首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of ribosomes to the 32P-labeled genomic RNA of mengovirus was studied in lysates of mouse L929 and Krebs ascites cells under conditions for initiation of translation. Upon total digestion with RNase T1, the 32P-labeled RNA protected in either 40S or 80S initiation complexes yielded four unique, large oligonucleotides. Each of these oligonucleotides occurred once in the viral RNA molecule. The same four oligonucleotides were recovered from 80S initiation complexes formed in lysates in which unlabeled mengovirus RNA had been translated extensively, indicating that recognition by ribosomes was not modulated detectably by a viral translation product. The recognition of intact, 32P-labeled mengovirus RNA by eucaryotic initiation factor 2 (eIF-2) was examined by direct complex formation. Fingerprint analysis of the RNA protected by eIF-2 against RNase T1 digestion yielded three T1 oligonucleotides that were identical to three of the four oligonucleotides protected in either 40S or 80S initiation complexes. A physical map of the large T1 oligonucleotides of the mengovirus RNA molecule was constructed, and the four protected oligonucleotides were found to map internally, within the region between the polycytidylate tract and the 3' end. For either ribosomes or eIF-2, the protected oligonucleotides could not be arranged in a continuous sequence, suggesting that they constitute at least two widely separated domains. These results show that ribosomes recognize and blind to more than a single sequence in mengovirus RNA, located internally in regions that are far removed from the 5' end of the molecule. eIF-2 itself binds with high specificity to mengovirus RNA, recognizing apparently three of the four sequences recognized by ribosomes.  相似文献   

2.
3.
Previous studies in our laboratory provided evidence that the initiation of translation by the Mahoney strain of poliovirus type 1 RNA in vitro occurs at two unique sites. This study shows that the LSc strain of poliovirus type 1, a multistep, temperature-sensitive mutant of the Mahoney strain, also utilizes two sites for the initiation of translation in vitro. Incorporation of formyl-[35S]methionine into the amino terminus of newly synthesized polypeptides revealed the production of two labeled tryptic peptides which are identical in size and electrophoretic mobility with those produced by Mahoney virus. The polypeptides containing amino-terminal label showed similar patterns on sodium dodecyl sulfate-acrylamide gels, although one of the LSc polypeptides had a slightly faster mobility. The relative proportion of initiation at each site varied with the magnesium concentration for both viruses, but the LSc strain favored initiation at one site more so than did the Mahoney strain.  相似文献   

4.
An initiation study of mineral oil-induced plasmacytoma (MOPC) 315 heavy chain immunoglobulin (H315) in vitro has been conducted using formyl-[35S]methionyl-tRNAfMet and a highly purified 18 S message from MOPC 315 solid tumor in a crude rabbit reticulocyte lysate system. The product was specifically precipitated by antibodies directed against MOPC 315 immunoglobulin and H315. The in vitro H315 products terminally labeled with formyl-[35S]methionine or internally labeled with [3H]leucine were electrophoretically identical with in vivo H315 on sodium dodecyl sulfate-polyacrylamide gels. All of the [35S]-methionine was incorporated at the NH2 terminus, not internally, since there is a near complete recovery of [35S]methionine following one cycle of Edman degradation. The NH2-terminal cyanogen bromide peptide, CN2, of in vivo and in vitro H315 co-migrated exactly on gel electrophoresis under conditions which completely resolved two proteins differing in size by only 14 amino acids. These data strongly suggest that there is no NH2-terminal precursor of H315 in this system. Cyanogen bromide peptide profiles of in vivo and in vitro H315 were chromatographically indistinguishable. Three peptides, CN1, CN2, and CN4, which represent approximately 85% of the total amino acids of H315 were isolated and further characterized by electrophoresis and paper chromatography. All were very similar to the corresponding peptides of authentic H315. We conclude that the fidelity of H315 translation is preserved in vitro.  相似文献   

5.
The translation of poliovirus RNA in rabbit reticulocyte lysate was examined. Translation of poliovirus RNA in this cell-free system resulted in an electrophoretic profile of poliovirus-specific proteins distinct from that observed in vivo or after translation in poliovirus-infected HeLa cell extract. A group of proteins derived from the P3 region of the polyprotein was identified by immunoprecipitation, time course, and N-formyl-[35S]methionine labeling studies to be the product of the initiation of protein synthesis at an internal site(s) located within the 3'-proximal RNA sequences. Utilization of this internal initiation site(s) on poliovirus RNA was abolished when reticulocyte lysate was supplemented with poliovirus-infected HeLa cell extract. Authentic P1-1a was also synthesized in reticulocyte lysate, indicating that correct 5'-proximal initiation of translation occurs in that system. We conclude that the deficiency of a component(s) of the reticulocyte lysate necessary for 5'-proximal initiation of poliovirus protein synthesis resulted in the ability of ribosomes to initiate translation on internal sequences. This aberrant initiation could be corrected by factors present in the HeLa cell extract. Apparently, under certain conditions, ribosomes are capable of recognizing internal sequences as authentic initiation sites.  相似文献   

6.
A heat-stable, low-molecular-weight inhibitor of protein synthesis is formed on incubation of haemin-supplemented rabbit reticulocyte lysates with ATP and double-stranded RNA (dsRNA). It inhibits the translation of both added encephalomyocarditis virus RNA (EMC RNA) and endogeneous messenger RNA in reticulocyte lysates and mouse L-cell extracts. The enzyme responsible for the synthesis of the inhibitor binds to dsRNA and can be purified on a column of poly(I).poly (C) bound to an inert support. The highly purified enzyme in its stable column-bound state can be conveniently employed to synthesise the inhibitor and to label it with [3H]ATP, or [alpha-32P]ATP or [gamma-32P]ATP as substrate. The radioactive inhibitor synthesised in this way with material from rabbit reticulocyte lysates shows the same spectrum of resistance and sensitivity to alkali and a variety of enzymes as corresponding material similarly synthesised with extracts from interferon-treated mouse L-cells. The inhibitors from the two systems have comparable absorbance spectra, are chromatographically and electrophoretically indistinguishable and are apparently identical in specific activity in the inhibition of protein synthesis in the cell-free system. The inhibitor is also formed on inhibition of protein synthesis by dsRNA in reticulocyte lysates. On comparison of the spectrum of polypeptide products synthesised in response to EMC RNA in the reticulocyte lysate, the effects of the inhibitor or dsRNA were similar: a distinctly different effect was obtained with the haemin-controlled repressor, a known inhibitor of initiation. The significance of these results with respect to the mechanism of action of the inhibitor and its role in the inhibition observed in response to dsRNA is discussed.  相似文献   

7.
The effect of edeine on the translation of mRNA or poly(U)-directed polyphenylalanine synthesis has been studied in an edeine-resistant mutant of Saccharomyces cerevisiae under three different experimental conditions: in the whole lysate system, in a micrococcal-nuclease-treated lysate, and in a high-salt-treated lysate. The results indicate that translation of messenger is more resistant to edeine in the whole lysate than in the depleted lysates; these observations suggest that resistance to edeine is associated with the presence of endogenous mRNA. It is shown that 40S mutant subunits have a higher affinity for polysomal RNA than 40S wild-type subunits. Since the mRNA binding is inhibited by 7-methylguanosine 5'-monophosphate, the interaction between polysomal RNA and 40S ribosomes is specific for mRNA. The data demonstrate that in each of the depleted lysates, with edeine initially present, the formation of the 80S initiation complex is inhibited. However, edeine inhibition of [3H]methionine binding to 80S ribosomes is overcome completely in the mutant extract by preincubation of this lysate with polysomal RNA. The results indicate that the mutant may carry a specific change in a messenger-binding factor or in a ribosomal protein thereby permitting an increased stability of the messenger-ribosome complex which consequently results in an increased resistance of the mutant lysate to edeine.  相似文献   

8.
After infection of mouse L cells with mengovirus, there is a rapid inhibition of protein synthesis, a concurrent disaggregation of polysomes, and an accumulation of 80S ribosomes. These 80S ribosomes could not be chased back into polysomes under an elongation block. The infected-cell 80S-ribosome fraction contained twice as much initiator methionyl-tRNA and mRNA as the analogous fraction from uninfected cells. Since the proportion of 80S ribosomes that were resistant to pronase digestion also increased after infection, these data suggest that the accumulated 80S ribosomes may be in the form of initiation complexes. The specific protein synthetic activity of polysomal ribosomes also decreased with time of infection. However, the transit times in mock-infected and infected cells remained the same. Cell-free translation systems from infected cells reflected the decreased protein synthetic activity of intact cells. The addition of reticulocyte initiation factors to such systems failed to relieve the inhibition. Fractionation of the infected-cell lysate revealed that the ribosomes were the predominant target affected. Washing the infected-cell ribosomes with 0.5 M KCI restored their translational activity. In turn, the salt wash from infected-cell ribosomes inhibited translation in lysates from mock-infected cells. The inhibitor in the ribosomal salt wash was temperature sensitive and micrococcal nuclease resistant. A model is proposed wherein virus infection activates (or induces the synthesis of) an inhibitor that binds to ribosomes and stops translation after the formation of the 80S-ribosome initiation complex but before elongation. The presence of such an inhibitor on ribosomes could prevent them from being remobilized into polysomes in the presence of an inhibitor of polypeptide elongation.  相似文献   

9.
Ricin A chain caused inhibition of protein synthesis by reticulocyte lysate with concomitant depurination of 28S rRNA. The partial reaction(s) of protein synthesis inhibited was investigated by following the appearance of [35S]methionine from initiator [35S]Met-tRNA into 40S ribosomal subunits, 80S monosomes and polysomes. Ricin A chain caused an accumulation of [35S]Met in monosomes which did not enter polysomes. In these respects the effects of the ricin A chain resembled those of diphtheria toxin, an inhibitor of elongation-factor-2-catalyzed translocation. This is consistent with the previously proposed site of action of ricin as an inhibitor of elongation. However, the inhibitory effects of the ricin A chain and diphtheria toxin are not equivalent because we observed that the rate of formation of the 80S initiation complex was reduced approximately sixfold with the ricin A chain relative to diphtheria toxin. Analysis of methionine-containing peptides bound to 80S monosomes in ricin-A-chain-inhibited and diphtheria-toxin-inhibited lysates, programmed with globin mRNA, revealed a predominance of Met-Val, suggesting that the elongation cycle is inhibited at the translocation step. Translocation was also implicated as the step blocked in both the ricin-A-chain-inhibited and diphtheria-toxin-inhibited lysates, by the finding that nascent peptide chains were unreactive towards puromycin. It is concluded that ricin-A-chain-modified ribosomes are deficient in two protein synthesis partial reactions: the formation of the 80S initiation complex during initiation and the translocation step of the elongation cycle.  相似文献   

10.
Ribosomal RNA (rRNA) in intact ribosomes is cleaved into discrete products on incubation of reticulocyte lysates or L-cell extracts with ppp(A2'p)3A. Cleavage of rRNA may, therefore, provide a useful assay for 2-5A (ppp)A2'p)nA; n = 2 to 4) or for the presence of a 2-5A-dependent nuclease. The results with reticulocyte lysates differed from those obtained in the L-cell-free system in that (a) a different RNA cleavage pattern was produced (with added L-cell ribosomes) and (b) cleavage was fully activated by the analogue ppp(A2'p)3A3'pCp. As might be expected from the relatively high levels of 2-5A present in interferon-treated, encephalomyocarditis virus (EMC)-infected L-cells, rRNA extracted from these cells was also cleaved. The cleavage pattern observed overlapped with that obtained on incubation of an L-cell-free system with 2-5A. Thus, not only is 2-5A present, but the 2-5A-dependent nuclease also appears to be active, in interferon-treated, EMC-infected L-cells.  相似文献   

11.
12.
An mRNA-dependent reticulocyte lysate has been used to translate foot-and-mouth disease virus RNA in vitro. Polypeptides P16, P20a, and P88, which have been shown to be derived from the 5' end of the RNA by pactamycin mapping experiments with infected cells, were preferentially synthesized in vitro. Removal of VPg, the small protein covalently linked to the 5' end of the genome RNA, had no effect on the translation of the RNA. The two RNA fragments (L and S) produced by specific digestion of the polycytidylic acid [poly(C)] tract with RNase H were also translated in vitro. The L fragment, consisting of RNA to the 3' side of the poly(C) tract and including the polyadenylic acid [poly(A)] tract, directed the synthesis of the same products as those made by full-length RNA. However, no small defined products were produced when the S fragment, which contains the 5' end of the RNA, was translated. These results show that the major initiation site for protein synthesis on foot-and-mouth disease virus RNA is to the 3' side of the poly(C) tract. Furthermore, the use of N-formyl [35S]methionine tRNAfMet as a label for the initiation peptides showed that the major polypeptide labeled in lysates primed with both full-length RNA and the L fragment was P16, i.e., the protein nearest the initiation site for translation as deduced from pactamycin mapping experiments. Fragments of RNA were also translated in vitro. Those containing the poly(C) tract gave products similar to those produced when full-length RNA was translated. The polypeptides synthesized when fragments containing the poly(A) tract were used, however, did not resemble those made from full-length RNA.  相似文献   

13.
An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of D-lysergic acid diethylamide (LSD) to rabbits resulted in a lesion at the initiation stage of brain protein synthesis. Three inhibitors of initiation, edeine, poly(I), and aurintricarboxylic acid were used to demonstrate a reduction in initiation-dependent amino acid incorporation in the brain cell-free system. One hour after LSD injection, there was also a measurable decrease in the formation of 40S and 80S initiation complexes in vitro, using either [35S]methionine or [35S]Met-tRNAf. Analysis of the methionine pool size after LSD administration indicated there was no change in methionine levels. Analysis of the formation of initiation complexes in the brain cell-free protein synthesis system prepared 6 h after LSD administration indicated that there was a return to control levels at this time. The effects of LSD on steps in the initiation process are thus reversible.  相似文献   

14.
Translation initiation at non-AUG triplets in mammalian cells   总被引:35,自引:0,他引:35  
  相似文献   

15.
The accompanying paper [McNurlan & Clemens (1986) Biochem. J. 237, 871-876] shows that the inhibition of proliferation of Daudi cells by human interferons is associated with impairment of the overall rate of protein synthesis. We have examined whether two of the mechanisms which are believed to control translation in interferon-treated virus-infected cells may be responsible for the inhibition of protein synthesis during the antiproliferative response in these uninfected cells. Although the rate of polypeptide chain initiation is lower in interferon-treated Daudi cells, as indicated by the disaggregation of polysomes, there is no significant inhibition of activity of initiation factor eIF-2 or of [40 S . Met-tRNAf] initiation complex formation in cell extracts. The phosphorylation state of the alpha subunit of eIF-2 remains unaltered. There is no major decrease in mRNA content as a proportion of total RNA up to 4 days of interferon treatment, as judged by poly(A) content, although the amount of total mRNA/10(6) cells eventually declines. The mRNA present in extracts from interferon-treated cells remains translatable when added to an mRNA-dependent reticulocyte lysate system. We conclude that neither the interferon-inducible eIF-2 protein kinase pathway nor the 2',5'-oligo(adenylate)-ribonuclease L pathway are responsible for the inhibition of polypeptide chain initiation. Rather, the data suggest impairment at the level of formation of [80 S ribosome X mRNA] initiation complexes.  相似文献   

16.
This paper shows that reticuloeyte lysates contain 40 S/Met-tRNAf complexes which are intermediates in the initiation of protein synthesis before the involvement of messenger RNA. More than one third of the native 40 S subunits in the lysate exist as these complexes during periods of linear protein synthesis, but less than a tenth are associated with mRNA.The 40 S/Met-tRNAf complexes disappear in some situations in which initiation is inhibited (by double-stranded RNA, oxidized glutathione, or in the absence of added haemin), but persist in the presence of other inhibitors (e.g. aurintricarboxylate or poly(I)). Inhibitors of chain elongation had little effect on the amount of these complexes.The Met-tRNAf in the 40 S complexes appears to exchange readily with free Met-tRNAf; when lysates were preincubated with sparsomycin or diphtheria toxin and then incubated with [35S]Met-tRNAf, the native 40 S subunits were the only ribosomal particles labelled. This experimental system was used to examine whether 40 S/Met-tRNAf complexes could interact with mRNA; various mRNAs were added shortly after or at the same time as the [35S]Met-tRNAf. This resulted in a conversion of the 40 S/Met-tRNAf complexes into 80 S complexes, which appeared to be true initiation complexes since they were capable of translating the first two codons of the added mRNA. The mRNA-dependent formation of these 80 S complexes was completely inhibited by 0.1 mM-aurintricarboxylate, but the association of Met-tRNAf with the 40 S subunits was not prevented.The 40 S/Met-tRNAf complexes also participated in initiation on endogenous mRNA, and it was shown that the Met-tRNAf in this complex was used in preference to free Met-tRNAf in this process.We propose that the first step in the initiation of protein synthesis in the reticuloeyte lysate is the formation of a 40 S/Met-tRNAf complex. In the second stage the complex binds mRNA at the correct initiation site and, after joining with a 60 S subunit, an 80 S/Met-tRNAf/mRNA initiation complex is formed.  相似文献   

17.
The viral RNA of the Harvey strain of murine sarcoma virus (Ha-SV), which does not encode for any known viral structural polypeptides, has been translated in a nuclease-digested, cell-free system. The major protein product of the in vitro translation reaction has a molecular weight of 21,000 and is initiated faithfully with [35S]formylmethionine from formyl-[35S]methionyl-tRNAFMET. This polypeptide is clearly distinct from the RNA of the Moloney strain of type C helper virus used to pseudotype the Ha-SV. The intensity of the 21,000-dalton polypeptide on gels correlates well to the concentration of Ha-SV RNA in different viral RNA preparations. These experiments indicate that a polypeptide marker for Ha-SV is now available for the first time. The possibility that this protein is the product of the rat portion of the Ha-SV genome is discussed.  相似文献   

18.
Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to contain at least sevenfold more Met-tRNA per particle than the free native subunits, they may all be initiation complexes with mRNA molecules which have just become associated with the membranes; (b) about 50% of the ribosomes present in polyribosomes. Evidence is presented that the released ribosomes carry nascent chains about two and a half to three times shorter than those present on the ribosomes remaining bound to the membranes. It is proposed that in the membrane-bound polyribosomes of P3K cells, only the ribosomes closer to the 3' end of the mRNA molecules are directly bound, while the latest ribosomes to enter the polyribosomal structures are indirectly bound through the mRNA molecules; (c) a small number of 40S subunits of polyribosomal origin, presumably initiation complexes attached at the 5' end of mRNA molecules of polyribosomes. When the P3K cells were incubated with inhibitors acting at different steps of protein synthesis, it was found that puromycin and pactamycin decreased by about 40% the proportion of ribosomes in the membrane fraction, while cycloheximide and anisomycin had no such effect. The ribosomes remaining on the membrane fraction of puromycin-treated cells consisted of a few polyribosomes, and of an accumulation of 80S and 60S particles, which were almost entirely released by high salt treatment of the membranes. The membrane-bound ribosomes found after pactamycin treatment consisted of a few polyribosomes, with a striking accumulation of native 60S subunits and an increased number of native 40S subunits. On the basis of the observations made in this and the preceding papers, a model for the binding of ribosomes to membranes and for the ribosomal cycle on the membranes is proposed. It is suggested that ribosomal subunits exchange between free and membrane-bound polyribosomes through the cytoplasmic pool of free native subunits, and that their entry into membrane-bound ribosomes is mediated by mRNA molecules associated with membranes.  相似文献   

19.
The translation of encephalomyocarditis virus (EMC) RNA is markedly inhibited in cell-free systems from interferon-treated, vaccinia virus-infected L-cells (10, 11). The polypeptide products synthesized in response to EMC RNA in cell-free systems from these and untreated infected cells have been analyzed by electrophoresis on polyacrylamide gels. Qualitatively, the same EMC-specific polypeptides were synthesized throughout. In experiments using preincubated microsomes from normal Krebs cells to assay cell sap from L-cells which had been exposed to interferon prior to infection, only the amount of the EMC-specific polypeptide products was reduced. This result suggests that there is an inhibition very early in translation in interferon-treated, infected cells. Initiation seems a priori the more attractive site for this inhibition, but an effect shortly after initiation cannot be excluded. With unfractionated cell-free systems from interferon-treated infected L-cells, however, there appeared to be an additional minor inhibitory effect on polypeptide chain elongation, in that the EMC-specific polypeptides synthesized showed not only a reduction in amount but also a bias towards lower molecular weight. The formylated methionyl initiator tRNA (Fmet-tRNAF) was used as a further probe into the apparent effect on intiation. With this reagent we have confirmed that there is one major initiation site for the translation of EMC RNA in these cell-free systems. In addition, the results have shown that EMC-specific polypeptide chains initiated with Fmet escape the major interferon-mediated inhibition at or shortly after initiation.  相似文献   

20.
Infection of mouse L929 cells by mengovirus resulted in the expression of a kinase activity that selectively phosphorylated the small, 38,000-molecular-weight subunit of eucaryotic initiation factor 2 and histone H2. This kinase activity was independent of host cell RNA synthesis and was located in the postribosomal supernatant (S-100 fraction) early after infection (up to 3 h). At later times after infection (5 h), kinase activity was also associated with the polysome fraction. The kinase present in the S-100 fraction bound strongly to DEAE-cellulose, its peak activity eluting at 0.5 M KCl. Kinase activity was independent of the presence of exogenous double-stranded RNA, and KCl at concentrations greater than 0.1 M inhibited eucaryotic initiation factor 2 phosphorylation. The 67,000-molecular-weight phosphoprotein activated in interferon-treated cells by double-stranded RNA was not detected by standard phosphorylation assays in lysates from mengovirus-infected cells. Labeling of this protein in vivo during 5 h of infection was also not detected. The DEAE-cellulose-purified mengovirus kinase inhibited protein synthesis in reticulocyte lysates, and the inhibition was not reversible by high concentrations of poly(I).poly(C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号