounding the injury site. A redistribution of Cx43 to the needle site, corresponding to the increased presence of GFAP-positive reactive astrocytes in the region, was only apparent from 6 dpi and sustained until at least 15 dpi. Interestingly, the extent of microglial activation and subsequent astrogliosis in the brain of Cx43 knockout mice was significantly larger than those of wild type, suggesting that Cx43 expression limits the degree of microgliosis. Although Cx43 is not essential for astrogliosis and microglial activation induced by a needle injury, our results demonstrate that Cx43 is a useful marker for injury induced astrogliosis due to its enhanced expression specifically within a small region of the lesion for an extended period. As a channel protein, Cx43 is a potential in vivo diagnostic tool of asymptomatic brain injury.  相似文献   

11.
Decreased expression of dopamine D2 receptors (D2R), dysfunction of inhibitory neurotransmission and impairments in the structure and connectivity of neurons in the medial prefrontal cortex (mPFC) are involved in the pathogenesis of schizophrenia and major depression, but the relationship between these changes remains unclear. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, may serve as a link. This molecule is expressed in cortical interneurons and dopamine, via D2R, modulates its expression in parallel to that of proteins related to synapses and inhibitory neurotransmission, suggesting that D2R-targeted antipsychotics/antidepressants may act by affecting the plasticity of mPFC inhibitory circuits. To understand the role of PSA-NCAM in this plasticity, rats were chronically treated with a D2R agonist (PPHT) after cortical PSA depletion. PPHT-induced increases in GAD67 and synaptophysin (SYN) neuropil expression were blocked when PSA was previously removed, indicating a role for PSA-NCAM in this plasticity. The number of PSA-NCAM expressing interneuron somata also increased after PPHT treatment, but the percentages of these cells belonging to different interneuronal subpopulations did not change. Cortical pyramidal neurons did not express PSA-NCAM, but puncta co-expressing this molecule and parvalbumin could be found surrounding their somata. PPHT treatment increased the number of PSA-NCAM and parvalbumin expressing perisomatic puncta, but decreased the percentage of parvalbumin puncta that co-expressed SYN. PSA depletion did not block these effects on the perisomatic region, but increased further the number of parvalbumin expressing puncta and increased the percentage of puncta co-expressing SYN and parvalbumin, suggesting that the polysialylation of NCAM may regulate perisomatic inhibition of mPFC principal neurons. Summarizing, the present results indicate that dopamine acting on D2R influences structural plasticity of mPFC interneurons and point to PSA-NCAM as a key player in this remodeling.  相似文献   

12.
Kataria H  Wadhwa R  Kaul SC  Kaur G 《PloS one》2012,7(5):e37080
Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.  相似文献   

13.
王欣  关锋 《遗传》2014,36(8):739-746
神经粘附分子(Neural cell adhesion molecule, NCAM)是免疫球蛋白家族中的一员,在细胞粘附和细胞通信,尤其是神经系统的生长和塑型中起重要作用。而多聚唾液酸(Polysialic acid, PSA)则是控制NCAM粘附能力形成与神经系统分化的重要因素。研究发现,多种肿瘤细胞中存在PSA以及多聚唾液酸化的神经粘附分子(PSA-NCAM)再表达的现象,预示PSA及PSA-NCAM与多种肿瘤细胞的粘附性、迁移性和侵袭性等特性密切相关,影响肿瘤细胞的生长与转移,并通过介导多种细胞信号通路影响癌症的发生与发展。文章综述了NCAM以及PSA对癌症的发生与发展、预后的作用及其功能对细胞下游信号传导的影响。  相似文献   

14.
The expression of polysialic acid (PSA) on neural cell adhesion molecule (NCAM) is known to attenuate cell-cell interactions. During neural development the widespread expression of PSA-NCAM creates permissive conditions for the migration of neuronal and glial precursors and the guidance and targeting of axons. NCAM polysialylation can occur via either of two specific sialyltransferases, ST8SiaII (STX) and ST8SiaIV (PST), and the purpose of this study was to determine if retroviral delivery of either PST or STX could induce PSA expression in vivo and thereby alter tissue plasticity. Retroviruses expressing GFP-PST or GFP-STX were injected into embryonic retina, and development was evaluated by examining neuroepithelial structure, the expression of markers for specific cell types, cellular proliferation, and apoptosis. Chick retina was chosen because it down-regulates PSA early in its development and has a highly stereotyped program of morphogenesis. Retroviral expression of PST induced PSA expression in retina and resulted in severe but localized alterations in retinal morphogenesis, including an early disruption of radial glial cell morphology, highly disorganized retinal layers, and invasion of pigmented cells into the neural retina. In contrast, retroviral delivery of STX did not induce PSA expression or affect morphogenesis. These findings demonstrate that expression of PSA is sufficient to promote morphological alterations in a relatively nonplastic neural tissue.  相似文献   

15.
16.
Polysialic acid (PSA) is a large carbohydrate added post-translationally to the extracellular domain of the Neural Cell Adhesion Molecule (NCAM) that influences its adhesive and other functional properties. PSA-NCAM is widely distributed in the developing nervous system where it promotes dynamic cell interactions, like those responsible for axonal growth, terminal sprouting and target innervation. Its expression becomes restricted in the adult nervous system where it is thought to contribute to various forms of neuronal and glial plasticity. We here review evidence, obtained mainly from hypothalamic neuroendocrine centers and the olfactory system, that it intervenes in structural synaptic plasticity and accompanying neuronal-glial transformations, making possible the formation and elimination of synapses that occur under particular physiological conditions.  相似文献   

17.
Dynamic regulation of glycosylation of the neural cell adhesion molecule (NCAM) by an unusual large negatively charged polysialic acid (PSA) is the major prerequisite for correct formation of brain circuitries during development and for normal synaptic plasticity, learning and memory in the adult. Traditionally, PSA is viewed as a de-adhesive highly hydrated molecule, which interferes with cell adhesion and promotes cellular/synaptic dynamics by steric hindrance. Analysis of synaptic functions of PSA-NCAM highlighted additional features of this molecule. First, PSA promotes interaction of NCAM with heparan sulfate proteoglycans and thus stimulates synaptogenesis. Second, PSA-NCAM modulates glutamate receptors: it restrains activity of extrasynaptic GluN2B-containing NMDA receptors and facilitates activity of a subset of AMPA receptors. Perturbation in polysialylation and/or NCAM expression in mouse models recapitulates many symptoms of human brain disorders such as schizophrenia, depression, anxiety and Alzheimer's disease.  相似文献   

18.
The key roles played by the neural cell adhesion molecule (NCAM) in plasticity and cognition underscore this membrane protein as a relevant target to develop cognitive-enhancing drugs. However, NCAM is a structurally and functionally complex molecule with multiple domains engaged in a variety of actions, which raise the question as to which NCAM fragment should be targeted. Synthetic NCAM mimetic peptides that mimic NCAM sequences relevant to specific interactions allow identification of the most promising targets within NCAM. Recently, a decapeptide ligand of NCAM--plannexin, which mimics a homophilic trans-binding site in Ig2 and binds to Ig3--was developed as a tool for studying NCAM's trans-interactions. In this study, we investigated plannexin's ability to affect neural plasticity and memory formation. We found that plannexin facilitates neurite outgrowth in primary hippocampal neuronal cultures and improves spatial learning in rats, both under basal conditions and under conditions involving a deficit in a key plasticity-promoting posttranslational modification of NCAM, its polysialylation. We also found that plannexin enhances excitatory synaptic transmission in hippocampal area CA1, where it also increases the number of mushroom spines and the synaptic expression of the AMPAR subunits GluA1 and GluA2. Altogether, these findings provide compelling evidence that plannexin is an important facilitator of synaptic functional, structural and molecular plasticity in the hippocampal CA1 region, highlighting the fragment in NCAM's Ig3 module where plannexin binds as a novel target for the development of cognition-enhancing drugs.  相似文献   

19.
The polysialylated, embryonic form of the neuronal cell adhesion molecule (PSA-NCAM) is known to participate in a whole series of synaptic rearrangements even in adult animals. The possible role of this molecule in neuroplastic changes of the adult rat somatosensory cortex induced by unilateral transection of the infraorbital branch of the trigeminal nerve was studied with PSA-NCAM immunostaining at light microscopic level. Two- and three-month-old CFY albino rats were sacrificied on days 1, 4, 6, 14 and 21 following operation and PSA-NCAM immunoreaction was examined at three levels of the vibrissa-cortex neuraxis, namely, in the principal nucleus of the trigeminal nerve, in the ventral posteromedial nucleus of the thalamus and in the somatosensory cortex. The lower levels of the neuraxis remained free of PSA-NCAM labeling, similarly to control, intact animals. However, a large number of scattered small neurons became PSA-NCAM immunoreactive in layers IV-VI on both ipsi- and contralateral sides of the somatosensory cortex from day 6 onwards, suggesting a possible transynaptic regulation of NCAM sialylation state.  相似文献   

20.
Neural cell adhesion molecules (NCAMs) play critical roles during development of the nervous system. The aim of this study is to investigate the possible effect of ethanol exposure on the pattern of expression and sialylation of NCAM isoforms during postnatal rat brain development because alterations in NCAM content and distribution have been associated with defects in cell migration, synapse formation, and memory consolidation, and deficits in these processes have been observed after in utero alcohol exposure. The expression of NCAM isoforms in the developing cerebral cortex of pups from control and alcohol-fed mothers was assessed by western blotting, ribonuclease protection assay, and immunocytochemistry. The highly sialylated form of NCAM [polysialic acid (PSA)-NCAM] is mainly expressed during the neonatal period and then is down-regulated in parallel with the appearance of NCAM 180 and NCAM 140. Ethanol exposure increases PSA-NCAM levels during the neonatal period, delays the loss of PSA-NCAM, decreases the amount of NCAM 180 and NCAM 140 isoforms, and reduces sialyltransferase activity during postnatal brain development. Neuraminidase treatment of ethanol-exposed neonatal brains leads to more intense band degradation products, suggesting a higher content of NCAM polypeptides carrying PSA in these samples. However, NCAM mRNA levels are not changed by ethanol. Immunocytochemical analysis demonstrates that ethanol triggers an increase in PSA-NCAM immunolabeling in the cytoplasm of astroglial cells, accompanied by a decrease in immunogold particles over the plasma membrane. These findings indicate that ethanol exposure during brain development alters the pattern of NCAM expression and suggest that modification of NCAM could affect neuronal-glial interactions that might contribute to the brain defects observed after in utero alcohol exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号