首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
镉胁迫使萝卜幼苗超氧阴离子(O2)、过氧化氢(H2O2)和丙二醛(MDA)含量增加;随着镉浓度提高,超氧化物歧化酶(SOD)活性首先明显上升,然后逐渐下降,甚至低于对照;叶片过氧化氢酶(CAT)活性明显增加,根系CAT活性则减少;根系以及较高浓度镉处理后期叶片的谷胱甘肽还原酶(GR)活性均显著增加.由此推测:在胁迫初期可能主要由SOD和CAT发挥抗氧化作用,而在胁迫后期由于抗坏血酸-谷胱甘肽(AsA-GsH)循环途径的激活,还原型谷胱甘肽和植物络合素含量的提高可能在清除活性氧或者直接螯合镉中起作用.  相似文献   

2.
用含有不同浓度(0~400μmol/L)Cd(NO3)2的Hoagland营养液处理砂培的菊芋。处理50d后,测定植物体内镉积累量以及过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性,并对POD同工酶进行电泳分析。发现在Cd50~100μmol/L浓度内,随着镉浓度的升高,菊芋根和叶中镉的积累量显著增加,而随后积累量的增加有所减少。根和叶中MDA含量显著上升,说明镉引起了膜脂过氧化。0~100μmol/LCd处理,根和叶中POD活性随Cd浓度增加而增强,而在200~400μmol/LCd处理下有所减弱。根和叶SOD活性在50~200μmol/LCd处理下随Cd浓度增加而增强,而在400μmol/LCd处理下SOD活性明显受到抑制。根和叶CAT活性随Cd浓度升高而增强。电泳结果显示,POD同工酶变化明显,镉诱导出一条新酶带LP10。菊芋POD同工酶可以作为镉污染的土壤的生物指示剂。  相似文献   

3.
罗芳  潘扬  鲁长虎 《生态学杂志》2013,32(8):2179-2185
利用营养液培养方法,以‘沈农265’为供试品种,研究不同Fe(0、0.1、0.25、0.5 mmol Fe2+·L-1 )、Cd(0、0.1、1.0 μmol Cd2+·L-1)处理对水稻植株体内脂质过氧化及抗氧化酶活性的影响.结果表明: 单独供应Fe显著降低了水稻地上部和根系生物量,同时供应Cd后生物量不再下降;单独供应Cd降低了根系中丙二醛(MDA)和可溶性蛋白含量,而同时供应Fe时这种降低作用消失.Fe处理降低了水稻地上部和根系Cd含量,Cd处理也降低了Fe含量,两者表现出明显的相互抑制作用.高Cd(1.0 μmol·L-1)和Fe互作,增加了水稻根系中MDA和可溶性蛋白含量,降低了超氧化物岐化酶(SOD)和过氧化氢酶(CAT)活性.表明在低Cd环境中为水稻提供一定数量的外源Fe能降低植株Cd含量;但高Cd胁迫将降低水稻对Fe的吸收,并导致植株体内产生脂质过氧化.  相似文献   

4.
铁镉互作对水稻脂质过氧化及抗氧化酶活性的影响   总被引:2,自引:0,他引:2  
利用营养液培养方法,以‘沈农265’为供试品种,研究不同Fe(0、0.1、0.25、0.5mmolFe2+·L-1)、Cd(0、0.1、1.0μmolCd2+·L-1)处理对水稻植株体内脂质过氧化及抗氧化酶活性的影响.结果表明:单独供应Fe显著降低了水稻地上部和根系生物量,同时供应Cd后生物量不再下降;单独供应Cd降低了根系中丙二醛(MDA)和可溶性蛋白含量,而同时供应Fe时这种降低作用消失.Fe处理降低了水稻地上部和根系Cd含量,Cd处理也降低了Fe含量,两者表现出明显的相互抑制作用.高Cd(1.0μmol·L-1)和Fe互作,增加了水稻根系中MDA和可溶性蛋白含量,降低了超氧化物岐化酶(SOD)和过氧化氢酶(CAT)活性.表明在低Cd环境中为水稻提供一定数量的外源Fe能降低植株Cd含量;但高Cd胁迫将降低水稻对Fe的吸收,并导致植株体内产生脂质过氧化.  相似文献   

5.
在实验条件下,将健康性成熟雄性长江华溪蟹Sinopotamon yangtsekiense暴露于0、7.25、14.5、29、58和116 mg/L浓度的镉(Cd2+)溶液中,分别于1 d、3 d、5 d和7 d时测定精巢中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氧酶(CAT)活性及脂质过氧化产物丙二醛(MDA)的含量.结果显示,不同时间段3种酶活性和MDA含量均具有浓度和时间效应关系,表明急性镉暴露对精巢有明显的毒性作用,其作用机制与抗氧化酶活力变化和脂质过氧化加剧有关.  相似文献   

6.
研究了不同Cd、Cu、Zn处理浓度对黑藻体内活性氧()产生及对抗氧化酶(SOD、POD、CAT)活性的分子毒理学效应以探讨高等水生植物抗氧化酶对重金属胁迫的反应。结果表明,三种重金属都不同程度地加快了产生速率;Cu使SOD、POD、CAT活性下降;Cd也都减弱了SOD和POD活性,而CAT活性在0.5—5mg/L处理浓度时增加;Zn对SOD活性也为抑制作用,当浓度为0.5—5mg/L时POD和CAT活性都上升。关联度分析发现Cd、Cu和Zn胁迫下黑藻起主要保护作用的分别为SOD、POD和CAT,而SOD最易受到影响。Cd、Cu处理下的叶绿素含量也都呈下降趋势,而0.5—5mg/L的Zn浓度刺激了叶绿素合成。所有Zn处理、0.5mg/L的Cu处理和0.5—1mg/L的Cd处理的叶绿素a/b值都大于对照值。除了Cu使可溶性蛋白含量减少外,0.5—5mg/L的Zn和0.5—1mg/L的Cd都使其含量增加。综合起来,Cu的毒性最强,其次为Cd,Zn最弱。致死阈浓度分别为:Cu:0.5—1mg/L;Cd:1—2mg/L;Zn:5—6mg/L。SOD是评价重金属对沉水植物毒性效应的灵敏指标。黑藻对水环境Cu污染反应敏感。  相似文献   

7.
范庆  吕秀军  杨柳  杨颖丽 《植物研究》2010,30(6):685-691
采用营养液培养的方法研究了不同浓度镉Cd(0、1、2和4 mmol·L-1)处理对矮牵牛(Petunia hybrida)种子萌发、幼苗生长及生理特性的影响。结果发现:与对照相比,较低浓度(1 mmol·L-1)Cd处理下矮牵牛种子萌发和幼苗生长均显著被抑制,当Cd浓度增至4 mmol·L-1时完全抑制了矮牵牛种子的萌发。Cd胁迫在低浓度时激活矮牵牛幼苗叶片过氧化物酶(POD)、过氧化氢酶(CAT)活性,而高浓度产生抑制效应;抗坏血酸过氧化物酶(APX)和超氧化物歧化酶(SOD)活性与对照相比均显著升高,丙二醛(MDA)含量无显著变化。不同浓度的乙二胺四乙酸(EDTA)的加入使4 mmol·L-1 Cd胁迫下矮牵牛幼苗叶片POD和APX活性增加,但不影响SOD和CAT活性;此外,6 mmol·L-1 EDTA使Cd胁迫下矮牵牛幼苗叶片中MDA含量增加。结果表明,Cd胁迫抑制矮牵牛种子萌发和幼苗生长,却使幼苗叶片POD、CAT和APX活性增加,EDTA的加入能够进一步提高Cd胁迫幼苗POD和APX活性。因此,矮牵牛幼苗在Cd胁迫下具有较强的抗氧化损伤的能力。  相似文献   

8.
镉对小麦幼苗脂质过氧化和保护酶活性的影响   总被引:26,自引:6,他引:26  
小麦幼苗经镉胁迫后,随着镉浓度的增高,叶征和根系中的膜脂过氧化产物丙二醛(MDA)的含量和过氧物酶(POD)活性明显升高,超氧物歧化酶(SOD)活性也有所提高。叶片中MDA积累量和SOD活性都高于根,而POD活性则是根高于叶片。随幼苗生长时间延长,叶片和根中的MDA积累量增加,而SOD活性却降低。  相似文献   

9.
渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
用20%聚乙二醇(PEG 6000)研究了渗透胁迫对黑麦(Secale cereale L.)幼苗活性氧(reactive oxygen species, ROS)和主要抗氧化酶—— 超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase, APX)和谷胱甘肽还原酶(glutathione reductase, GR)活性的影响。结果表明, 与对照相比, PEG处理明显提高了叶子和根中丙二醛(malondialdehyde, MDA)的含量、ROS的水平和以上4种抗氧化酶的活性。渗透胁迫下,叶子和根中MDA和ROS水平变化的规律基本相似, 但抗氧化酶活性在2种器官中表现不完全相同, 叶子中CAT的活性在对照和处理中无显著差异, 但在根中差异明显, 表明叶子中SOD、APX和GR在植物应答渗透胁迫中起重要作用, 而根中这4种抗氧化酶都参与植物对胁迫的反应。GR活性随PEG处理变化幅度显著高于其它抗氧化酶, 表明GR在黑麦应答渗透胁迫中所起作用可能强于其它抗氧化酶。  相似文献   

10.
渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响   总被引:2,自引:0,他引:2  
用20%聚乙二醇(PEG 6000)研究了渗透胁迫对黑麦(Secale cereale L.)幼苗活性氧(reactive oxygen species,ROS)和主要抗氧化酶——超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase,APX)和谷胱甘肽还原酶(glutathione reductase,GR)活性的影响。结果表明,与对照相比,PEG处理明显提高了叶子和根中丙二醛(malondialdehyde,MDA)的含量、ROS的水平和以上4种抗氧化酶的活性。渗透胁迫下,叶子和根中MDA和ROS水平变化的规律基本相似,但抗氧化酶活性在2种器官中表现不完全相同,叶子中CAT的活性在对照和处理中无显著差异,但在根中差异明显,表明叶子中SOD、APX和GR在植物应答渗透胁迫中起重要作用,而根中这4种抗氧化酶都参与植物对胁迫的反应。GR活性随PEG处理变化幅度显著高于其它抗氧化酶,表明GR在黑麦应答渗透胁迫中所起作用可能强于其它抗氧化酶。  相似文献   

11.
Antioxidant defenses within the lung are pivotal in preventing damage from oxidative toxicants. There have also been several reports with conflicting results on the antioxidant system during aging. In this study, we attempted to investigate age-related alterations in both antioxidant enzyme activities and thiobarbituric acid-reactive substances (TBARS), a product of lipid peroxidation, in the whole lung of control and sulfur dioxide (SO2) exposed rats of different age groups (3-, 12-, and 24-months-old). Swiss-Albino Male rats were exposed to 10 ppm SO2 1 hr/day, 7 days/week for 6 weeks. The antioxidant enzymes examined include Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). A mixed pattern of age-associated alterations in antioxidant activities was observed. SOD, GSH-Px and GST activities were increased with age, but CAT activity was decreased. Lung SOD, GSH-Px and GST activities were also increased in response to SO2. The level of TBARS was increased with age. SO2 exposure stimulated lipid peroxide formation in the lung as indicated by an increase in the level of TBARS. These findings suggest that both aging and SO2 exposure may impose an oxidative stress to the body. We conclude that the increase in the activities of the antioxidant enzymes of the lung during aging, could be interpreted as a positive feedback mechanism in response to rising lipid peroxidation.  相似文献   

12.
Gerbera jamesonii H. Bolus ex Hook (Family: Asteraceae) has been successfully acclimatized from temperate to subtropical North Indian plains of Lucknow through in vitro propagation. Flower heads were collected from greenhouse, segmented into 4–16 pieces and cultured in Murashige and Skoog’s medium (MS) (Physiol Plant 15:472–497, 1962) supplemented with 2.87 μM indole-3-acetic acid (IAA) and 8.88 μM N6-benzyladenine (BA) for shoot regeneration. Shoots were subcultured on growth regulator free MS medium. Apical shoot meristems from in vitro plantlets of gerbera were tested in MS medium with different combination of cytokinins [BA, kinetin, and thidiazuron (TDZ)] alongwith 2.68 μM 1-naphthaleneacetic acid (NAA) for shoot multiplication. The optimum results were obtained with 8.88 μM BA. Regenerated plants with well-established root system were transferred to pots containing soil and sand (1:1 v/v) and were kept in humidity chamber with 80–90% relative humidity for 0, 5, 10, 15, 20, and 25 days before they were transferred to field (during October, 2005 to February, 2006). Survival percentage was higher when regenerated plantlets were kept under humidity chamber for 15 days. An attempt was made to obtain basic information on different biochemical changes during acclimatization process of in vitro raised plantlets. Increased lipid peroxidation and high H2O2 content in early stages of acclimatization process reflected a similar process of oxidative stress. Our work suggests that tissue-cultured plants develop antioxidant enzymatic protective system which determine the ability to survive in oxidative stress and up regulation of these enzymes would help to reduce the built up of reactive oxygen species (ROS).  相似文献   

13.
Salt stress-induced changes in antioxidant enzymes, such as catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR), total chlorophyll content, and lipid peroxidation measured as malondialdehyde (MDA) content, in leaves of a green bean genotype Gevas sirsk 57 (GS57) and cv. Fransiz 4F-89 differing in salt tolerance were investigated. Plants were subjected to three salt treatments (0, 50, and 100 mM NaCl) under controlled climatic conditions for 7 days. The salt-sensitive cv. 4F-89 exhibited a decrease in GR activity at all salt treatments, but the salt-tolerant genotype GS57 showed only a slight decrease in GR under 50 mM salt treatment and an increase under 100 mM salt treatment. CAT and APX activities increased with increasing salt stress in both varieties. CAT and APX activities were higher in the salt-tolerant GS57 than salt-ensitive cv. 4F-89. The two varieties showed an increase in MDA content with an increase in salinity, but the increase in sensitive cv. 4F-89 under salt stress was higher than that in salt-tolerant GS57 genotype. The increasing NaCl concentration caused a reduction in the chlorophyll content in cv. 4F-89 but not in GS57.  相似文献   

14.
To study the relationship between cadmium (Cd)-induced phytotoxicity and oxidative stress, we grew Cd-sensitive wild-type (WT) and Cd-resistant type (RT) seedlings ofArabidopsis thaliana on MS media containing up to 500 μM CdCl2. The resistant seedlings showed higher biomasses and lower hydrogen peroxide and lipid peroxidation levels, the latter expressed in terms of malondialdehyde (MDA) production. These results indicate that RT plants experience lower oxidative stress when exposed to Cd. Furthermore, compared with the WT, RT seedlings have significantly higher activities of superoxide dismutase (SOD) and enzymes related to hydrogen peroxide removal, e.g., guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and glutathione reductase (GR). These differential responses suggest that such phytotoxicity could be induced by oxidative stress, and that lower accumulations of hydrogen peroxide confer Cd tolerance in seedlings.  相似文献   

15.
Winter rape (Brassica napus L. cv. 601) seedlings were treated with 50 mg.l-1 of foliar-applied uniconazole and then exposed to freezing stress with a light/dark temperature regime of 2 °C/–3 °C for 5 days at the seedling stage. Stressed plants contained lower endogenous GA3 and IAA contents than the controls, while zeatin and ABA contents and ethylene levels were significantly increased. Uniconazole-treated plants had lower endogenous GA3 and IAA contents, and higher zeatin and ABA contents and ethylene levels. Leaf chlorophyll content and respiratory capacity of roots were reduced significantly after plants were subjected to freezing stress, and foliar sprays of uniconazole retarded the degradation of chlorophyll and increased respiratory capacity of roots. Uniconazole-induced freezing tolerance was accompanied by increased activities of various antioxidant enzymes, including superoxide dismutase, catalase and peroxidase. Foliar applications of uniconazole reduced electrolyte leakage and malondialdehyde accumulation caused by freezing stress, suggesting that uniconazole may have decreased freezing-induced lipid peroxidation and membrane damage.  相似文献   

16.
Winter rape (Brassica napus L. cv. 601) seedlings were treated with 50 mg.l-1of foliar-applied uniconazole and then exposed to heat stress with a light/dark temperature regime of 43 °C/38 °C for 3 days at the stem elongation stage. Heat stressed plants contained lower endogenous GA3, IAA and zeatin contents than the controls, while ABA content and ethylene level were increased significantly. Uniconazole-treated plants had lower endogenous GA3 and IAA contents, and higher zeatin and ABA contents and ethylene levels. Leaf chlorophyll content and respiratory capacity of roots were reduced markedly after plants were subjected to heat stress, and foliar sprays of uniconazole retarded the degradation of chlorophyll and increased respiratory capacity of roots. Following exposure to heat, the activities of superoxide dismutase and peroxidase were significantly reduced. Uniconazole-induced heat tolerance was accompanied by increased activities of various antioxidant enzymes. Foliar applications of uniconazole reduced electrolyte leakage and malondialdehyde accumulation caused by heat stress, suggesting that uniconazole may have decreased heat-induced lipid peroxidation and membrane damage. Foliar sprays of uniconazole increased the tolerance of rape plants to heat stress.  相似文献   

17.
Objective: The objective of the present study was to examine selected parameters of the blood redox system in elderly patients with hypertension.examine selected parameters of the blood redox system in elderly patients with hypertension. Methods: We analyzed differences in redox-associated molecules and enzymes among elderly hypertensive subjects (age above 65?years, n?=?49) and two groups of normotensive subjects (<65 years old – Control group I; n?=?27, and >65 – Control group II; n?=?30). Results: Decreased activity of antioxidant enzymes, increased lipid peroxidation and reduced production of nitric oxide were observed in hypertensive subjects, compared to healthy younger controls, or those of the same age. In healthy controls, an age-related decrease in the production of nitric oxide and the activities of SOD-1 and GPx-1 was also evident. The pathology of hypertension was characterised by further, significant decreases in the values of these parameters. When the subgroups of females and males were compared to their respective controls, a compromised redox balance was observed that was more evident in female hypertensives. Discussion: Hypertension in elderly patients is accompanied by changes in biomarkers of antioxidant status and lipid peroxidation status, which significantly differ from those observed in healthy ageing subjects. Our study also suggests that the relationship of gender and changes in redox balance with regard to hypertension should be further explored.  相似文献   

18.
Malondialdehyde (MDA), glutathione (GSH) content, total antioxidant capacity (T-AOC) levels, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione transferase (GST) activities were studied in serum, liver, and kidney of growing pigs after graded doses of cadmium administration in diets. One hundred ninety-two barrows (Duroc x Landrace x Yorkshire), with similar initial body weight 27.67±1.33 kg, were randomly allotted into 4 different treatments with 3 replications (16 pigs per replication). The treatments received the same basal diet added with 0, 0.5, 5.0, and 10.0 mg/kg cadmium (as CdCl2), respectively. The results showed pigs treated with 10 mg/kg cadmium significantly decreased average daily gain (ADG) (p<0.05) and increased feed/gain ratio (F/G) (p<0.05) compared to the control. In this treatment, the contents of MDA increased significantly (p<0.05), GSH concentrations, T-AOC levels, and the activities of SOD, GSH-PX, and GST decreased significantly (p<0.05). The results indicate 10 mg/kg cadmium could decrease pig antioxidant capacity after extended exposure and cadmium-induced increase lipid peroxidation might not be only the result of the possibility of lower level of GSH but could also be as a result of direct action of cadmium on peroxidation reaction.  相似文献   

19.
Reduced and oxidized glutathione (GSH and GSSG), protein-bound glutathione, lipid peroxidation and antioxidant enzyme activities were determined in the erythrocyte lysates and membranes of type I and II alcoholics in order to clarify the effect of age-of-onset and the duration of the alcohol consumption on erythrocyte oxidant and antioxidant status. The osmotic fragility and susceptibility of the erythrocytes to haemolysis were also determined. Erythrocyte lipid peroxidation was significantly increased but, GSH and protein-bound GSH, GSH/GSSG ratio and antioxidant enzyme activities were markedly decreased in the erythrocytes of the alcoholic subgroups. Erythrocyte count and haemoglobin content in the blood of alcoholics were found to be decreased in accordance with the finding that erythrocytes were more fragile and less resistant to haemolysis particularly in type II alcoholics. The present study showed that ethanol-induced oxidative stress in erythrocytes can lead to haemolysis and membrane-specific injuries in erythrocytes of the alcoholic subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号