共查询到20条相似文献,搜索用时 15 毫秒
1.
ROBERT J. WILSON † DAVID GUTIÉRREZ JAVIER GUTIÉRREZ VÍCTOR J. MONSERRAT‡ 《Global Change Biology》2007,13(9):1873-1887
The geographic ranges of many species have shifted polewards and uphill in elevation associated with climate warming, leading to increases in species richness at high latitudes and elevations. However, few studies have addressed community‐level responses to climate change across the entire elevational gradients of mountain ranges, or at warm lower latitudes where ecological diversity is expected to decline. Here, we show uphill shifts in butterfly species richness and composition in the Sierra de Guadarrama (central Spain) between 1967–1973 and 2004–2005. Butterfly communities with comparable species compositions shifted uphill by 293 m (± SE 26), consistent with an upward shift of approximately 225 m in mean annual isotherms. Species richness had a humped relationship with elevation, but declined between surveys, particularly at low elevations. Changes to species richness and composition primarily reflect the loss from lower elevations of species whose regional distributions are restricted to the mountains. The few colonizations by specialist low‐elevation species failed to compensate for the loss of high‐elevation species, because there are few low‐elevation species in the region and the habitat requirements of some of these prevent them from colonizing the mountain range. As a result, we estimated a net decline in species richness in approximately 90% of the region, and increasing community domination by widespread species. The results suggest that climate warming, combined with habitat loss and other drivers of biological change, could lead to significant losses in ecological diversity in mountains and other regions where species encounter their lower latitudinal‐range margins. 相似文献
2.
1. Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2. We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18-28.5 degrees C) in populations from core and range margin sites. 3. In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra > or = U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4. Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5. Current range expansion of P. c-album is associated with the exploitation of more widespread host plants on which performance is improved. This study demonstrates how polyphagy may enhance the ability of species to track climate change. Our findings suggest that observed differences in climate-driven range shifts of generalist vs. specialist species may increase in the future and are likely to lead to greatly altered community composition. 相似文献
3.
LAËTITIA BUISSON WILFRIED THUILLER SOVAN LEK PUY LIM GAËL GRENOUILLET 《Global Change Biology》2008,14(10):2232-2248
Stream fish are expected to be significantly influenced by climate change, as they are ectothermic animals whose dispersal is limited within hydrographic networks. Nonetheless, they are also controlled by other physical factors that may prevent them moving to new thermally suitable sites. Using presence–absence records in 655 sites widespread throughout nine French river units, we predicted the potential future distribution of 30 common stream fish species facing temperature warming and change in precipitation regime. We also assessed the potential impacts on fish assemblages' structure and diversity. Only cold-water species, whose diversity is very low in French streams, were predicted to experience a strong reduction in the number of suitable sites. In contrast, most cool-water and warm-water fish species were projected to colonize many newly suitable sites. Considering that cold headwater streams are the most numerous on the Earth's surface, our results suggested that headwater species would undergo a deleterious effect of climate change, whereas downstream species would expand their range by migrating to sites located in intermediate streams or upstream. As a result, local species richness was forecasted to increase greatly and high turnover rates indicated future fundamental changes in assemblages' structure. Changes in assemblage composition were also positively related to the intensity of warming. Overall, these results (1) stressed the importance of accounting for both climatic and topographic factors when assessing the future distribution of riverine fish species and (2) may be viewed as a first estimation of climate change impacts on European freshwater fish assemblages. 相似文献
4.
Markus Peter Andreas Gigon Peter J. Edwards Andreas Lüscher 《Biodiversity and Conservation》2009,18(3):547-567
To investigate recent changes in the floristic composition and nature conservation value of nutrient-poor, semi-natural grasslands
of the Swiss Alps, we resurveyed 151 phytosociological relevés in four regions, originally recorded between 1975 and 1985.
In the original surveys, the mean number of plant species per plot (25–100 m2) ranged from 47.1 to 58.1 according to region. The flora included a total of 18 species that are protected in Switzerland
and a high proportion of habitat specialists of nutrient-poor grasslands (NPG-species). In the second survey, conducted between
2002 and 2004, both mean species number per plot (−3.2 to +11.4) and species evenness (−0.05 to +0.07) were higher in most
regions. However, the data revealed clear shifts in community composition, with a higher proportion of nutrient-demanding
species (mean nutrient indicator value increased by +0.07 to +0.24 units) and a lower proportion per plot of NPG-species (−3.6
to −11.6%). These changes were greatest in pastures, and in meadows converted to sheep pastures, while the NPG-species were
maintained in unfertilized meadows that were managed as ecological compensation areas. To prevent continuing decline in the
conservation value of these grasslands, it is important to support low-intensity management, especially mowing, and to prevent
further eutrophication. 相似文献
5.
Modelling the impacts of two exotic invasive species on a native butterfly: top-down vs. bottom-up effects 总被引:3,自引:0,他引:3
1. Exotic invasive species can influence population dynamics of native species through top-down or bottom-up forces. The present study examined separate and interactive effects of multiple exotic species invasions on the native mustard white butterfly, Pieris napi oleracea Harris (Lepidoptera: Pieridae), using a stochastic simulation model. 2. P. n. oleracea populations in North America have decreased regionally since the 1860s. Competition with an exotic congener (P. rapae L.), loss of native host plants and parasitism by the introduced broconid wasp (Cotesia glomerata L.), have been suggested to be independently responsible for its decline. The present study examined these hypotheses, as well as an alternative, invasion by an exotic crucifer, garlic mustard (Alliaria petiolata[Bieb.] Cavara & Grande). 3. A stochastic simulation model of P. n. oleracea population dynamics revealed that decreasing the number of host plants available for oviposition and larval development (i.e. habitat loss), sharply reduced the probability of populations persistence and decreased population size for those that persisted. 4. Simulated invasion by garlic mustard also substantially decreased both probability of persistence (= 0 at approximately 50% cover) and mean population size. Persistence probability never reached zero under any C. glomerata scenarios, even when larval mortality in the second generation due to parasitism was 100%. The impact of garlic mustard was intensified by the addition of C. glomerata parasitism. 5. Results suggest that bottom-up forces, loss of host plants through forest understorey loss and/or garlic mustard invasion are the most important forces driving P. n. oleracea population decline. Parasitism by C. glomerata may interact to reduce P. n. oleracea populations more rapidly, but appears insufficient alone to cause local extinction. 相似文献
6.
The fish assemblage of the Mondego estuary: composition,structure and trends over the past two decades 总被引:2,自引:0,他引:2
Ricardo Leitão F. Martinho H. N. Cabral J. M. Neto I. Jorge M. A. Pardal 《Hydrobiologia》2007,587(1):269-279
The fish assemblage of the Mondego estuary was studied from June 2003 to May 2004. Five areas with different environmental
conditions were sampled monthly, using a 2 m beam trawl (5 mm mesh size at the cod end). To complement information, sampling
was also performed, seasonally, using a 7 m otter trawl with a 10 mm mesh size. Thirty-two species were identified. Dicentrarchus labrax, Pomatoschistus microps, Pomatoschistus minutus, Solea solea, Platichthys flesus and Diplodus vulgaris were the most abundant species. Marine juvenile migrants had the highest number of species, thirteen, followed by estuarine
residents with eight species. Marine species that use the estuary as nursery grounds were the most abundant in terms of density
and biomass. In spring and summer, juveniles occur in the upper, oligohaline areas, but afterwards, in autumn and winter,
they tend to disperse to the middle and lower areas, with higher marine influence. Comparing the results obtained in this
study with those reported in the early 1990’s, a marked decrease in species richness can be noticed, which is probably due
to anthropogenic factors, namely an increase in depth of the main channel and intense euthrophication processes in the middle
and upper areas. 相似文献
7.
1. We tested the species diversity–energy hypothesis using the British bird fauna. This predicts that temperature patterns should match diversity patterns. We also tested the hypothesis that the mechanism operates directly through effects of temperature on thermoregulatory loads; this further predicts that seasonal changes in temperature cause matching changes in patterns of diversity, and that species' body mass is influential.
2. We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 × 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3. We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4. Although the species–energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5. However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6. Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral. 相似文献
2. We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 × 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3. We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4. Although the species–energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5. However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6. Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral. 相似文献
8.
Despite the impact that human presence has on the area, Andorra in the eastern Pyrenees still harbours a rich butterfly fauna and is a potentially excellent area for studying the effects of global change on biodiversity. The aim of this study was to identify and understand the factors that are inducing observed patterns of butterfly richness in Andorra. We used data collected between 2006 and 2010 from six transects of the Andorran Butterfly Monitoring Scheme that lie at heights from 1,000 to 2,400 m a.s.l. These transects are divided into 44 discrete sections and during the study period 18,603 individuals belonging to 126 butterfly species were recorded. The effects of elevation and habitat composition on species richness and abundance were analyzed, as was the presence of spatial structure in the butterfly assemblages. We found a clear tendency for species richness to decrease as elevation increased and also identified a major faunal turnover. Habitat composition seems to have little effect on species richness and butterfly abundance. A spatial structure was observed in the dataset, with a positive spatial autocorrelation at section scale that reflects a clear effect of altitudinal gradient on species assemblages. Finally, a cluster analysis enabled us to define two main faunistic groups, corresponding to lower (generally in closed habitats) and higher sites (generally in subalpine meadows and grasslands). We thus conclude that the elevation gradient is the principal factor driving butterfly distribution and abundance in Andorra. 相似文献
9.
Maiorano L Falcucci A Zimmermann NE Psomas A Pottier J Baisero D Rondinini C Guisan A Boitani L 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1578):2681-2692
The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition. 相似文献
10.
Magurran AE Henderson PA 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1558):3611-3620
Temporal variation in species abundances occurs in all ecological communities. Here, we explore the role that this temporal turnover plays in maintaining assemblage diversity. We investigate a three-decade time series of estuarine fishes and show that the abundances of the individual species fluctuate asynchronously around their mean levels. We then use a time-series modelling approach to examine the consequences of different patterns of turnover, by asking how the correlation between the abundance of a species in a given year and its abundance in the previous year influences the structure of the overall assemblage. Classical diversity measures that ignore species identities reveal that the observed assemblage structure will persist under all but the most extreme conditions. However, metrics that track species identities indicate a narrower set of turnover scenarios under which the predicted assemblage resembles the natural one. Our study suggests that species diversity metrics are insensitive to change and that measures that track species ranks may provide better early warning that an assemblage is being perturbed. It also highlights the need to incorporate temporal turnover in investigations of assemblage structure and function. 相似文献
11.
Quick studies on biodiversity are frequently used in conservation assessments. Conclusions from these studies would be consistent if assemblages under consideration are stable over time. The stability of butterfly assemblages in the Picos de Europa in northern Spain was examined at several levels of numerical resolution. The survey was carried out in 1993 and 1995, which allowed at least one complete turnover of all individuals in each locality. Butterfly assemblages were usually stable at the levels of number of species and total number of individuals, species presence and absence, and abundance rankings. But, absolute abundances of individual species changed from 1993 to 1995 out of synchrony with one another. Regional distributions and altitudinal ranges of species were also stable. Assemblages were similar in both study years, judging by similar site ordinations by reciprocal averaging. Overall, these results are in accordance with most studies where stability has been examined at several numerical levels; they also suggest that abundances of individual species do not vary enough to disrupt overall assemblage abundance rankings. Butterfly assemblages at sites at higher altitude tended to be more unstable in terms of abundance rankings and absolute abundances. This agrees with ecological theory predicting less stable assemblages in physically harsh environments. We concluded that monitoring for a relatively short time period can give a clear picture of both local and regional butterfly biodiversity and species composition. 相似文献
12.
Doi H 《Biology letters》2008,4(4):388-391
Recent increases in air temperature have affected species phenology, resulting in the earlier onset of spring life-cycle events. Trends in the first appearance of adult dragonflies across Japan were analysed using a dataset consisting of observations from 1953 to 2005. Dynamic factor analysis was used to evaluate underlying common trends in a set of 48 time series. The appearance of the first adult dragonfly has significantly shifted to later in the spring in the past five decades. Generalized linear mixing models suggested that this is probably the result of increased air temperatures. Increased summer and autumn temperatures may provide longer bivoltine periods and a faster growth rate; thus, the second generation, which previously hatched in summer, can emerge in the autumn causing the size of the population of dragonflies that emerge in spring to decrease. It is also possible that reduced dragonfly populations along with human development are responsible for a delay in the first observed dragonflies in the spring. However, human population density did not appear to strongly affect the appearance date. This study provides the first evidence of a delay in insect phenological events over recent decades. 相似文献
13.
Matthew T. Balazik Greg C. Garman Michael L. Fine Christian H. Hager Stephen P. McIninch 《Biology letters》2010,6(5):708-710
Populations of sturgeon (Acipenseridae) have experienced global declines, and in some cases extirpation, during the past century. In the current era of climate change and over-harvesting of fishery resources, climate models, based on uncertain boundary conditions, are being used to predict future effects on the Earth''s biota. A collection of approximately 400-year-old Atlantic sturgeon spines from a midden in colonial Jamestown, VA, USA, allowed us to compare the age structure and growth rate for a pre-industrial population during a ‘mini-ice age’ with samples collected from the modern population in the same reach of the James River. Compared with modern fish, the colonial population was characterized by larger and older individuals and exhibited significantly slower growth rates, which were comparable with modern populations at higher latitudes of North America. These results may relate to higher population densities and/or colder water temperatures during colonial times. 相似文献
14.
Terry V Callaghan Christer Jonasson Tomas Thierfelder Zhenlin Yang Henrik Heden?s Margareta Johansson Ulf Molau Rik Van Bogaert Anders Michelsen Johan Olofsson Dylan Gwynn-Jones Stef Bokhorst Gareth Phoenix Jarle W. Bjerke Hans T?mmervik Torben R. Christensen Edward Hanna Eva K. Koller Victoria L. Sloan 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1624)
The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented. 相似文献
15.
Wen-Bo Li;Yang Teng;Ming-Yi Zhang;Ying Shen;Jia-Wen Liu;Ji-Wei Qi;Xiao-Chen Wang;Rui-Feng Wu;Jin-Hua Li;Paul A. Garber;Ming Li; 《Global Change Biology》2024,30(1):e17114
Human activity and climate change affect biodiversity and cause species range shifts, contractions, and expansions. Globally, human activities and climate change have emerged as persistent threats to biodiversity, leading to approximately 68% of the ~522 primate species being threatened with extinction. Here, we used habitat suitability models and integrated data on human population density, gross domestic product (GDP), road construction, the normalized difference vegetation index (NDVI), the location of protected areas (PAs), and climate change to predict potential changes in the distributional range and richness of 26 China's primate species. Our results indicate that both PAs and NDVI have a positive impact on primate distributions. With increasing anthropogenic pressure, species' ranges were restricted to areas of high vegetation cover and in PAs surrounded by buffer zones of 2.7–4.5 km and a core area of PAs at least 0.1–0.5 km from the closest edge of the PA. Areas with a GDP below the Chinese national average of 100,000 yuan were found to be ecologically vulnerable, and this had a negative impact on primate distributions. Changes in temperature and precipitation were also significant contributors to a reduction in the range of primate species. Under the expected influence of climate change over the next 30–50 years, we found that highly suitable habitat for primates will continue to decrease and species will be restricted to smaller and more peripheral parts of their current range. Areas of high primate diversity are expected to lose from 3 to 7 species. We recommend that immediate action be taken, including expanding China's National Park Program, the Ecological Conservation Redline Program, and the Natural Forest Protection Program, along with a stronger national policy promoting alternative/sustainable livelihoods for people in the local communities adjacent to primate ranges, to offset the detrimental effects of anthropogenic activities and climate change on primate survivorship. 相似文献
16.
Climate change and its role in altering biological interactions and the likelihood of invasion by introduced species in marine systems have received increased attention in recent years. It is difficult to forecast how climate change will influence community function or the probability of invasion as it alters multiple marine environmental parameters including rising water temperature, lower salinity and pH. In the present study, we correlate changes in environmental parameters to shifts in species composition in a subtidal community in Newcastle, NH through comparison of two, 3‐year periods separated by 23 years (1979–1981 and 2003–2005). We observed concurrent shifts in climate related factors and in groups of organisms that dominate the marine community when comparing 1979–1981 to 2003–2005. The 1979–1981 community was dominated by perennial species (mussels and barnacles). In contrast, the 2003–2005 community was dominated by annual native and invasive tunicates (sea‐squirts). We also observed a shift in the environmental factors that characterized both communities. Dissolved inorganic nitrogen and phosphate characterized the 1979–1981 community while sea surface temperature, pH, and chlorophyll a characterized the 2003–2005 community. Elongated warmer water temperatures, through the fall and early winter months of the 2000s, extended the growing season of native organisms and facilitated local dominance of invasive species. Additionally, beta‐diversity was greater between 2003–2005 than 1979–1981 and driven by larger numbers of annual species whose life‐history characteristics (e.g., timing and magnitude of recruitment, growth and mortality) are driven by environmental parameters, particularly temperature. 相似文献
17.
Lloyd W. Morrison 《Global Ecology and Biogeography》2010,19(5):663-672
Aim To document long‐term rates of immigration, extinction and turnover in insular floras and evaluate the relative impacts of recent hurricane activity and climate change. Location Three archipelagos of small islands, in the Exuma Cays, Andros and Abacos, Bahamas. Methods I surveyed the floras of 194 vegetated islands in three archipelagos over several multi‐year periods, spanning up to 17 years. Changes in abundance (foliar cover) of persistent populations were measured on a subset of 14 islands in the Exuma Cays over a 9‐year period. Results Rates of plant turnover were generally low compared with other organisms, but varied among archipelagos and time periods. Turnover rates were usually higher in the second decade of this study, and extinction rates were often dramatically higher than immigration rates in the second decade, resulting in overall decreases in species richness. Turnover did not differ significantly among island types based on generalized location and surrounding water depths, and extinctions were not more likely to occur on more exposed islands. The abundance (foliar cover) of populations that did not go extinct decreased steadily over the second decade of this study, indicating, along with higher extinction rates, a generalized decline in these insular floras. Main conclusions Although some islands may have been at or near a state of dynamic equilibrium in the first decade of this study, average species richness declined in all three archipelagos during the second decade, when extinctions greatly outnumbered immigrations. Four major hurricanes affected the study archipelagos in the second decade of this study, although the available evidence suggests that the hurricanes were not directly responsible for the declines. Indirect effects of hurricanes such as increased herbivory and possible decreased nutrient availability, along with a long‐term (25 years) increase in temperature and decline in rainfall are likely contributing factors. 相似文献
18.
Lloyd W. Morrison 《Journal of Biogeography》2010,37(11):2148-2157
Aim To document long‐term rates of immigration, extinction and turnover in insular ant faunas and evaluate the relative impacts of recent hurricane activity and climate change. Location Small islands in the Exuma Cays, Andros and Abaco archipelagos of the Bahamas. Methods I surveyed the ant faunas of > 140 small islands in three archipelagos of the Bahamas over several multi‐year periods, spanning up to 17 years, by recording species attracted to baits. Immigrations, extinctions and species turnover were documented, as were the relative abundances of species. Four major hurricanes affected the study archipelagos in the second decade of this study. Results Rates of ant turnover were generally low among archipelagos and time periods. Immigrations outnumbered extinctions in the first decade of this study, although this pattern was reversed in the second decade. General physical characteristics of the islands were not significant predictors of the occurrence of extinctions. The relative abundance (based on proportion of baits occupied) of persistent populations of the two most common species both declined in the second decade, indicating, along with higher extinction rates, a generalized decline in these insular ant faunas. Main conclusions The available evidence suggests that hurricanes were not directly responsible for the observed declines in the ant faunas. Regional changes in insular ant species richness, however, are correlated with generalized North Atlantic hurricane activity over the last half century. Indirect effects of hurricanes on the vegetation of these islands, such as increased herbivory and possible decreased nutrient availability, along with a long‐term (quarter century) increase in temperature and decline in rainfall, are possible contributing factors to the changing ant turnover dynamics. 相似文献
19.
ANDERS G. FINSTAD TORBJØRN FORSETH BROR JONSSON EDWIGE BELLIER TRYGVE HESTHAGEN ARNE J. JENSEN DAG O. HESSEN ANDERS FOLDVIK 《Global Change Biology》2011,17(4):1703-1711
We tested the importance of thermal adaptations and energy efficiency in relation to the geographical distribution of two competing freshwater salmonid fish species. Presence–absence data for Arctic char and brown trout were obtained from 1502 Norwegian lakes embracing both temperature and productivity gradients. The distributions were contrasted with laboratory‐derived temperature scaling models for food consumption, growth and energy efficiency. Thermal performances of the two species were almost identical. However, Arctic char exhibited double the growth efficiency (per unit of food) and appear to have out‐competed brown trout from cold, low‐productivity lakes, perhaps by scramble competition. Brown trout, for which previous reports have shown to be aggressive and dominant, have likely excluded the more energy‐efficient Arctic char from relatively warm, productive lakes, perhaps by contest competition. Competitive interaction changing in outcome with lake productivity, rather than thermal performance, is likely a major determinant of the range distribution of the two species. Our study highlights the need for more focus on choice of relevant ecophysiological traits in ecological climate impact studies and species distribution modelling. 相似文献
20.
1. Few detailed long-term data sets exist for fresh waters with which to examine large-scale temporal changes in community composition. Consequently, insight into community persistence has been restricted to a few, contingent case studies. We collated and analysed data for the aquatic macroinvertebrate community of Broadstone Stream in south-east England, spanning three decades. The pH of this naturally acid stream has risen progressively since the 1970s, and we sought to examine the potential effects of this environmental change upon the community.
2. Persistence within Broadstone was high when compared with other systems that have been analysed using similar methods. The stream was characterised by a `core' community of eight taxa that were always present, and contributed 75–97% of total invertebrate abundance, with a trailing limb of progressively rarer and more acid-sensitive taxa. There was little species turnover, although the time-series exceeded 20 generations for most species.
3. Despite this high persistence, a long-term response to rising pH was detected: species indicating profound acidity (identified a priori from independent studies) have declined since the 1970s, whereas indicators of moderate acidity increased. The structure of the community food web has also changed since the 1970s, with increased predator diversity and abundance, and a lengthening of food chains following the invasion of a new top predator.
4. These changes in the community appeared to be driven by an interaction between pH and climate. The unusually hot, dry summers characteristic of the 1990s may have raised pH during the more sensitive (i.e. early) stages of the life-cycle, and thus provided a window of opportunity for less acid-tolerant taxa to colonise and become established. Changes in pH appeared to set the boundaries of the available local species pool, within which biotic interactions ultimately shaped the community. 相似文献
2. Persistence within Broadstone was high when compared with other systems that have been analysed using similar methods. The stream was characterised by a `core' community of eight taxa that were always present, and contributed 75–97% of total invertebrate abundance, with a trailing limb of progressively rarer and more acid-sensitive taxa. There was little species turnover, although the time-series exceeded 20 generations for most species.
3. Despite this high persistence, a long-term response to rising pH was detected: species indicating profound acidity (identified a priori from independent studies) have declined since the 1970s, whereas indicators of moderate acidity increased. The structure of the community food web has also changed since the 1970s, with increased predator diversity and abundance, and a lengthening of food chains following the invasion of a new top predator.
4. These changes in the community appeared to be driven by an interaction between pH and climate. The unusually hot, dry summers characteristic of the 1990s may have raised pH during the more sensitive (i.e. early) stages of the life-cycle, and thus provided a window of opportunity for less acid-tolerant taxa to colonise and become established. Changes in pH appeared to set the boundaries of the available local species pool, within which biotic interactions ultimately shaped the community. 相似文献