首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
云南八种秋海棠属植物的染色体数目   总被引:7,自引:2,他引:5  
对 8种 (变种 )中国秋海棠属 (BegoniaL .)植物的体细胞染色体数目进行了报道 ,分别为 :盾叶秋海棠BegoniacavalerieiL啨vl. 2n =30 ;角果秋海棠B ceratocarpaS .H .HuangetShui 2n =2 0 ;掌叶秋海棠B hemsleyanaJ .D .Hooker 2n =2 0 ;长果秋海棠B longicarpaK .Y .GuanetD .K .Tian 2n =2 0 ;红孩儿B palmatavar .browingiana (Champ .exBenth .)J .GoldingetC .Kareg .2n =2 2 ;大王秋海棠B rexPutz.2n =2 2 + 1B ;勐养秋海棠B mengyangensissub sp .mengyangensisM .C .TebbittetK .Y .Guan 2n =2 2 ;变色秋海棠B versicolorIrmsch . 2n =2 2。除掌叶秋海棠、大王秋海棠和变色秋海棠外 ,其余染色体数目均为首次报道。  相似文献   

2.
中国栎属九种植物的核型分析   总被引:9,自引:3,他引:6  
曹明  周浙昆   《广西植物》2000,20(4):341-345+390
报道了中国栎属 ( Quercus L inn.) 9种植物的核型。结果如下 :帽斗栎 ( Q.guyavaelofia) :2 n=2 4 =2 2 m+2 sm,属于“1A”类型 ;富宁栎 ( Q.setulosa) :2 n=2 4 =2 0 m+4sm,属于“2 A”类型 ;炭栎 ( Q.utilis) :2 n=2 4 =2 4 m,属于“2 A”类型 ;乌冈栎 ( Q.phillyraeoides) :2 n=2 4 =2 0 m+4sm,属于“2 B”类型 ;匙叶栎 ( Q.dolicholepis) :2 n=2 4 =2 0 m+4sm,属于“2 B”类型 ;岩栎( Q.acrodonta) :2 n=2 4 =2 2 m+2 sm,属于“2 B”类型 ;麻栗坡栎 ( Q.marlipoensis) :2 n=2 4 =2 4 m,属于“1B”类型 ;锥连栎 ( Q.franchetii) :2 n=2 4 =2 2 m +2 sm ,属于“1B”类型 ;麻栎 ( Q.acutissima) :2 n=2 4 =2 0 m+4sm,属于“2 B”类型 .其中除麻栎外 ,另 8种的核型系首次报道。研究结果表明 ,上述核型在种间较相似 ,但以组为单位进行比较时 ,则有一定的价值 ,有可能为揭示栎属的系统演化提供新的证据。  相似文献   

3.
李思锋  祁桦   《广西植物》1993,13(4):342-348
本文报道了陕西秦巴山区几种重楼属植物的核型研究结果。在秦岭(太白山)地区,北楼(Paris verticillata)具有一种核型,其核型公式为 2n=4 x=20=10m+2sm+4st+4t;狭叶重楼(P.polyphylla var.stenophylla)在一个居群内不同的个体间具有两种不同的核型,核型公式分别为2n=2x=10=5m+1sm+4t和2n=2x=10+2B=6m+4t+2B。在秦岭和巴山两地,宽叶重楼(P.polyphylla var.latifolia)和球药隔重楼(P.fargesii)分别具有两种不同的核型,前者的核型公式为2n=2x=10+3B=6m+3t+3B和2n=2x=10=5m+1sm+4t,后者的核型公式为2n=2x=10+2B=4m+2sm+4t+2B和2n=2x=10+2B=6m+4t+2B。这些材料均属2A核型,在核型结构及B染色体的有无和数目上与前人报道的结果不完全相同。  相似文献   

4.
报道我国青藏高原东南缘5种6个居群火绒草属植物的染色体数目和核型.银叶火绒草Leontopodium souliei 2n =2x=24=13M+8m+3sm,1B;坚秆火绒草L.franchetii 2n=2x=26=6M+ 18m +2sm,2A;华火绒草L.sinense;四川木里海拔2406m的居群:2n=2x=26=4M+22m,1B,四川木里海拔3074m居群:2n=4x=52=16M+36m,1B;美头火绒草L.calocephalum 2n=4x=48=3M+43m +2sn,1B;毛香火绒草L.stracheyi 2n=4x=48=13M+35m,1A.对现有的染色体资料分析表明:火绒草属的染色体核型比较对称,但种间具一定的变异;多倍化可能是该属在我国青藏高原及其周边地区发生强烈物种分化的重要原因之一.  相似文献   

5.
重楼属和延龄草核型的一致性   总被引:1,自引:1,他引:0  
本文报道的重楼属3个种和变种与延龄草的核型基本一致,表明它们之间的亲缘关系很近,其核型简式为:延龄草(T. tschonoskii)2n=10=4m 2m(SAT) 2st(SAT) 2t(SAT) 1B;五指莲(Paris axialis)2n=10=6m 2t 2t(SAT) 2B;狭叶重楼(P. polyphylla var. stenophylla)2n=10=2m(SAT) 4m 2st 2t;小重楼(P.polyphylla var.minora)2n=10=4m 2sm 4t.  相似文献   

6.
五种云杉的核型分析   总被引:12,自引:0,他引:12  
作者分析了我国产的5种云杉的核型,结果如下:红皮云杉,2n=24=20m(4sc)+4sm;白扦2n=24=22m(6sc)+2sm+2B;青扦,2n=24=16m(6sc)+8sm+2B;雪岭杉2n=24=20m(6sc)+4sm;鱼鳞云杉,2n=24=22m(4sc)+2sm+1B。  相似文献   

7.
仲彬草属八个物种的核型   总被引:1,自引:0,他引:1  
报道了仲彬草属 (KengyiliaYenetJ .L .Yang) 8个物种的核型 ,其中 4个种的核型为首次报道。核型公式是 :阿勒泰仲彬草K alatavica ,2n =6x =4 2 =36m 6sm ;长颖仲彬草K longiglumis,2n =6x =4 2 =36m 6sm ;大颖仲彬草K grandiglumis,2n =6x =4 2 =36m 6sm ;窄颖仲彬草K stenachyra ,2n =6x =4 2 =36m 6sm ;喀什仲彬草K kasgarica ,2n =6x =4 2 =32m 10sm ;梭罗仲彬草K thoroldiana ,2n =6x =4 2 =36m 6sm ;黑药仲彬草K melanthera ,2n =6x =4 2 =36m 6sm ;矮生仲彬草K nana ,2n =6x =4 2 =34m 8sm。它们的核型属于 1B或 2B型 ,染色体中均未发现随体  相似文献   

8.
采用常规压片法,对风毛菊属(Saussurea)5种植物的染色体数目和核型类型进行分析。结果表明:大耳叶风毛菊(S.macrota)核型公式为2n=2x=26=10m+12sm+4st,属2A型;长梗风毛菊(S.dolichopoda)核型公式为2n=2x=26=14m+8sm+4st,属2A型;川陕风毛菊(S.licentiana)核型公式为2n=2x=28=12m+16sm,属2B型;杨叶风毛菊(S.populifolia)核型公式为2n=2x=28=6m+18sm+4st,属2B型;尾叶风毛菊(S.caudata)核型公式为2n=2x=30=14m+14sm+2st,属2A型。这5种风毛菊属植物中,除大耳叶风毛菊染色体数目和核型类型与前人报道的一致外,其余4种植物的染色体数目和核型类型均为首次报道,并在川陕风毛菊中发现1对B染色体。  相似文献   

9.
34种秋海棠基因组大小比较与分析   总被引:1,自引:0,他引:1  
以34种野生秋海棠(包括4个变种)为试材,水稻(Oryza sativa L.subsp.japonica Kato)为外标,采用流式细胞法测定其基因组大小,比较不同种、组之间基因组大小的差异,并分析与染色体数的相关性。结果表明:34种秋海棠基因组大小在0.292~2.554 pg之间,最大值约为最小值的9倍,平均基因组大小为0.863 pg,最小的为盾叶秋海棠(Begonia peltatifolia H.L.Li),最大的为水鸭脚秋海棠(B.formosana(Hayata)Masam.)。中国原产的30种秋海棠平均基因组大小(1C=0.925 pg)较南美洲原产的4种的(1C=0.398 pg)大,中国台湾原产的3种秋海棠基因组均比大陆原产的27种的大。中国原产秋海棠不同组间基因组的大小存在差异,同一组内基因组大小亦不相同,本研究所测材料以四室组的基因组最大,为1.285 pg,组内变化近3.2倍;秋海棠组和二室组次之,分别为0.895 pg和0.888 pg,组内变化近6.4、6.8倍;侧膜胎座组基因组最小,为0.721 pg,组内变化约1.2倍。相关性分析表明秋海棠基因组大小与染色体数无显著相关性。本结果可为秋海棠遗传多样性分析及基因组学研究提供一定的基础数据。  相似文献   

10.
鹅观草属4个种的核型与进化   总被引:3,自引:0,他引:3  
报道了4个种鹅观草属(Roegneria C. Koch)植物的核型,其核型公式如下:芒颖鹅观草(R. aristiglumis Keng et S. L. Chen), 2n=4x=28=22m+6sm(2SAT);短颖鹅观草(R. breviglumis Keng), 2n=4x=28=20m(2SAT)+8sm;红原鹅观草(R. hongyuanensis L. B. Cai), 2n=4x=28=22m+6sm(2SAT);山东鹅观草(R. shandongensis(B. Salomon)J. L. Yang, Y. H. Zhou et Yen), 2n=4x=28=24m(2SAT)+4sm。同时对染色体主要特征的演变规律进行了分析,揭示了鹅观草属4个种的相对进化程度以及宏观分类中2个组的系统发育关系,表明鹅观草属的半颖组在系统发育中派生了颖体短小的小颖组。  相似文献   

11.
12.
13.
14.
15.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

16.
17.
Evolution of living organisms is closely connected with evolution of structure of the system of regulations and its mechanisms. The functional ground of regulations is chemical signalization. As early as in unicellular organisms there is a set of signal mechanisms providing their life activity and orientation in space and time. Subsequent evolution of ways of chemical signalization followed the way of development of delivery pathways of chemical signal and development of mechanisms of its regulation. The mechanism of chemical regulation of the signal interaction is discussed by the example of the specialized system of transduction of signal from neuron to neuron, of effect of hormone on the epithelial cell and modulation of this effect. These mechanisms are considered as the most important ways of the fine and precise adaptation of chemical signalization underlying functioning of physiological systems and organs of the living organism  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号