首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
Phosphotransacetylase (EC 2.3.1.8) catalyzes the reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA): CH(3)COOPO(3)(2-) + CoASH <==> CH(3)COSCoA + HPO(4)(2-). The role of arginine residues was investigated for the phosphotransacetylase from Methanosarcina thermophila. Kinetic analysis of a suite of variants indicated that Arg 87 and Arg 133 interact with the substrate CoA. Arg 87 variants were reduced in the ability to discriminate between CoA and the CoA analog 3'-dephospho-CoA, indicating that Arg 87 forms a salt bridge with the 3'-phosphate of CoA. Arg 133 is postulated to interact with the 5'-phosphate of CoA. Large decreases in k(cat) and k(cat)/K(m) for all of the Arg 87 and Arg 133 variants indicated that these residues are also important, although not essential, for catalysis. Large decreases in k(cat) and k(cat)/K(m) were also observed for the variants in which lysine replaced Arg 87 and Arg 133, suggesting that the bidentate interaction of these residues with CoA or their greater bulk is important for optimal activity. Desulfo-CoA is a strong competitive inhibitor of the enzyme, suggesting that the sulfhydryl group of CoA is important for the optimization of CoA-binding energy but not for tight substrate binding. Chemical modification of the wild-type enzyme by 2,3-butanedione and substrate protection by CoA indicated that at least one reactive arginine is in the active site and is important for activity. The inhibition pattern of the R87Q variant indicated that Arg 87 is modified, which contributes to the inactivation; however, at least one additional active-site arginine is modified leading to enzyme inactivation, albeit at a lower rate.  相似文献   

3.
Peptidylarginine deiminase (PAD) enzymes catalyze the conversion of arginine residues in proteins to citrulline residues. Citrulline is a non-standard amino acid that is not incorporated in proteins during translation, but can be generated post-translationally by the PAD enzymes. Although the existence of citrulline residues in proteins has been known for a long time, only a few proteins have been reported to contain this amino acid under normal conditions. These include the nuclear histones, which also contain a wide variety of other post-translational modifications, as for instance methylation of arginine residues. It has been suggested that citrullination and methylation of arginine residues are competing processes and that PAD enzymes might "reverse" the methylation of arginine residues by converting monomethylated arginine into citrulline. However, conflicting data have been reported on the capacity of PADs to citrullinate monomethylated peptidylarginine. Using synthetic peptides that contain either arginine or methylated arginine residues, we show that the human PAD2, PAD3 and PAD4 enzymes and PAD enzyme present in several mouse tissues in vitro can only convert non-methylated peptidylarginine into peptidylcitrulline and that hPAD6 does not show any deiminating activity at all. A comparison of bovine histones either treated or untreated with PAD by amino acid analysis also supported the interference of deimination by arginine methylation. Taken together, these data indicate that it is unlikely that methyl groups at the guanidino position of peptidylarginine can be removed by peptidylarginine deiminases, which has important implications for the recently reported role of these enzymes in gene regulation.  相似文献   

4.
Peptidyl arginine deiminases (PADs) catalyze the post-translational deimination of peptidyl arginine residues to form citrulline residues. Aberrant citrullination of histones by one of the PAD isozymes, PAD4, is associated with various diseases, including rheumatoid arthritis, so high-throughput screening systems are needed to identify PAD4 inhibitors as chemical tools to investigate the role of PAD4, and as candidate therapeutic agents. Here, we utilized the addition-cyclization reaction between phenylglyoxal and citrulline under acidic conditions to design turn-on fluorescent probes for citrulline based on the donor-excited photoinduced electron transfer (d-PeT) mechanism. Among several derivatives of phenylglyoxal bearing a fluorescent moiety, we found that FGME enabled detection of citrulline without a neutralization process, and we used it to establish a simple methodology for turn-on fluorescence detection of citrulline.  相似文献   

5.
Knuckley B  Bhatia M  Thompson PR 《Biochemistry》2007,46(22):6578-6587
The presumed role of an overactive protein arginine deiminase 4 (PAD4) in the pathophysiology of rheumatoid arthritis (RA) suggests that PAD4 inhibitors could be used to treat an underlying cause of RA, potentially offering a mechanism to stop further disease progression. Thus, the development of such inhibitors is of paramount importance. Toward the goal of developing such inhibitors, we initiated efforts to characterize the catalytic mechanism of PAD4 and thereby identify important mechanistic features that can be exploited for inhibitor development. Herein we report the results of mutagenesis studies as well as our efforts to characterize the initial steps of the PAD4 reaction, in particular, the protonation status of Cys645 and His471 prior to substrate binding. The results indicate that Cys645, the active site nucleophile, exists as the thiolate in the active form of the free enzyme. pH studies on PAD4 further suggest that this enzyme utilizes a reverse protonation mechanism.  相似文献   

6.
Peptidyl arginine deiminases (PADs) catalyze the post-translational deimination of arginine residues to citrulline residues. Aberrant levels of PAD activity are associated with various diseases, such as rheumatoid arthritis, Alzheimer’s disease, and multiple sclerosis, so there is a need for simple and convenient high-throughput screening systems to discover PAD inhibitors as candidate therapeutic agents. Here, we report a highly sensitive off/on-type fluorescence probe for PAD activity based on the donor-excited photoinduced electron transfer (d-PeT) mechanism, utilizing the specific cycloaddition reaction between the benzil group of the probe and the ureido group of the PAD product, citrulline, under acidic conditions. We synthesized and functionally evaluated a series of probes bearing substituents on the benzil phenyl group, and found that 4MEBz-FluME could successfully detect citrulline with higher sensitivity and broader dynamic range than our previously reported fluorescence probe, FGME. Moreover, we succeeded in establishing multiple assay systems for PAD subtypes activities, including PAD2 and PAD4, with 4MeBz-FluME thanks to its high sensitivity. We expect that our fluorescence probes will become a powerful tool for discovering PAD inhibitors of several subtypes. Thus, it should be suitable for high-throughput screening of chemical libraries for inhibitors of PADs.  相似文献   

7.
8.
肽酰基精氨酸脱亚氨酶4(PAD4)催化肽酰精氨酸残基转变为肽酰瓜氨酸残基,其活性失调与类风湿性关节炎(RA)的发生与发展有关.目前PAD4被认为是开发新RA治疗药物的一种新靶酶.认识PAD4的结构与可能的作用机制,对于开发新RA治疗药物是重要的.  相似文献   

9.
Protein Arg methyltransferases function as coactivators of the tumor suppressor p53 to regulate gene expression. Peptidylarginine deiminase 4 (PAD4/PADI4) counteracts the functions of protein Arg methyltransferases in gene regulation by deimination and demethylimination. Here we show that the expression of a tumor suppressor gene, OKL38, is activated by the inhibition of PAD4 or the activation of p53 following DNA damage. Chromatin immunoprecipitation assays showed a dynamic change of p53 and PAD4 occupancy and histone Arg modifications at the OKL38 promoter during DNA damage, suggesting a direct role of PAD4 and p53 in the expression of OKL38. Furthermore, we found that OKL38 induces apoptosis through localization to mitochondria and induction of cytochrome c release. Together, our studies identify OKL38 as a novel p53 target gene that is regulated by PAD4 and plays a role in apoptosis.  相似文献   

10.
Coproporphyrinogen oxidase (CPO) is the sixth enzyme in the heme biosynthetic pathway, catalyzing two sequential oxidative decarboxylations of propionate moieties on coproporphyrinogen-III forming protoporphyrinogen-IX through a monovinyl intermediate, harderoporphyrinogen. Site-directed mutagenesis studies were carried out on three invariant amino acids, aspartate 400, arginine 262, and arginine 401, to determine residue contribution to substrate binding and/or catalysis by human recombinant CPO. Kinetic analyses were performed on mutant enzymes incubated with three substrates, coproporphyrinogen-III, harderoporphyrinogen, or mesoporphyrinogen-VI, in order to determine catalytic ability to perform the first and/or second oxidative decarboxylation. When Asp400 was mutated to alanine no divinyl product was detected, but the production of a small amount of monovinyl product suggested the K(m) value for coproporphyrinogen-III did not change significantly compared to the wild-type enzyme. Upon mutation of Arg262 to alanine, CPO was again a poor catalyst for the production of a divinyl product, with a catalytic efficiency <0.01% compared to wild-type, including a 15-fold higher K(m) for coproporphyrinogen-III. The efficiency of divinyl product formation for mutant enzyme Arg401Ala was approximately 3% compared to wild-type CPO, with a threefold increase in the K(m) value for coproporphyrinogen-III. These data suggest Asp400, Arg262, and Arg401 are active site amino acids critical for substrate binding and/or catalysis. Possible roles for arginine 262 and 401 include coordination of carboxylate groups of coproporphyrinogen-III, while aspartate 400 may initiate deprotonation of substrate, resulting in an oxidative decarboxylation.  相似文献   

11.
Peptidylarginine deiminase (PAD), which catalyzes the deimination of the guanidino group from peptidylarginine residues, belongs to a superfamily of guanidino group modifying enzymes that have been shown to produce an S-alkylthiouronium ion intermediate during catalysis. Thiol-directed reagents iodoacetamide and iodoacetate inactivate recombinant PAD, and substrate protects the enzyme from inactivation. Activity measurements together with peptide mapping by mass spectrometry of PAD modified in the absence and presence of substrate demonstrated that cysteine-351 is modified by iodoacetamide. The pKa value of the cysteine residue, 7.7 ± 0.2 as determined by iodoacetamide modification, agrees well with a critical pK value identified in pH rate studies. The role of cysteine-351 in catalysis was tested by site-directed mutagenesis in which the cysteine was replaced with serine to eliminate the proposed nucleophilic interaction. Binding studies carried out using fluorescence spectrometry established the structural integrity of the C351S PAD. However, the C351S PAD variant was catalytically inactive, exhibiting <0.01% wild-type activity. These results indicate that Cys 351 is a nucleophile that initiates the enzymatic reaction.  相似文献   

12.
The vitamin B(6)-dependent enzyme 7,8-diaminopelargonic acid (DAPA) synthase catalyzes the antepenultimate step in the synthesis of biotin, the transfer of the alpha-amino group of S-adenosyl-l-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form DAPA. The Y17F, Y144F, and D147N mutations in the active site were constructed independently. The k(max)/K(m)(app) values for the half-reaction with DAPA of the Y17F and Y144F mutants are reduced by 1300- and 2900-fold, respectively, compared to the WT enzyme. Crystallographic analyses of these mutants do not show significant changes in the structure of the active site. The kinetic deficiencies, together with a structural model of the enzyme-PLP/DAPA Michaelis complex, point to a role of these two residues in recognition of the DAPA/KAPA substrates and in catalysis. The k(max)/K(m)(app) values for the half-reaction with SAM are similar to that of the WT enzyme, showing that the two tyrosine residues are not involved in this half-reaction. Mutations of the conserved Arg253 uniquely affect the SAM kinetics, thus establishing this position as part of the SAM binding site. The D147N mutant is catalytically inactive in both half-reactions. The structure of this mutant exhibits significant changes in the active site, indicating that this residue plays an important structural role. Of the four residues examined, only Tyr144 and Arg253 are strictly conserved in the available amino acid sequences of DAPA synthases. This enzyme thus provides an illustrative example that active site residues essential for catalysis are not necessarily conserved, i.e., that during evolution alternative solutions for efficient catalysis by the same enzyme arose. Decarboxylated SAM [S-adenosyl-(5')-3-methylthiopropylamine] reacts nearly as well as SAM and cannot be eliminated as a putative in vivo amino donor.  相似文献   

13.
Peptidylarginine deiminase (PAD) catalyzes the posttranslational citrullination of selected proteins in a calcium dependent manner. The PAD4 isoform has been implicated in multiple sclerosis, rheumatoid arthritis, some types of cancer, and plays a role in gene regulation. However, the substrate selectivity of PAD4 is not well defined, nor is the impact of citrullination on many other pathways. Here, a high-density protein array is used as a primary screen to identify 40 previously unreported PAD4 substrates, 10 of which are selected and verified in a cell lysate-based secondary assay. One of the most prominent hits, human 40S ribosomal protein S2 (RPS2), is characterized in detail. PAD4 citrullinates the Arg-Gly repeat region of RPS2, which is also an established site for Arg methylation by protein arginine methyltransferase 3 (PRMT3). As in other systems, crosstalk is observed; citrullination and methylation modifications are found to be antagonistic to each other, suggesting a conserved posttranslational regulatory strategy. Both PAD4 and PRMT3 are found to co-sediment with the free 40S ribosomal subunit fraction from cell extracts. These findings are consistent with participation of citrullination in the regulation of RPS2 and ribosome assembly. This application of protein arrays to reveal new PAD4 substrates suggests a role for citrullination in a number of different cellular pathways.  相似文献   

14.
Monomeric sarcosine oxidase (MSOX) contains covalently bound FAD and catalyzes the oxidative demethylation of sarcosine ( N-methylglycine). The side chain of Arg49 is in van der Waals contact with the si face of the flavin ring; sarcosine binds just above the re face. Covalent flavin attachment requires a basic residue (Arg or Lys) at position 49. Although flavinylation is scarcely affected, mutation of Arg49 to Lys causes a 40-fold decrease in k cat and a 150-fold decrease in k cat/ K m sarcosine. The overall structure of the Arg49Lys mutant is very similar to wild-type MSOX; the side chain of Lys49 in the mutant is nearly congruent to that of Arg49 in the wild-type enzyme. The Arg49Lys mutant exhibits several features consistent with a less electropositive active site: (1) Charge transfer bands observed for mutant enzyme complexes with competitive inhibitors absorb at higher energy than the corresponding wild-type complexes. (2) The p K a for ionization at N(3)H of FAD is more than two pH units higher in the mutant than in wild-type MSOX. (3) The reduction potential of the oxidized/radical couple in the mutant is 100 mV lower than in the wild-type enzyme. The lower reduction potential is likely to be a major cause of the reduced catalytic activity of the mutant. Electrostatic interactions with Arg49 play an important role in catalysis and covalent flavinylation. A context-sensitive model for the electrostatic impact of an arginine to lysine mutation can account for the dramatically different consequences of the Arg49Lys mutation on MSOX catalysis and holoenzyme biosysnthesis.  相似文献   

15.
In order to elucidate the specificity of rabbit muscle peptidylarginine deiminase, which catalyzes the conversion of arginyl to citrullyl residues (Takahara, H., Oikawa, Y., and Sugawara, K. (1983) J. Biochem. (Tokyo) 94, 1945-1953), we examined the action of this enzyme on a variety of trypsin inhibitors by assay of residual trypsin-inhibiting activity. The enzyme rapidly abolished the activity of soybean trypsin inhibitor (Kunitz) (STI) in a process that was pseudo-first order with the rate dependent on enzyme concentration (second order rate constant = 5.0 X 10(4) M-1 S-1), whereas no detectable changes in activity were noted for other inhibitors tested. Inactivation of STI was due to the conversion of 1 arginine to a citrulline residue and was accompanied with a 0.2 unit decrease of the isoelectric point. There was no alteration of the molecular size and overall conformation of STI. Furthermore, analysis of modified STI indicated that arginine 63, known as the reactive site of STI, is the residue modified by peptidylarginine deiminase. Thus, peptidylarginine deiminase selectively catalyzes the deimination of the functional arginine residue of STI.  相似文献   

16.
Liu YL  Chiang YH  Liu GY  Hung HC 《PloS one》2011,6(6):e21314
Peptidylarginine deiminase 4 (PAD4) is a homodimeric enzyme that catalyzes Ca2+-dependent protein citrullination, which results in the conversion of arginine to citrulline. This paper demonstrates the functional role of dimerization in the regulation of PAD4 activity. To address this question, we created a series of dimer interface mutants of PAD4. The residues Arg8, Tyr237, Asp273, Glu281, Tyr435, Arg544 and Asp547, which are located at the dimer interface, were mutated to disturb the dimer organization of PAD4. Sedimentation velocity experiments were performed to investigate the changes in the quaternary structures and the dissociation constants (K d) between wild-type and mutant PAD4 monomers and dimers. The kinetic data indicated that disrupting the dimer interface of the enzyme decreases its enzymatic activity and calcium-binding cooperativity. The K d values of some PAD4 mutants were much higher than that of the wild-type (WT) protein (0.45 µM) and were concomitant with lower k cat values than that of WT (13.4 s−1). The K d values of the monomeric PAD4 mutants ranged from 16.8 to 45.6 µM, and the k cat values of the monomeric mutants ranged from 3.3 to 7.3 s−1. The k cat values of these interface mutants decreased as the K d values increased, which suggests that the dissociation of dimers to monomers considerably influences the activity of the enzyme. Although dissociation of the enzyme reduces the activity of the enzyme, monomeric PAD4 is still active but does not display cooperative calcium binding. The ionic interaction between Arg8 and Asp547 and the Tyr435-mediated hydrophobic interaction are determinants of PAD4 dimer formation.  相似文献   

17.
Spinal cord regenerative ability is lost with development, but the mechanisms underlying this loss are still poorly understood. In chick embryos, effective regeneration does not occur after E13, when spinal cord injury induces extensive apoptotic response and tissue damage. As initial experiments showed that treatment with a calcium chelator after spinal cord injury reduced apoptosis and cavitation, we hypothesized that developmentally regulated mediators of calcium-dependent processes in secondary injury response may contribute to loss of regenerative ability. To this purpose we screened for such changes in chick spinal cords at stages of development permissive (E11) and non-permissive (E15) for regeneration. Among the developmentally regulated calcium-dependent proteins identified was PAD3, a member of the peptidylarginine deiminase (PAD) enzyme family that converts protein arginine residues to citrulline, a process known as deimination or citrullination. This post-translational modification has not been previously associated with response to injury. Following injury, PAD3 up-regulation was greater in spinal cords injured at E15 than at E11. Consistent with these differences in gene expression, deimination was more extensive at the non-regenerating stage, E15, both in the gray and white matter. As deimination paralleled the extent of apoptosis, we investigated the effect of blocking PAD activity on cell death and deiminated-histone 3, one of the PAD targets we identified by mass-spectrometry analysis of spinal cord deiminated proteins. Treatment with the PAD inhibitor, Cl-amidine, reduced the abundance of deiminated-histone 3, consistent with inhibition of PAD activity, and significantly reduced apoptosis and tissue loss following injury at E15. Altogether, our findings identify PADs and deimination as developmentally regulated modulators of secondary injury response, and suggest that PADs might be valuable therapeutic targets for spinal cord injury.  相似文献   

18.
Zhang J  Dai J  Zhao E  Lin Y  Zeng L  Chen J  Zheng H  Wang Y  Li X  Ying K  Xie Y  Mao Y 《Acta biochimica Polonica》2004,51(4):1051-1058
Peptidylarginine deiminase (PAD) catalyzes the post-translational modification of protein through the conversion of arginine to citrulline in the presence of calcium ions. Human, similar to rodents, has four isoforms of PAD (type I, II, III and IV/V), each of which is distinct in substrate specificity and tissue specific expression. In our large-scale sequencing project, we identified a new human PAD cDNA from a human fetal brain cDNA library. The putative protein encoded by this cDNA is designated hPADVI. Expression analysis of hPADVI showed that it is mainly expressed in adult human ovary and peripheral blood leukocytes. We conclude that hPADVI may be orthologous to mouse ePAD, basing on sequence comparison, chromosome localization and exon-intron structure analysis. PAD-mediated deimination of epithelial cell keratin resulting in cytoskeletal remodeling suggests a possible role for hPADVI in cytoskeletal reorganization in the egg and in early embryo development. This study describes a new important member of the human PAD family.  相似文献   

19.
Yeoh HH  Badger MR  Watson L 《Plant physiology》1981,67(6):1151-1155
Studies of ribulose-1,5-bisphosphate (RuBP) carboxylase from taxonomically diverse plants show that the enzyme from C(3) and crassulacean acid metabolism pathway species exhibits lower K(m)(CO(2)) values (12-25 micromolar) than does that from C(4) species (28-34 micromolar). RuBP carboxylase from aquatic angiosperms, an aquatic bryophyte, fresh water and marine algae has yielded consistently high K(m)(CO(2)) values (30-70 micromolar), similar in range to that of the enzyme from C(4) terrestrial plants. This variation in K(m)(CO(2)) is discussed in relation to the correlation between the existence of CO(2)-concentrating mechanisms for photosynthesis and the affinity of the enzyme for CO(2). The K(m)(RuBP) of the enzyme from various sources ranges from 10 to 136 micromolar; mean +/- sd = 36 +/- 20 micromolar. This variation in K(m)(RuBP) does not correlate with different photosynthetic pathways, but shows taxonomic patterns. Among the dicotyledons, the enzyme from crassinucellate species exhibits lower K(m)(RuBP) (18 +/- 4 micromolar) than does that from tenuinucellate species (25 +/- 7 micromolar). Among the Poaceae, RuBP carboxylase from Triticeae, chloridoids, andropogonoids, Microlaena, and Tetrarrhena has yielded lower K(m)(RuBP) values (29 +/- 11 micromolar) than has that from other members of the grass family (46 +/- 10 micromolar).  相似文献   

20.
Escherichia coil signal peptidase I (leader peptidase, SPase I) is an integral membrane serine protease that catalyzes the cleavage of signal (leader) peptides from pre-forms of membrane or secretory proteins. We previously demonstrated that E. coil SPase I was significantly inactivated by reaction with phenylglyoxal with concomitant modification of three to four of the total 17 arginine residues in the enzyme. This result indicated that several arginine residues are important for the optimal activity of the enzyme. In the present study, we have constructed 17 mutants of the enzyme by site-directed mutagenesis to investigate the role of individual arginine residues in the enzyme. Mutation of Arg127, Arg146, Arg198, Arg199, Arg226, Arg236, Arg275, Arg282, and Arg295 scarcely affected the enzyme activity in vivo and in vitro. However, the enzymatic activity toward a synthetic substrate was significantly decreased by replacements of Arg77, Arg222, Arg315, or Arg318 with alanine/lysine. The kcat values of the R77A, R77K, R222A, R222K, R315A, R318A, and R318K mutant enzymes were about 5.5-fold smaller than that of the wild-type enzyme, whereas the Km values of these mutant enzymes were almost identical with that of the wild-type. Moreover, the complementing abilities in E. Arg222, Arg315, coil IT41 were lost completely when Arg77, or Arg318 was replaced with alanine/lysine. The circular dichroism spectra and other enzymatic properties of these mutants were comparable to those of the wild-type enzyme, indicating no global conformational changes. However, the thermostability of R222A, R222K, R315A, and R318K was significantly lower compared to the wild type. Therefore, Arg77, Arg222, Arg315, and Arg318 are thought to be important for maintaining the proper and stable conformation of SPase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号