首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Disentangling evolutionary forces that may interact to determine the patterns of genetic differentiation within and among wild populations is a major challenge in evolutionary biology. The objective of this study was to assess the genetic structure and the potential influence of several ecological variables on the extent of genetic differentiation at multiple spatial scales in a widely distributed species, the Atlantic salmon, Salmo salar . A total of 2775 anadromous fish were sampled from 51 rivers along the North American Atlantic coast and were genotyped using 13 microsatellites. A Bayesian analysis clustered these populations into seven genetically and geographically distinct groups, characterized by different environmental and ecological factors, mainly temperature. These groups were also characterized by different extent of genetic differentiation among populations. Dispersal was relatively high and of the same magnitude within compared to among regional groups, which contrasted with the maintenance of a regional genetic structure. However, genetic differentiation was lower among populations exchanging similar rates of local as opposed to inter-regional migrants, over the same geographical scale. This raised the hypothesis that gene flow could be constrained by local adaptation at the regional scale. Both coastal distance and temperature regime were found to influence the observed genetic structure according to landscape genetic analyses. The influence of other factors such as latitude, river length and altitude, migration tactic, and stocking was not significant at any spatial scale. Overall, these results suggested that the interaction between gene flow and thermal regime adaptation mainly explained the hierarchical genetic structure observed among Atlantic salmon populations.  相似文献   

2.
Genetic studies on serum transferrins in Atlantic salmon   总被引:2,自引:0,他引:2  
Published and unpublished data on genetic variation at the transferrin locus ( TF *) in Atlantic salmon from rivers in eastern North America sampled from 1968 to 1970 were reanalysed and compared with data for samples collected in 1998 from nine of the same rivers. Genetic differentiation among rivers was highly significant as was spatial differentiation among tributary samples within the Miramichi River system, the largest rivers studied. Comparison of allele frequencies in rivers also sampled in 1998 show no overall evidence of significant genetic change after 30 years, spanning 9 generations. The results strongly support the stability of the patterns of spatial genetic differentiation and support the occurrence in Atlantic salmon of reproductive isolation among rivers and among tributaries within large river systems.  相似文献   

3.
Atlantic salmon have been reared in the British Columbia, Canada aquaculture industry since the early 1980s. No breeding programmes spanned the entire production period and pedigree records were not kept for broodstocks prior to or since importation. Of the three recognized industry strains, two are of European ancestry ('Mowi' from Norway and 'McConnell' from Scotland) and one is of North American heritage ('Cascade' from Gaspe, Quebec). We evaluated the amount and distribution of genetic variation within industry broodstocks by surveying microsatellite variation at 11 loci in 20 broodstock groups sampled from major production facilities. Allelic richness averaged 10.9 (range 5.8-13.8), compared with a value of 20.3 obtained for a North American wild population. Pairwise genetic distances (D(S)) between samples within strains were generally less than those between strains, with samples attributed to the same strain clustering together in a neighbour-joining dendrogram. Nevertheless, average distances between samples within the European strains were high (0.41 for Mowi; 0.71 for McConnell) but lower (0.06) for the Cascade strain. The reduced intra-sample and increased intra-strain genetic variation observed for the BC domesticated samples compared with wild populations was similar to observations for European domesticated Atlantic salmon. Evidence of introgression of the Cascade strain into European broodstocks was provided by the presence of large Ssa202 alleles (confined to North America in wild populations) in some Mowi and McConnell samples. Introgression likely also contributed to the decreased intercontinental genetic distance for the domesticated samples of this study compared with that observed for wild populations.  相似文献   

4.
Genetic variation was studied at 8 allozyme loci in six severely endangered wild Spanish populations of Salmo salar located at the southernmost geographical limit of European Atlantic salmon. Low levels of variation were detected and no significant deviations from Hardy–Weinberg equilibrium were found.  相似文献   

5.
Mitochondrial DNA (mtDNA) variation was examined in 209 Atlantic salmon from two river systems, the R. Itchen in Hampshire (Southern England) and the R. Conwy (North Wales). Within each system, five spawning sites were sampled. Four enzymes (AVA II, HAE III, HINF I and MBO I) revealed restriction fragment polymorphisms that were informative. Ten clonal lines were observed. These clones were differentially distributed between the two river systems and single clonal types were found to predominate at several spawning sites. MBO I variants were found in salmon from the R. Itchen but not the R. Conwy. A significant heterogeneity in frequency distribution of clonal lines between parr and smolt assemblages of the same year class within the R. Itchen was detected. This heterogeneity suggests that differences in survival or migratory behaviour may be identified by changes in mtDNA clonal frequencies.  相似文献   

6.
Here we critically review the scale and extent of adaptive genetic variation in Atlantic salmon (Salmo salar L.), an important model system in evolutionary and conservation biology that provides fundamental insights into population persistence, adaptive response and the effects of anthropogenic change. We consider the process of adaptation as the end product of natural selection, one that can best be viewed as the degree of matching between phenotype and environment. We recognise three potential sources of adaptive variation: heritable variation in phenotypic traits related to fitness, variation at the molecular level in genes influenced by selection, and variation in the way genes interact with the environment to produce phenotypes of varying plasticity. Of all phenotypic traits examined, variation in body size (or in correlated characters such as growth rates, age of seaward migration or age at sexual maturity) generally shows the highest heritability, as well as a strong effect on fitness. Thus, body size in Atlantic salmon tends to be positively correlated with freshwater and marine survival, as well as with fecundity, egg size, reproductive success, and offspring survival. By contrast, the fitness implications of variation in behavioural traits such as aggression, sheltering behaviour, or timing of migration are largely unknown. The adaptive significance of molecular variation in salmonids is also scant and largely circumstantial, despite extensive molecular screening on these species. Adaptive variation can result in local adaptations (LA) when, among other necessary conditions, populations live in patchy environments, exchange few or no migrants, and are subjected to differential selective pressures. Evidence for LA in Atlantic salmon is indirect and comes mostly from ecological correlates in fitness-related traits, the failure of many translocations, the poor performance of domesticated stocks, results of a few common-garden experiments (where different populations were raised in a common environment in an attempt to dissociate heritable from environmentally induced phenotypic variation), and the pattern of inherited resistance to some parasites and diseases. Genotype x environment interactions occurr for many fitness traits, suggesting that LA might be important. However, the scale and extent of adaptive variation remains poorly understood and probably varies, depending on habitat heterogeneity, environmental stability and the relative roles of selection and drift. As maladaptation often results from phenotype-environment mismatch, we argue that acting as if populations are not locally adapted carries a much greater risk of mismanagement than acting under the assumption for local adaptations when there are none. As such, an evolutionary approach to salmon conservation is required, aimed at maintaining the conditions necessary for natural selection to operate most efficiently and unhindered. This may require minimising alterations to native genotypes and habitats to which populations have likely become adapted, but also allowing for population size to reach or extend beyond carrying capacity to encourage competition and other sources of natural mortality.  相似文献   

7.
When male hybrids of Atlantic salmon × brown trout were backcrossed to female Atlantic salmon, approximately 1% of diploid progeny hatched. These were shown to exhibit recombinant genotypes when examined electrophoreticalty at five enzyme loci. This is the first confirmation of genie recombination in backcrosses of these species. Triploidization greatly increases the proportion of backcross progeny which hatch.  相似文献   

8.
An approach frequently used to demonstrate a genetic basis for population-level phenotypic differences is to employ common garden rearing designs, where observed differences are assumed to be attributable to primarily additive genetic effects. Here, in two common garden experiments, we employed factorial breeding designs between wild and domestic, and among wild populations of Chinook salmon (Oncorhynchus tshawytscha). We measured the contribution of additive (V(A)) and maternal (V(M)) effects to the observed population differences for 17 life history and fitness-related traits. Our results show that, in general, maternal effects contribute more to phenotypic differences among populations than additive genetic effects. These results suggest that maternal effects are important in population phenotypic differentiation and also signify that the inclusion of the maternal source of variation is critical when employing models to test population differences in salmon, such as in local adaptation studies.  相似文献   

9.
In an experiment to investigate genetic consequences of hatchery rearing in salmon, allozyme variation at five polymorphic loci was examined in Atlantic salmon of known initial genetic composition, which were reared throughout freshwater life in the hatchery or stocked into the wild as swim-up fry. The genetic composition of the juveniles in the hatchery remained homogeneous from fertilization up to stocking, and from stocking to 2+ in the wild, however, those remaining at the hatchery developed genetic differences among smolting and nonsmolting 1+ parr. These differences were attributed to conditions leading to early smolting at 1+ among the hatchery fish, with 1+ smolts diverging from the gene pool from which they were derived, whereas those stocked into the wild did not smolt until a year later and retained the original genetic composition. The results are discussed in relation to hatchery rearing of salmon and implications for the use of reared fish in stocking and enhancement programmes.  相似文献   

10.
Microsatellite analysis of Atlantic salmon fromfive Danish rivers was performed to determinethe stocked or indigenous status ofindividuals. Genetic variation at six highlypolymorphic microsatellite loci was assayed andused for individual based analyses (assignmenttests). Contemporary samples of adult returningspawners and fry were compared to baseline datafrom: 1) historical DNA samples (from oldscales) representing the indigenouspopulations, 2) samples from another Danishpopulation (Skjern River) used for stocking,and 3) five exogenous populations used forstocking. Assignment power was high. Thepercent of stocked salmon correctly assigned topopulation of origin ranged from 83% to 99%and the percent of indigenous salmon correctlyassigned to population of origin ranged from83% to 90%. For two of the riverssignificantly more individuals were assigned tothe indigenous populations than expected frommisclassification alone, suggesting that someremains of the indigenous populations hadpersisted. Still, many fish were of exogenousorigin. Simulated hybrids among releasedexogenous salmon and between exogenous andreleased Danish salmon (Skjern River) revealedthat natural hybridisation among released fishwas not likely to be the source of the fryclassified as indigenous, however, thepossibility of hybridisation among indigenousand released fish could not be dismissed.Several full sib groups were found amongindigenous natural fry ruling out one or a fewmatings as the source of the indigenous fry.These results show that some native populationsmay persist even after years of introductionand environmental perturbation; geneticinformation can be used to identify thesepopulations and identify individualsrepresenting these populations for use inrestoration programs.  相似文献   

11.
Hypo-osmoregulatory ability in juvenile Atlantic salmon, Sulrno salur L., was improved by cortisol treatment. Implantation of a vegetable shortening pellet containing cortisol (50 mg kg−1) resulted in elevated plasma cortisol titres. Maximum cortisol levels (160–170ngml−1) were observed at days 6 and 12 after the implantation and dropped significantly by day 55. Cortisol-implanted fish in fresh water developed a twofold increase in gill Na+/K+-ATPase activity at days 6 and 12, and a threefold increase by day 55. Intestinal mucosa Na+/K+-ATPase activity was not affected by cortisol. Cortisol-implanted fish exposed to 28 ppt sea water for 48 h tended to show an improved ability to regulate their plasma osmolarity and reduce their ionic load. The osmo-regulatory ability attained at days 12 and 55 was further evaluated by exposing fish to 37 ppt sea water for 96 h. While all the control fish died relatively early in these tests, cortisol-implanted fish showed a clear reduction in their mortality rate. These results indicate that cortisol can induce biochemical and organismal changes during winter months that typify preadaptive events normally occurring in the spring.  相似文献   

12.
Defining populations and identifying ecological and life-history characteristics affecting genetic structure is important for understanding species biology and hence, for managing threatened or endangered species or populations. In this study, populations of the world's largest indigenous Atlantic salmon (Salmo salar) stock were first inferred using model-based clustering methods, following which life-history and habitat variables best predicting the genetic diversity of populations were identified. This study revealed that natal homing of Atlantic salmon within the Teno River system is accurate at least to the tributary level. Generally, defining populations by main tributaries was observed to be a reasonable approach in this large river system, whereas in the mainstem of the river, the number of inferred populations was fewer than the number of distinct sampling sites. Mainstem and headwater populations were genetically more diverse and less diverged, while each tributary fostered a distinct population with high genetic differentiation and lower genetic diversity. Population structure and variation in genetic diversity among populations were poorly explained by geographical distance. In contrast, age-structure, as estimated by the proportion of multisea-winter spawners, was the most predictive variable in explaining the variation in the genetic diversity of the populations. This observation, being in agreement with theoretical predictions, emphasizes the essence of large multisea-winter females in maintaining the genetic diversity of populations. In addition, the unique genetic diversity of populations, as estimated by private allele richness, was affected by the ease of accessibility of a site, with more difficult to access sites having lower unique genetic diversity. Our results show that despite this species' high capacity for migration, tributaries foster relatively closed populations with little gene flow which will be important to consider when developing management strategies for the system.  相似文献   

13.
Pathogens are increasingly emerging in human-altered environments as a serious threat to biodiversity. In this context of rapid environmental changes, improving our knowledge on the interaction between ecology and evolution is critical. The objective of this study was to evaluate the influence of an immunocompetence gene, the major histocompatibility complex (MHC) class IIβ, on the pathogen infection levels in wild Atlantic salmon populations, Salmo salar, and identify selective agents involved in contemporary coevolution. MHC variability and bacterial infection rate were determined throughout the summer in juvenile salmon from six rivers belonging to different genetic and ecological regions in Québec, Canada. A total of 13 different pathogens were identified in kidney by DNA sequence analysis, including a predominant myxozoa, most probably recently introduced in North America. Infection rates were the highest in southern rivers at the beginning of the summer (average 47.6±6.3% infected fish). One MHC allele conferred a 2.9 times greater chance of being resistant to myxozoa, while another allele increased susceptibility by 3.4 times. The decrease in frequency of the susceptibility allele but not other MHC or microsatellite alleles during summer was suggestive of a mortality event from myxozoa infection. These results supported the hypothesis of pathogen-driven selection in the wild by means of frequency-dependent selection or change in selection through time and space rather than heterozygous advantage, and underline the importance of MHC standing genetic variation for facing pathogens in a changing environment.  相似文献   

14.
Elucidating the genetic basis of adaptation to the local environment can improve our understanding of how the diversity of life has evolved. In this study, we used a dense SNP array to identify candidate loci potentially underlying fine‐scale local adaptation within a large Atlantic salmon (Salmo salar) population. By combining outlier, gene–environment association and haplotype homozygosity analyses, we identified multiple regions of the genome with strong evidence for diversifying selection. Several of these candidate regions had previously been identified in other studies, demonstrating that the same loci could be adaptively important in Atlantic salmon at subdrainage, regional and continental scales. Notably, we identified signals consistent with local selection around genes associated with variation in sexual maturation, energy homeostasis and immune defence. These included the large‐effect age‐at‐maturity gene vgll3, the known obesity gene mc4r, and major histocompatibility complex II. Most strikingly, we confirmed a genomic region on Ssa09 that was extremely differentiated among subpopulations and that is also a candidate for local selection over the global range of Atlantic salmon. This region colocalized with a haplotype strongly associated with spawning ecotype in sockeye salmon (Oncorhynchus nerka), with circumstantial evidence that the same gene (six6) may be the selective target in both cases. The phenotypic effect of this region in Atlantic salmon remains cryptic, although allelic variation is related to upstream catchment area and covaries with timing of the return spawning migration. Our results further inform management of Atlantic salmon and open multiple avenues for future research.  相似文献   

15.
Climate change models predict a 2 to 6° C increase in air temperature within the next 100 years in the Maritime Provinces of eastern Canada. Higher air temperatures are expected to contribute to increased water temperatures, alterations in stream flow conditions, and ultimately reductions in fish growth. Mean annual size-at-age of juvenile Atlantic salmon Salmo salar decreased in the Northwest Miramichi and Southwest Miramichi Rivers between 1971–1999. Lengths-at-age of juveniles were significantly correlated between the two rivers. For Atlantic salmon parr, stronger associations between inter-cohort fork length ( L F) than intra-cohort L F were observed, suggesting that environmental conditions in the current year of growth have the more significant effects on size of age 2 year parr than conditions encountered the previous year by age 1 year parr of the same cohort. Fork lengths of parr were significantly and negatively associated with spring air and water temperatures. In the Miramichi River, increases in air and water temperature as predicted from climate change models may adversely affect growth of juvenile Atlantic salmon parr, reducing the overall productivity of the Atlantic salmon populations in this region.  相似文献   

16.
Previously published allelic frequencies at four polymorphic protein coding loci were used as a basis for examining genetic relationships among 19 European populations of Atlantic salmon, Salmo salar L.--exclusive of Baltic drainages--from the Barents Sea to Spain. The data did not support a model of distinct ancestral (e.g. Boreal and Celtic) origins, but were consistent with all populations descending from a single ancestral group within this region with genetically diverged populations drawn together through limited local migrations.  相似文献   

17.
The diet of repeat-spawner Atlantic salmon Salmo salar was investigated using carbon and nitrogen stable-isotope values from the outer growth band of scales, which reflect the fish's consumption and growth during their most recent marine phase. Isotope values for S. salar displaying different spawning strategies were compared between and within the Miramichi and Nashwaak Rivers, New Brunswick, Canada and a Bayesian mixing model was used to infer dietary contributions from potential prey items. Significant differences in the stable-isotope values were found among spawning strategies and between rivers, indicating differences in diet and feeding area, consistent with hypotheses. Bayesian mixing model results inferred the main prey items consumed during marine feeding by S. salar to consist of hyperiid amphipods and capelin Mallotus villosus for repeat alternate spawners from both rivers, sandlance Ammodytes sp. for repeat consecutive spawners from the Miramichi River and amphipods for repeat consecutive spawners from the Nashwaak River. These results demonstrate the diversity of feeding tactics among S. salar spawning strategies from the same river and between populations from different rivers. Accounting for differences in prey availability and the subsequent impact on S. salar diet and spawner return rates (i.e., marine survival) will facilitate the application of ecosystem-based management practices, such as ensuring that fisheries for forage species do not indirectly adversely affect S. salar return rates.  相似文献   

18.
The effects of tributyltin (TBT) compounds on gill morphology were examined in the mummichog, Fundulus heteroclitus , in 96-h LC50 and 6-week sublethal exposures. Morphometry was used for the identification and quantification of effects with the light microscope. A 96-h LC50 of 17.2 μg 1 1 was determined. Morphometric analysis of gill tissues revealed hypertrophy of the lamellar epithelium in fish exposed to 17.2 μg 1–1. Relative diffusing capacity was significantly decreased (−41 %); ( P <0.05, ANOVA, Bonferroni t -test). At 35.6 μg 1−1, TBT exposure resulted in a significant reduction (− 40%) in the volume of the lamellar blood channels. Both of these observations occurred in fish that showed signs of acute poisoning including loss of equilibrium. In fish exposed to sublethal concentrations of 0.105–2.000 μg TBT 1−1 for 6 weeks, there were no pathological changes in the gill. There were no treatment-related changes in the surface morphology of the gills of fish from both experiments upon scanning electron microscopic examination. Although gill pathology was observed in acutely toxic exposures, it does not appear to be a major mechanism of TBT toxicity.  相似文献   

19.
Electrophoretic analysis of enzymes in 383 juvenile Atlantic salmon, Salmo salar L., within the Tamar catchment (south-west England) revealed significant genetic differences at the IDHP-3* locus between the three tributaries studied. Aspects of temporal and spatial variation, and management policy within catchments, are discussed.  相似文献   

20.
While the stocking of captive‐bred fish has been occurring for decades and has had substantial immediate genetic and evolutionary impacts on wild populations, its long‐term consequences have only been weakly investigated. Here, we conducted a spatiotemporal analysis of 1428 Atlantic salmon sampled from 1965 to 2006 in 25 populations throughout France to investigate the influence of stocking on the neutral genetic structure in wild Atlantic salmon (Salmo salar) populations. On the basis of the analysis of 11 microsatellite loci, we found that the overall genetic structure among populations dramatically decreased over the period studied. Admixture rates among populations were highly variable, ranging from a nearly undetectable contribution from donor stocks to total replacement of the native gene pool, suggesting extremely variable impacts of stocking. Depending on population, admixture rates either increased, remained stable, or decreased in samples collected between 1998 and 2006 compared to samples from 1965 to 1987, suggesting either rising, long‐lasting or short‐term impacts of stocking. We discuss the potential mechanisms contributing to this variability, including the reduced fitness of stocked fish and persistence of wild locally adapted individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号