首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Marine fish are an irreplaceable resource, but are currently under threat through overfishing and climate change. To date, most of the emphasis has been on single stocks or populations of economic importance. However, commercially valuable species are embedded in assemblages of many species and there is only limited understanding of the extent to which the structure of whole communities has altered in recent years. Most assemblages are dominated by one or a few species, with these highly abundant species underpinning ecosystem services and harvesting decisions. This paper shows that there have been marked temporal changes in the dominance structure of Scottish marine-fish assemblages over the past three decades, where dominance is measured as the proportional numerical abundance of the most dominant species. We report contrasting patterns in both the identity of the dominant species and shifts in the relative abundance of the dominant in assemblages to the east and west of Scotland, UK. This result highlights the importance of multi-species analyses of harvested stocks and has implications not only for fisheries management but also for consumer choices.  相似文献   

2.
Aim Community trends were investigated for two small islands and two local mainland butterfly communities within the UK over a period of 20–30 years. Location Hilbre Island off the Wirral Peninsula at 53.33° N, 3.10° W; Lindisfarne, an island off the Northumberland coast at 56.41° N, 1.48° W; Leighton Moss at 54.08° N, 2.26° W; Wyre Forest at 52.23° N, 2.14° W, UK. Methods Butterfly species data were collected on Hilbre and two mainland sites (Leighton Moss and Wyre Forest) from 1983 to 2006, and on Lindisfarne from 1977 to 2006, as part of the National Habitat Survey, the UK Butterfly Monitoring Scheme and ‘Butterflies for the New Millennium Atlas’ recording. Matrices of associations (Sokal and Michener’s matching coefficient SSM; resemblance coefficient) were computed between years and subject to non‐metric multidimensional scaling (NMDS) and Mantel tests. The pattern of extinctions and colonizations at sites were examined, their heterogeneity tested by applying a Friedman test to fractional incidences for the same years. Regression analysis (multiple regression and logit regression) was used to relate butterfly numbers and incidences to climate variables, time and previous records. Results Significant community trends based on population counts and species’ incidences were found for all four sites. There was a significant climatic signal for Hilbre; although this was not apparent for the remaining sites, significant associations occurred between records for a number of species and climatic variables at all sites. Substantial turnover of species on the islands was inversely related to numbers of records for species but not to their conspicuousness to recorders. Main conclusions We argue that time trends are widespread in butterfly communities, even for relatively short periods; they are largely generated by stochastic influences rather than by more substantive factors such as climate change. Potential biases in surveying and recording history are shown to be unlikely. A clear climate signal was found only for the small Hilbre Island, for which there was also evidence for the significant influence of colonization capability of individual source species. We conclude that for many species, small islands will be sinks or pseudosinks and their ‘populations’ vulnerable to small changes in source–sink dynamics.  相似文献   

3.
The geographic ranges of many species have shifted polewards and uphill in elevation associated with climate warming, leading to increases in species richness at high latitudes and elevations. However, few studies have addressed community‐level responses to climate change across the entire elevational gradients of mountain ranges, or at warm lower latitudes where ecological diversity is expected to decline. Here, we show uphill shifts in butterfly species richness and composition in the Sierra de Guadarrama (central Spain) between 1967–1973 and 2004–2005. Butterfly communities with comparable species compositions shifted uphill by 293 m (± SE 26), consistent with an upward shift of approximately 225 m in mean annual isotherms. Species richness had a humped relationship with elevation, but declined between surveys, particularly at low elevations. Changes to species richness and composition primarily reflect the loss from lower elevations of species whose regional distributions are restricted to the mountains. The few colonizations by specialist low‐elevation species failed to compensate for the loss of high‐elevation species, because there are few low‐elevation species in the region and the habitat requirements of some of these prevent them from colonizing the mountain range. As a result, we estimated a net decline in species richness in approximately 90% of the region, and increasing community domination by widespread species. The results suggest that climate warming, combined with habitat loss and other drivers of biological change, could lead to significant losses in ecological diversity in mountains and other regions where species encounter their lower latitudinal‐range margins.  相似文献   

4.
1. Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2. We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18-28.5 degrees C) in populations from core and range margin sites. 3. In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra > or = U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4. Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5. Current range expansion of P. c-album is associated with the exploitation of more widespread host plants on which performance is improved. This study demonstrates how polyphagy may enhance the ability of species to track climate change. Our findings suggest that observed differences in climate-driven range shifts of generalist vs. specialist species may increase in the future and are likely to lead to greatly altered community composition.  相似文献   

5.
Stream fish are expected to be significantly influenced by climate change, as they are ectothermic animals whose dispersal is limited within hydrographic networks. Nonetheless, they are also controlled by other physical factors that may prevent them moving to new thermally suitable sites. Using presence–absence records in 655 sites widespread throughout nine French river units, we predicted the potential future distribution of 30 common stream fish species facing temperature warming and change in precipitation regime. We also assessed the potential impacts on fish assemblages' structure and diversity. Only cold-water species, whose diversity is very low in French streams, were predicted to experience a strong reduction in the number of suitable sites. In contrast, most cool-water and warm-water fish species were projected to colonize many newly suitable sites. Considering that cold headwater streams are the most numerous on the Earth's surface, our results suggested that headwater species would undergo a deleterious effect of climate change, whereas downstream species would expand their range by migrating to sites located in intermediate streams or upstream. As a result, local species richness was forecasted to increase greatly and high turnover rates indicated future fundamental changes in assemblages' structure. Changes in assemblage composition were also positively related to the intensity of warming. Overall, these results (1) stressed the importance of accounting for both climatic and topographic factors when assessing the future distribution of riverine fish species and (2) may be viewed as a first estimation of climate change impacts on European freshwater fish assemblages.  相似文献   

6.
Populations at the high latitude edge of species’ geographical ranges are thought to show larger interannual population fluctuations, with subsequent higher local extinction risk, than those within the ‘core’ climatic range. As climate envelopes shift northward under climate warming, however, we would expect populations to show dampened variability. We test this hypothesis using annual abundance indices from 19 butterfly species across 79 British monitoring sites between 1976 and 2009, a period of climatic warming. We found that populations in the latter (warmer) half of the recording period show reduced interannual population variability. Species with more southerly European distributions showed the greatest dampening in population variability over time. Our results suggest that increases in population variability occur towards climatic range boundaries. British sites, previously existing at the margins of suitable climate space, now appear to fall closer to the core climatic range for many butterfly species.  相似文献   

7.
To investigate recent changes in the floristic composition and nature conservation value of nutrient-poor, semi-natural grasslands of the Swiss Alps, we resurveyed 151 phytosociological relevés in four regions, originally recorded between 1975 and 1985. In the original surveys, the mean number of plant species per plot (25–100 m2) ranged from 47.1 to 58.1 according to region. The flora included a total of 18 species that are protected in Switzerland and a high proportion of habitat specialists of nutrient-poor grasslands (NPG-species). In the second survey, conducted between 2002 and 2004, both mean species number per plot (−3.2 to +11.4) and species evenness (−0.05 to +0.07) were higher in most regions. However, the data revealed clear shifts in community composition, with a higher proportion of nutrient-demanding species (mean nutrient indicator value increased by +0.07 to +0.24 units) and a lower proportion per plot of NPG-species (−3.6 to −11.6%). These changes were greatest in pastures, and in meadows converted to sheep pastures, while the NPG-species were maintained in unfertilized meadows that were managed as ecological compensation areas. To prevent continuing decline in the conservation value of these grasslands, it is important to support low-intensity management, especially mowing, and to prevent further eutrophication.  相似文献   

8.
Aim To estimate species turnover of plants on 32 small islands within a 20‐year period and to assess possible changes in community composition and properties, such as species richness and factors affecting it, nestedness, species co‐occurrence and overall community similarity. Additionally, to assess the possible effects of grazing, gull colonies and fire on turnover values. Location Thirty‐two islets in the eastern Aegean Sea (Greece). Methods Complete sampling of plants was performed in 1974 and in 1990–94 (mostly in 1994, which was used as the reference year). Species turnover rates were estimated using both per island and per species approaches. Multiple regression was used to evaluate factors affecting species richness. Chi‐square tests were applied to compare community composition among sampling periods. The effects of various factors on turnover rates and species richness were examined using one‐way anova and ancova . Mann–Whitney tests were applied in order to check for differences between frequencies of occurrence of extinct, immigrant and persisting species. Community nestedness was calculated using bitmatnest and the C‐score index for co‐occurrence was estimated using EcoSim7. Species similarities among islands in each of the 1974 and 1994 data sets were assessed using Jaccard’s index and the two similarity matrices were compared using a Mantel test. Results Of 391 species recorded on the islets, 334 were present in 1974, 301 in 1994 and 244 were common to both these periods. Species richness in the 1974 and 1994 data sets was significantly correlated with elevation and area, but not with distance from the nearest large island. Richness was positively affected by grazing, but not by fire or gull colonies. The slopes of species–area and species–elevation regressions were almost identical in 1974 and 1994. Mean relative turnover was 2.06 (species per islet) and 3.26 (islets per species). Turnover was not correlated with area, elevation or distance from the nearest large island. Nestedness and co‐occurrence levels were very similar. Tables of islet by islet floral similarity (Jaccard’s index) did not differ between the 1974 and 1994 data sets. Main conclusions The turnover rates found are among the highest recorded for plants; at the same time the islet communities exhibit notable stability in overall properties. Our results provide evidence for rapid shifts in species number that may nonetheless be considered as equilibrial dynamics, as these islets are able to respond rapidly to environmental change and disturbance. Human activities, notably the application of grazing, have a significant complicating effect on community dynamics, enhancing observed turnover rates.  相似文献   

9.
1.  We tested the species diversity–energy hypothesis using the British bird fauna. This predicts that temperature patterns should match diversity patterns. We also tested the hypothesis that the mechanism operates directly through effects of temperature on thermoregulatory loads; this further predicts that seasonal changes in temperature cause matching changes in patterns of diversity, and that species' body mass is influential.
2.  We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 × 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3.  We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4.  Although the species–energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5.  However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6.  Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral.  相似文献   

10.
Global climate change has been implicated in phenological shifts for a variety of taxa. Amphibian species in particular are sensitive to changes in their environment due to their biphasic life history and restricted reproductive requirements. Previous research has shown that not all temperate amphibian species respond similarly to the same suite of climatic or environmental cues, nor are individual species necessarily uniform in their responses across their range. We examined both the timing of spring emergence and calling phenology of eight anuran species in southeastern Ontario, Canada, using an approximately 40‐year dataset of historical records of amphibian activity. Rana pipiens was the only species out of eight considered to emerge significantly earlier, by an estimated 22 days over four decades. Both R. pipiens and Bufo americanus have advanced initiation of calling over a four‐decade span significantly earlier by an estimated 37.2 and 19.2 days, respectively. Rana sylvatica showed a trend toward earlier emergence by 19 days, whereas we did not detect changes in emergence phenology for the remaining five species. This significant shift in breeding behavior for two species correlates to significant regional increases in spring temperatures of an estimated 2.7–2.8°C overall over four decades. Our study suggests that local temperature increases have affected the timing of emergence and the onset of calling activity in some Ontario anuran species. Global decline or range shifts ultimately may be related to changes in reproductive behavior and timing mediated by shifting climate.  相似文献   

11.
Cold‐adapted species are thought to have had their largest distribution ranges in central Europe during the glacial periods. Postglacial warming caused severe range shifts of such taxa into higher latitudes and altitudes. We selected the boreomontane butterfly Lycaena helle (Denis & Schiffermüller, 1775) as an example to demonstrate the genetic effects of range changes, and to document the recent status of highly fragmented remnant populations. We analysed five polymorphic microsatellite loci in 1059 individuals sampled at 50 different localities scattered over the European distribution area of the species. Genetic differentiation was strong among the mountain ranges of western Europe, but we did not detect similarly distinct genetic groups following a geographical pattern in the more eastern areas. The Fennoscandian populations form a separate genetic group, and provide evidence for a colonization from southern Finland via northern Scandinavia to south‐central Sweden. Species distribution modelling suggests a large extension of the spatial distribution during the last glacial maximum, but highlights strong retractions to a few mountain areas under current conditions. These findings, combined with our genetic data, suggest a more or less continuous distribution of L. helle throughout central Europe at the end of the last ice age. As a consequence of postglacial warming, the species retreated northwards to Fennoscandia and escaped increasing temperatures through altitudinal shifts. Therefore, the species is today restricted to population remnants located at the mountain tops of western Europe, genetically isolated from each other, and evolved into genetically unique entities. Rising temperatures and advancing habitat destruction threaten this wealth of biodiversity. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 155–168.  相似文献   

12.
13.
1. Exotic invasive species can influence population dynamics of native species through top-down or bottom-up forces. The present study examined separate and interactive effects of multiple exotic species invasions on the native mustard white butterfly, Pieris napi oleracea Harris (Lepidoptera: Pieridae), using a stochastic simulation model. 2. P. n. oleracea populations in North America have decreased regionally since the 1860s. Competition with an exotic congener (P. rapae L.), loss of native host plants and parasitism by the introduced broconid wasp (Cotesia glomerata L.), have been suggested to be independently responsible for its decline. The present study examined these hypotheses, as well as an alternative, invasion by an exotic crucifer, garlic mustard (Alliaria petiolata[Bieb.] Cavara & Grande). 3. A stochastic simulation model of P. n. oleracea population dynamics revealed that decreasing the number of host plants available for oviposition and larval development (i.e. habitat loss), sharply reduced the probability of populations persistence and decreased population size for those that persisted. 4. Simulated invasion by garlic mustard also substantially decreased both probability of persistence (= 0 at approximately 50% cover) and mean population size. Persistence probability never reached zero under any C. glomerata scenarios, even when larval mortality in the second generation due to parasitism was 100%. The impact of garlic mustard was intensified by the addition of C. glomerata parasitism. 5. Results suggest that bottom-up forces, loss of host plants through forest understorey loss and/or garlic mustard invasion are the most important forces driving P. n. oleracea population decline. Parasitism by C. glomerata may interact to reduce P. n. oleracea populations more rapidly, but appears insufficient alone to cause local extinction.  相似文献   

14.
The fish assemblage of the Mondego estuary was studied from June 2003 to May 2004. Five areas with different environmental conditions were sampled monthly, using a 2 m beam trawl (5 mm mesh size at the cod end). To complement information, sampling was also performed, seasonally, using a 7 m otter trawl with a 10 mm mesh size. Thirty-two species were identified. Dicentrarchus labrax, Pomatoschistus microps, Pomatoschistus minutus, Solea solea, Platichthys flesus and Diplodus vulgaris were the most abundant species. Marine juvenile migrants had the highest number of species, thirteen, followed by estuarine residents with eight species. Marine species that use the estuary as nursery grounds were the most abundant in terms of density and biomass. In spring and summer, juveniles occur in the upper, oligohaline areas, but afterwards, in autumn and winter, they tend to disperse to the middle and lower areas, with higher marine influence. Comparing the results obtained in this study with those reported in the early 1990’s, a marked decrease in species richness can be noticed, which is probably due to anthropogenic factors, namely an increase in depth of the main channel and intense euthrophication processes in the middle and upper areas.  相似文献   

15.
Forest‐dependent biodiversity is threatened throughout the tropics by habitat loss and land‐use intensification of the matrix habitats. We resampled historic data on two moth families, known to play central roles in many ecosystem processes, to evaluate temporal changes in species richness and community structure in three protected forests in central Uganda in a rapidly changing matrix. Our results show some significant declines in the moth species richness and the relative abundance and richness of forest‐dependent species over the last 20–40 years. The observed changes in species richness and composition among different forests, ecological types, and moth groups highlight the need to repeatedly monitor biodiversity even within protected and relatively intact forests.  相似文献   

16.
Climate change is expected to cause geographic redistributions of species. To the extent that species within assemblages have different niche requirements, assemblages may no longer remain intact and dis‐ and reassemble at current or new geographic locations. We explored how climate change projected by 2100 may transform the world's avian assemblages (characterized at a 110 km spatial grain) by modeling environmental niche‐based changes to their dietary guild structure under 0, 500, and 2000 km‐dispersal distances. We examined guild structure changes at coarse (primary, high‐level, and mixed consumers) and fine (frugivores, nectarivores, insectivores, herbivores, granivores, scavengers, omnivores, and carnivores) ecological resolutions to determine whether or not geographic co‐occurrence patterns among guilds were associated with the magnitude to which guilds are functionally resolved. Dietary guilds vary considerably in their global geographic prevalence, and under broad‐scale niche‐based redistribution of species, these are projected to change very heterogeneously. A nondispersal assumption results in the smallest projected changes to guild assemblages, but with significant losses for some regions and guilds, such as South American insectivores. Longer dispersal distances are projected to cause greater degrees of disassembly, and lead to greater homogenization of guild composition, especially in northern Asia and Africa. This arises because projected range gains and losses result in geographically heterogeneous patterns of guild compensation. Projected decreases especially of primary and mixed consumers most often are compensated by increases in high‐level consumers, with increasing uncertainty about these outcomes as dispersal distance and degree of guild functional resolution increase. Further exploration into the consequences of these significant broad‐scale ecological functional changes at the community or ecosystem level should be increasingly on the agenda for conservation science.  相似文献   

17.
Many species are expanding at their leading‐edge range boundaries in response to climate warming. Species are known to respond individualistically to climate change, but there has been little consideration of whether responses are consistent over time. We compared responses of 37 southerly distributed British butterflies over two study periods, first between 1970–1982 and 1995–1999 and then between 1995–1999 and 2005–2009, when mean annual temperature increased regionally by 0.03 °C yr?1 (a significant rate of increase) and 0.01 °C yr?1(a nonsignificant increase) respectively. Our study species might be expected to benefit from climate warming. We measured three responses to climate to investigate this; changes in range margin, distribution area and abundance. In general, the responses of species were inconsistent over time. Species that increased their distribution areas during the first period tended to do so again during the second period, but the relationship was weak. Changes in range margins and abundance were not consistent. In addition, only 5/37 species showed qualitatively similar responses in all three response variables over time (three species increased and two species declined in all variables in both periods). Overall rates of range expansion and distribution area change were significantly greater in the second study period, despite the lower rate of warming, perhaps due to species exploiting climate‐distribution lags remaining from the earlier, warmer period. However, there was a significantly greater decline in abundance during the second study period, so range expansions northwards were not necessarily accompanied by increases in distribution area and/or abundance. Hence, species ranges have been thinning as they have expanded northwards. The idiosyncratic responses of these species likely reflect the balance of climatic and habitat drivers of species distribution and abundance changes.  相似文献   

18.
The physiological ability to survive climatic extremes, such as low temperature, is a major determinant of species distribution. Research suggests that tropically restricted insect populations may possess low to zero variation in stress tolerance, thereby limiting any potential to adapt to colder climates. This paradigm derives largely from contrasts among Drosophila populations and species along the tropical–temperate cline of eastern Australia. Butterfly groups, such as the variously distributed representatives of the genus Eurema, offer opportunities to test the taxonomic breadth of this paradigm. We contribute here by investigating plasticity, repeatability and heritability (h2) for cold tolerance in Eurema smilax. This continentally widespread species (extending from the Torres Strait to the south coast of Victoria) offers an important comparative basis for evaluating stress tolerance in geographically restricted congenerics. We reared two generations of E. smilax under laboratory conditions and measured recovery from a chill‐coma assay, which is one of the commonly used methods for characterizing adult cold stress tolerance. Trials on F2s conducted over three consecutive days revealed individual repeatability (r = 0.405). However, recovery time decreased systematically across trials, which is characteristic of a phenotypically plastic ‘hardening’ response to prior cold exposure. Generalized linear modelling, wherein genetic variance was estimated via an ‘animal model’ approach, indicated no difference between sexes and no effect of body size, but a significant additive genetic term, corresponding to a heritability estimate of h2 = 0.414 ± 0.100. These data suggest significant adaptive potential for cold tolerance in E. smilax but show that individuals may also respond directly to extremes of cold via phenotypic plasticity. This indicates the potential to adapt to varied thermal extremes, which would be expected for a broadly distributed species that is resilient to climate change.  相似文献   

19.
20.
The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号