首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel sialyltransferase, alpha/beta-galactoside alpha-2,3-sialyltransferase, was purified from the cell lysate of a luminous marine bacterium, Photobacterium phosphoreum JT-ISH-467, isolated from the Japanese common squid (Todarodes pacificus). The gene encoding the enzyme was cloned from the genomic library of the bacterium using probes derived from the NH(2)-terminal and internal amino acid sequences. An open reading frame of 409 amino acids was identified, and the sequence had 32% identity with that of beta-galactoside alpha-2,6-sialyltrasferase in Photobacterium damselae JT0160. DNA fragments that encoded the full-length protein and a protein that lacked the sequence between the 2nd and 24th residues at the NH(2) terminus were amplified by polymerase chain reactions and cloned into an expression vector. The full-length and truncated proteins were expressed in Escherichia coli, producing active enzymes of 0.25 and 305 milliunits, respectively, per milliliter of the medium in the lysate of E. coli. The truncated enzyme was much more soluble without detergent than the full-length enzyme. The enzyme catalyzed the transfer of N-acetylneuraminic acid from CMP-N-acetylneuraminic acid to disaccharides, such as lactose and N-acetyllactosamine, with low apparent K(m) and to monosaccharides, such as alpha-methyl-galactopyranoside and beta-methyl-galactopyranoside, with much lower apparent K(m). Thus, this sialyltransferase is unique and should be very useful for achieving high productivity in E. coli with a wide substrate range.  相似文献   

2.
A novel bacterium, Photobacterium sp. JT-ISH-224, that produces alpha-/beta-galactoside alpha2,3-sialyltransferase and beta-galactoside alpha2,6-sialyltransferase, was isolated from the gut of a Japanese barracuda. The genes that encode the enzymes were cloned from the genomic library of the bacterium using the genes encoding alpha-/beta-galactoside alpha2,3-sialyltransferase from P. phosphoreum and beta-galactoside alpha2,6-sialyltransferase from P. damselae as probes. The nucleotide sequences were determined, and open reading frames of 1,230 and 1,545 bp for encoding an alpha2,3-sialyltransferase and an alpha2,6-sialyltransferase of 409- and 514-amino acid residues, respectively, were identified. The alpha2,3-sialyltransferase had 92% amino acid sequence identity with the P. phosphoreum alpha2,3-sialyltransferase, whereas the alpha2,6-sialyltransferase had 54% amino acid sequence identity with the P. damselae alpha2,6-sialyltransferase. For both enzymes, the DNA fragments that encoded the full-length protein and its truncated form lacking the putative signal peptide sequence were amplified by a polymerase chain reaction and cloned into an expression vector. Each gene was expressed in Escherichia coli, and the lysate from each strain had enzymatic activity. The alpha2,3-sialyltransferase catalysed the transfer of N-acetylneuraminic acid (NeuAc) from CMP-NeuAc to lactose, alpha-methyl-galactopyranoside and beta-methyl-galactopyranoside with low apparent K(m) and the alpha2,6-sialyltransferase catalysed the transfer of NeuAc from CMP-NeuAc to lactose with low apparent K(m).  相似文献   

3.
Based on the sequences of the highly conserved segments in the previously cloned sialyltransferases, a cDNA encoding Galbeta1, 3GalNAc alpha2,3-sialyltransferase (SIATFL) has been isolated from human fetal liver. Expression analysis of the gene has been performed with various carcinoma cell lines, fetal tissues, fetal and adult liver and both hepatoma and the surrounding tissue from the same liver. The SIATFL gene was expressed poorly in fetal liver and in adult liver, slightly in hepatoma and highly in the surrounding tissue of hepatoma. The cDNA encoding the putative active domain was expressed in COS-1, Escherichia coli, and Pichia pastoris. The recombinant protein expressed in COS-1 could catalyse the transfer of NeuAc from CMP-NeuAc to asialo-fetuin. No enzyme activity was detected with a 32-kDa protein in E. coli and both 32-kDa and 41-kDa proteins in P. pastoris. These results suggested that correct glycosylation of the enzyme might play a key role in its folding that may be directly related to the enzymatic activity.  相似文献   

4.
5.
We present evidence for the existence in rat brain of several sialyltransferases able to sialylate sequentially asialofetuin. [14C]Sialylated glycans of asialofetuin were analyzed by gel filtration. Three types of [14C]sialylated glycans were synthesized: N-glycans and monosialylated and disialylated O-glycans. The varying effects of N-ethylmaleimide, lysophosphatidylcholine (lysoPtdCho) and trypsin, were helpful in the identification of these different sialyltransferases. One of them, selectively inhibited by N-ethylmaleimide, was identified as the Neu5Ac alpha 2----3Gal beta 1----3GalNAc-R:alpha 2----6 sialyltransferase previously described [Baubichon-Cortay, H., Serres-Guillaumond, M., Louisot, P. and Broquet, P. (1986) Carbohydr. Res. 149, 209-223]. This enzyme was responsible for the synthesis of disialylated O-glycans. LysoPtdCho and trypsin selectively inhibited the enzyme responsible for the synthesis of monosialylated O-glycan. N-ethylmaleimide, lysoPtdCho and trypsin did not inhibit Neu5Ac transfer onto N-glycans, giving evidence for three different molecular species. To identify the enzyme responsible for monosialylated O-glycan synthesis, we used another substrate: Gal beta 1----3GalNAc--protein obtained after galactosylation of desialylated ovine mucin by a GalNAc-R:beta 1----3 galactosyltransferase from porcine submaxillary gland. This acceptor was devoid of N-glycans and of NeuAc in alpha 2----3 linkages on the galactose residue. When using N-ethylmaleimide we obtained the synthesis of only one product, a monosialylated structure. After structural analysis by HPLC on SAX and SiNH2 columns, we identified this product as Neu5Ac alpha 2----3Gal beta 1----3GalNAc. The enzyme leading to synthesis of this monosialylated O-glycan was identified as a Gal beta 1----3GalNAc-R:alpha 2----3 sialyltransferase. When using lysoPtdCho and trypsin, sialylation was completely abolished, although the Neu5Ac alpha 2----3Gal beta 1----3GalNAc-R:alpha 2----6 sialyltransferase was not inhibited. We provided thus evidence for the interpendence between the two enzymes, the alpha 2----3 sialyltransferase regulates the alpha 2----6 sialyltransferase activity since it synthesizes the alpha 2----6 sialyltransferase substrate.  相似文献   

6.
Sequence information obtained by NH2-terminal sequence analysis of two molecular weight forms (45 and 48 kDa) of the porcine Gal beta 1,3GalNAc alpha 2,3-sialyltransferase was used to clone a full-length cDNA of the enzyme. The cDNA sequence revealed an open reading frame coding for 343 amino acids and a putative domain structure consisting of a short NH2-terminal cytoplasmic domain, a signal-anchor sequence, and a large COOH-terminal catalytic domain. This domain structure was confirmed by construction of a recombinant sialyltransferase in which the cytoplasmic domain and signal-anchor sequence of the enzyme was replaced with the cDNA of insulin signal sequence. Expression of the resulting construct in COS-1 cells produced an active sialyltransferase which was secreted into the medium in soluble form. Comparison of the cDNA sequence of the sialyltransferase with GenBank produced no significant homologies except with the previously described Gal beta 1,4GlcNAc alpha 2,6-sialyltransferase. Although the cDNA sequences of these two enzymes were largely nonhomologous, there was a 45-amino acid sequence which exhibited 65% identity. This observation suggests that the two sialyltransferases were derived, in part, from a common gene.  相似文献   

7.
Zhang J  Sun Y 《Biotechnology letters》2007,29(8):1221-1225
A gene encoding a chitosanase (mschito) was cloned from Microbacterium sp. OU01. The ORF consists of 801 bp which encoded a polypeptide of 266 amino acid residues. The deduced amino acid sequence shows 98% identity to that of the chitosanase reported in Pseudomonas sp. A-01. In addition, the fusion protein containing MSCHITO was expressed in E. coli and purified using Ni-NTA affinity chromatography. The purified rMSCHITO protein degraded the chitosan (the degree of deacetylation of 99%) and produced a mixture of chitooligosaccharides. The MSCHITO is thus an endo-chitosanase.  相似文献   

8.
Expression cloning of a cDNA for the alpha2,3-sialyltransferase (GM3 synthase) (EC 2.4.99.-) gene was performed using a GM3-lacking mouse fibroblast line L cell and anti-GM3 monoclonal antibody. Plasmids from a cDNA library generated with poly(A)+ RNA of a mouse fibrosarcoma line CMS5j and pdl3027 (polyoma T antigen) were co-transfected into L cells. The isolated cDNA clone pM3T-7 predicted a type II membrane protein with 13 amino acids of cytoplasmic domain, 17 amino acids of transmembrane region, and a large catalytic domain with 329 amino acids. Introduction of the cDNA clone into L cells resulted in the neo-synthesis of GM3 and high activity of alpha2,3-sialyltransferase. Among glycosphingolipids, only lactosylceramide showed significant activity as an acceptor, indicating that this gene product is a sialyltransferase specific for the synthesis of GM3. An amino acid sequence deduced from the cloned cDNA showed the typical sialyl motif with common features among alpha2,3-sialyltransferases. Among various mouse tissues, brain, liver, and testis showed relatively high expression of a 2.3-kilobase mRNA, whereas all tissues, more or less, expressed this gene.  相似文献   

9.
The beta-agarase-d gene (agaD) from a marine bacterium, Vibrio sp. strain PO-303, was cloned and expressed in Escherichia coli. The gene consists of 1,362 bp and encodes a protein of 453 amino acids with a predicted molecular weight of 50,824. The full length of agarase-d consists of a signal peptide, a glycoside hydrolase family 16 catalytic module (CM), and a carbohydrate binding module (CBM). The full length of agarase-d without the signal peptide (rAgaDDeltafull), the catalytic module (rAgaDCM), or the CBM (rAgaDCBM) was expressed in E. coli as recombinant proteins. rAgaDCM exhibited higher enzyme activity (63.6 units/mg) than rAgaDDeltafull (1.20 units/mg) against agarose. rAgaDCM hydrolyzed agar and porphyran to several oligosaccharides and acted on neoagarohexaose to produce neoagarotetraose and neoagarobiose, but did not act on neoagarotetraose. rAgaDCBM bound to agarose.  相似文献   

10.
J M Kim  I S Kong    J H Yu 《Applied microbiology》1987,53(11):2656-2659
One of the cellulase genes from alkalophilic Bacillus sp. strain N-4 was cloned in pBR322. A recombinant plasmid, pYBC107, expressing carboxymethyl cellulase (CMCase) was isolated, and the size of the cloned HindIII fragment was found to be 5.5 kilobases. The restriction map of pYBC107 showed a different pattern from those of pNKI and pNKII (N. Sashihara, T. Kudo, and K. Horikoshi, J. Bacteriol. 158:503-506, 1984). When the HindIII fragment from pYBC107 was subcloned into pYEJ001, there was a 3.8-fold increase in CMCase activity over that observed with pYBC107. Plasmid pYBC108 constructed by treatment of pYBC107 with HindIII and EcoRI expressed the CMCase activity, although to a limited extent. To verify the originality of cloned pYBC107 from Bacillus sp., we analyzed the restriction digest by Southern blotting.  相似文献   

11.
One of the cellulase genes from alkalophilic Bacillus sp. strain N-4 was cloned in pBR322. A recombinant plasmid, pYBC107, expressing carboxymethyl cellulase (CMCase) was isolated, and the size of the cloned HindIII fragment was found to be 5.5 kilobases. The restriction map of pYBC107 showed a different pattern from those of pNKI and pNKII (N. Sashihara, T. Kudo, and K. Horikoshi, J. Bacteriol. 158:503-506, 1984). When the HindIII fragment from pYBC107 was subcloned into pYEJ001, there was a 3.8-fold increase in CMCase activity over that observed with pYBC107. Plasmid pYBC108 constructed by treatment of pYBC107 with HindIII and EcoRI expressed the CMCase activity, although to a limited extent. To verify the originality of cloned pYBC107 from Bacillus sp., we analyzed the restriction digest by Southern blotting.  相似文献   

12.
Haemophilus ducreyi is a Gram-negative bacterium that causes chancroid, a sexually transmitted genital ulcer disease. Different lipooligosaccharide (LOS) structures have been identified from H. ducreyi strain 35000, including those sialylated glycoforms. Surface LOS of H. ducreyi is considered an important virulence factor that is involved in ulcer formation, cell adhesion, and invasion of host tissue. Gene Hd0686 of H. ducreyi, designated lst (for lipooligosaccharide sialyltransferase), was identified to encode an alpha2,3-sialyltransferase that is important for the formation of sialylated LOS. Here, we show that Hd0053 of H. ducreyi genomic strain 35000HP, the third member of the glycosyltransferase family 80 (GT80), also encodes an alpha2,3-sialyltransferase that may be important for LOS sialylation.  相似文献   

13.
14.
A 3.0-kb DNA fragment containing an endo-inulinase gene was cloned from Arthrobacter sp. S37. It contained a single open reading frame of 2439 bp, encoding a polypeptide composed of signal peptide of 53 amino acids and mature protein of 759 amino acids. From the comparison with amino acids sequences of fructan hydrolases and invertase, five highly conserved regions including the -fructosidase motif were found. The sequence of the endo-inulinase had the identity in the range of 13.3% to 16.0%.  相似文献   

15.
16.
【目的】嘌呤核苷磷酸化酶(PNP,EC.2.4.2.1)在酶法合成核苷类药物及中间体中具有广泛应用。本文研究的目标是,获得极地嗜冷菌假交替单胞菌Pseudoa lteromonas sp.XM2107嘌呤核苷磷酸化酶编码基因,并对该酶酶学性质进行研究,以考察该酶在核苷类中间体及药物合成中的潜在应用价值。【方法】利用同源序列PCR技术从Pseudoa lteromonas sp.XM2107基因组DNA中扩增出其编码嘌呤核苷磷酸化酶基因,测序获得编码序列。将该基因在大肠杆菌BL21(DE3)中进行重组表达以及金属螯合层析纯化,对其酶学性质进行初步研究。【结果】经过测序获得了该酶编码基因序列,全长702 bp,共编码233个氨基酸,大小为25 kDa,Genbank登录号为GQ475485。酶学性质研究发现,该重组酶最适反应温度为50℃,最适酶促反应pH为7.6(25 mmol/L磷酸盐缓冲液),最适酶促反应底物为肌苷(Km值0.389 mmol/L,37℃),且对底物腺苷和鸟苷也有磷酸解活性,在普通温度下具有较高催化活性和较好热稳定性。【结论】来源于Pseudoa lteromonas sp.XM2107的嘌呤核苷磷酸化酶在普通温度条件下具有较高的催化活性及良好热稳定性性质,在核苷类中间体和药物合成中具有较广泛的应用价值。  相似文献   

17.
A novel member of the human CMP-NeuAc:beta-galactoside alpha2, 3-sialyltransferase (ST) subfamily, designated ST3Gal VI, was identified based on BLAST analysis of expressed sequence tags, and a cDNA clone was isolated from a human melanoma line library. The sequence of ST3Gal VI encoded a type II membrane protein with 2 amino acids of cytoplasmic domain, 32 amino acids of transmembrane region, and a large catalytic domain with 297 amino acids; and showed homology to previously cloned ST3Gal III, ST3Gal IV, and ST3Gal V at 34, 38, and 33%, respectively. Extracts from L cells transfected with ST3Gal VI cDNA in a expression vector and a fusion protein with protein A showed an enzyme activity of alpha2, 3-sialyltransferase toward Galbeta1,4GlcNAc structure on glycoproteins and glycolipids. In contrast to ST3Gal III and ST3Gal IV, this enzyme exhibited restricted substrate specificity, i.e. it utilized Galbeta1,4GlcNAc on glycoproteins, and neolactotetraosylceramide and neolactohexaosylceramide, but not lactotetraosylceramide, lactosylceramide, or asialo-GM1. Consequently, these data indicated that this enzyme is involved in the synthesis of sialyl-paragloboside, a precursor of sialyl-Lewis X determinant.  相似文献   

18.
Two cDNA clones encoding NeuAcalpha2,3Galbeta1,3GalNAc GalNAcalpha2, 6-sialyltransferase have been isolated from mouse brain cDNA libraries. One of the cDNA clones is a homologue of previously reported rat ST6GalNAc III according to the amino acid sequence identity (94.4%) and the substrate specificity of the expressed recombinant enzyme, while the other cDNA clone includes an open reading frame coding for 302 amino acids. The deduced amino acid sequence is not identical to those of other cloned mouse sialyltransferases, although it shows the highest sequence similarity with mouse ST6GalNAc III (43.0%). The expressed soluble recombinant enzyme exhibited activity toward NeuAcalpha2, 3Galbeta1, 3GalNAc, fetuin, and GM1b, while no significant activity was detected toward Galbeta1,3GalNAc or asialofetuin, or the other glycoprotein substrates tested. The sialidase sensitivity of the 14C-sialylated residue of fetuin, which was sialylated by this enzyme with CMP-[14C]NeuAc, was the same as that of ST6GalNAc III. These results indicate that the expressed enzyme is a new type of GalNAcalpha2,6-sialyltransferase, which requires sialic acid residues linked to Galbeta1,3GalNAc residues for its activity; therefore, we designated it mouse ST6GalNAc IV. Although the substrate specificity of this enzyme is similar to that of ST6GalNAc III, ST6GalNAc IV prefers O-glycans to glycolipids. Glycolipids, however, are better substrates for ST6GalNAc III.  相似文献   

19.
20.
Sialylated glycoconjugates play important roles in various biological functions. The structures are also observed in brains and it has been proposed that sialylation may affect neural plasticity. To clarify the effects of sialylation in the brain, particular neurons that exhibit sialylation should first be determined. Using in situ hybridization, we performed systematic surveys of the localization of mRNAs encoding the six alpha2,3-sialyltransferases (ST3Gal I-VI) in the adult mouse brain with or without physiological stimulation. First, striking region-specific patterns of expression were observed: While ST3Gal II, III, and V mRNAs were in neuronal cells throughout the brain, ST3Gal I, IV, and VI mRNAs were in restricted brain regions. Next, to assess whether the expression of the six mRNAs can be regulated, we examined the effect of kindling epileptogenesis on the six mRNA levels. Of the six subtypes, upregulation in the ST3Gal IV level in the thalamus was most pronounced; the number of ST3Gal IV-expressing neurons in the anterior thalamic nuclei increased from 2% to 21% in a time-dependent manner during epileptogenesis. Western blot analysis evaluated the increase of the end-products in the thalamus. These findings provide a molecular basis to clarify when and where sialylated glycoconjugates function accompanied by neural plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号