首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated population genetic structure, mating system, worker reproduction and thelytokous parthenogenesis in the desert ant Cataglyphis livida. Pedigree analyses at polymorphic microsatellite loci show that colonies are headed by a single queen, and that queens are mated with two to eight males. No inbreeding was found in the population sampled. Colonies are genetically differentiated and exhibit no isolation-by-distance pattern, consistent with independent foundation of new colonies. Workers do reproduce and lay haploid (arrhenotokous) eggs in queenless colonies; conversely, we found no evidence of worker reproduction in queenright nests. In contrast with C. cursor, where new queens are produced by thelytokous parthenogenesis, female sexuals and workers of C. livida arise from classical sexual reproduction. We discuss the parallels and contrasts between the mating system and population structure in C. livida and the other Cataglyphis species studied so far.  相似文献   

2.
Hybridogenesis is a sexual reproductive system, whereby parents from different genetic origin hybridize. Both the maternal and paternal genomes are expressed in somatic tissues, but the paternal genome is systematically excluded from the germ line, which is therefore purely maternal. Recently, a unique case of hybridogenesis at a social level was reported in the desert ant Cataglyphis hispanica. All workers are sexually produced hybridogens, whereas sexual forms (new queens and males) are produced by queens through parthenogenesis. Thus, only maternal genes are perpetuated across generations. Here, we show that such an unusual reproductive strategy also evolved in two other species of Cataglyphis belonging to the same phylogenetic group, Cataglyphis velox and Cataglyphis mauritanica. In both species, queens mate exclusively with males originating from a different genetic lineage than their own to produce hybrid workers, while they use parthenogenesis to produce the male and female reproductive castes. In contrast to single‐queen colonies of C. hispanica, colonies of C. velox and C. mauritanica are headed by several queens. Most queens within colonies share the same multilocus genotype and never transmit their mates' alleles to the reproductive castes. Social hybridogenesis in the desert ants has direct consequences on the genetic variability of populations and on caste determination. We also discuss the maintenance of this reproductive strategy within the genus Cataglyphis.  相似文献   

3.
Desert ants of the genus Cataglyphis evolved a remarkable diversity in their reproductive strategies. In Cataglyphis species where social organisation was described so far, colonies are headed by one or multiple queens, queens being singly or multiply mated, and workers and/or queens possess the ability to reproduce asexually via thelytokous parthenogenesis. Here, we investigate the social organisation of C. bombycina (group bombycinus) and C. theryi (group albicans) using highly polymorphic microsatellite markers. Our results show that both species are characterized by monogynous colonies and multiply mated queens, supporting the idea that polyandry is an ancestral trait of the genus. No evidence for parthenogenetic reproduction by queens was found. One distinctive feature of the species C. bombycina among the genus is the presence of a morphologically distinct soldier caste, with highly developed scythe blades jaws. In the only colony where a significant number of soldiers have been sampled, the distribution of patrilines is fundamentally different between the soldier and the worker caste. This result suggests a genetic contribution to worker caste determination in this species, and certainly awaits further investigation.  相似文献   

4.
Genetic diversity benefits for social insect colonies headed by polyandrous queens have received intense attention, whereas sexual selection remains little explored. Yet mates of the same queen may engage in sperm competition over the siring of offspring, and this could confer benefits on queens if the most successful sire in each colony (the majority sire) produces gynes (daughter queens) of higher quality. These benefits could be increased if high-quality sires make queens increase the percentage of eggs that they fertilize (unfertilized eggs develop into sons in social hymenopterans), or if daughters of better genetic quality are over-represented in the gyne versus worker class. Such effects would lead to female-biased sex ratios in colonies with high-quality majority gynes. I tested these ideas in field colonies of Lasius niger black garden ants, using body mass of gynes as a fitness trait as it is known to correlate with future fecundity. Also, I established the paternity of gynes through microsatellite DNA offspring analyses. Majority sires did not always produce heavier gynes in L. niger, but whenever they did do so colonies produced more females, numerically and in terms of the energetic investment in female versus male production. Better quality sires may be able to induce queens to fertilize more eggs or so-called caste shunting may occur wherever the daughters of better males are preferentially shunted to into the gyne caste. My study supports that integrating sexual selection and social evolutionary studies may bring a deeper understanding of mating system evolution in social insects.  相似文献   

5.
Over the last decade, genetic studies on social insects have revealed a remarkable diversity of unusual reproductive strategies, such as male clonality, female clonality, and social hybridogenesis. In this context, Cataglyphis desert ants are useful models because of their unique reproductive systems. In several species, queens conditionally use sexual reproduction and parthenogenesis to produce sterile workers and reproductive queens, respectively. In social hybridogenesis, two distinct genetic lineages coexist within a population, and workers result from mating between partners of different lineages; in contrast, queens and males are both produced asexually by parthenogenesis. Consequently, nonreproductive workers are all interlineage hybrids, whereas reproductives are all pure lineage individuals. Here, we characterized the reproductive systems of 11 species to investigate the distribution of the conditional use of sex and social hybridogenesis in Cataglyphis. We identified one new case in which sexual reproduction was conditionally used in the absence of dependent‐lineage reproduction. We also discovered five new instances of social hybridogenesis. Based on our phylogenetic analyses, we inferred that both the conditional use of sex and social hybridogenesis independently evolved multiple times in the genus Cataglyphis.  相似文献   

6.
In most social Hymenoptera, a diploid egg develops into either a queen or a worker depending on environmental conditions. Hybridogenetic Cataglyphis ants display a bizarre genetic system, where queen‐worker caste determination is primarily determined by genetic factors. In hybridogenetic populations, all workers are F1 hybrids of two distinct lineages, whereas new queens are nearly always pure‐lineage individuals produced by clonal reproduction. The distribution and evolutionary history of these hybridogenetic populations have not yet been thoroughly analysed. Here, we studied the phylogeographic distribution of hybridogenetic populations in two closely related Spanish species: Cataglyphis humeya and Cataglyphis velox. Hybridogenesis has been previously documented in a locality of C. velox, but whether this system occurs elsewhere within the range of the two species was yet unknown. Queens and workers from 66 localities sampled across the range of the species were genotyped at 18 microsatellite markers to determine whether queens were produced by parthenogenesis and whether workers were hybrids of divergent lineages. Populations with F1 hybrid workers were identified by combining genetic, geographical and mating assortments data. In most populations of C. velox, workers were found to be hybrids of two divergent lineages. Workers were however produced via random mating in two marginal populations of C. velox, and in all populations studied of its sister species C. humeya. High‐throughput sequencing data were obtained to confirm inferences based on microsatellites and to characterize relationships between populations. Our results revealed a complicated history of reticulate evolution that may account for the origin of hybridogenetic lineages in Cataglyphis.  相似文献   

7.
In social animals, body size can be shaped by multiple factors, such as direct genetic effects, maternal effects, or the social environment. In ants, the body size of queens correlates with the social structure of the colony: colonies headed by a single queen (monogyne) generally produce larger queens that are able to found colonies independently, whereas colonies headed by multiple queens (polygyne) tend to produce smaller queens that stay in their natal colony or disperse with workers. We performed a cross‐fostering experiment to investigate the proximate causes of queen size variation in the socially polymorphic ant Formica selysi. As expected if genetic or maternal effects influence queen size, eggs originating from monogyne colonies developed into larger queens than eggs collected from polygyne colonies, be they raised by monogyne or polygyne workers. In contrast, eggs sampled in monogyne colonies were smaller than eggs sampled in polygyne colonies. Hence, eggs from monogyne colonies are smaller but develop into larger queens than eggs from polygyne colonies, independently of the social structure of the workers caring for the brood. These results demonstrate that a genetic polymorphism or maternal effect transmitted to the eggs influences queen size, which probably affects the social structure of new colonies.  相似文献   

8.
A remarkable social polymorphism is controlled by a single Mendelian factor in the fire ant Solenopsis invicta. A genomic element marked by the gene Gp‐9 determines whether workers tolerate one or many fertile queens in their colony. Gp‐9 was recently shown to be part of a supergene with two nonrecombining variants, SB and Sb. SB/SB and SB/Sb queens differ in how they initiate new colonies, and in many physiological traits, for example odour and maturation rate. To understand how a single genetic element can affect all these traits, we used a microarray to compare gene expression patterns between SB/SB and SB/Sb queens of three different age classes: 1‐day‐old unmated queens, 11‐day‐old unmated queens and mated, fully reproductive queens collected from mature field colonies. The number of genes that were differentially expressed between SB/SB and SB/Sb queens of the same age class was smallest in 1‐day‐old queens, maximal in 11‐day‐old queens and intermediate in reproductive queens. Gene ontology analysis showed that SB/SB queens upregulate reproductive genes faster than SB/Sb queens. For all age classes, genes inside the supergene were overrepresented among the differentially expressed genes. Consistent with the hypothesized greater number of transposons in the Sb supergene, 13 transposon genes were upregulated in SB/Sb queens. Viral genes were also upregulated in SB/Sb mature queens, consistent with the known greater parasite load in colonies headed by SB/Sb queens compared with colonies headed by SB/SB queens. Eighteen differentially expressed genes between reproductive queens were involved in chemical signalling. Our results suggest that many genes in the supergene are involved in regulating social organization and queen phenotypes in fire ants.  相似文献   

9.
Cover Caption     
《Insect Science》2023,30(1):N/A-N/A
It is often assumed that learning improves foraging, but its direct benefits are not often examined. We demonstrate the contribution of learning to the foraging success of desert ants when a trained colony successfully competes against a naïve one. The outcome also depends on the relative group size. Desert Cataglyphis ants search individually for food (mostly dead prey) without laying pheromone trails (see pages 241-250). The cover photo shows a Cataglyphis niger worker searching for food in its typical sandy habitat. Photo provided Arik Dorfman.  相似文献   

10.
Recognition of group‐members is a key feature of sociality. Ants use chemical communication to discriminate nestmates from intruders, enhancing kin cooperation and preventing parasitism. The recognition code is embedded in their cuticular chemical profile, which typically varies between colonies. We predicted that ants might be capable of accurate recognition in unusual situations when few individuals interact repeatedly, as new colonies started by two to three queens. Individual recognition would be favoured by selection when queens establish dominance hierarchies, because repeated fights for dominance are costly; but it would not evolve in absence of hierarchies. We previously showed that Pachycondyla co‐founding queens, which form dominance hierarchies, have accurate individual recognition based on chemical cues. Here, we used the ant Lasius niger to test the null hypothesis that individual recognition does not occur when co‐founding queens do not establish dominance hierarchies. Indeed, L. niger queens show a similar level of aggression towards both co‐foundresses and intruders, indicating that they are unable of individual recognition, contrary to Pachycondyla. Additionally, the variation in chemical profiles of Lasius and Pachycondyla queens is comparable, thus informational constraints are unlikely to apply. We conclude that selection pressure from the social context is of crucial significance for the sophistication of recognition systems.  相似文献   

11.
Summary. We used microsatellite markers to analyze the hierarchical genetic structure of the North American mound building ant, Formica podzolica. About one-third of all colonies were headed by a single queen (monogynous) whose effective mating frequency was close to one (nestmate worker relatedness r = 0.70), while the remaining colonies were polygynous, with low average nestmate relatedness (r = 0.16). The low worker relatedness found in most polygynous colonies furthermore suggested that the numbers of queens in polygynous colonies of this ant are usually high. Contrary to what has been described from other ants with a queen number dichotomy, we did not find an effect of social form variation on the partitioning of genetic variation above the level of the colony. We found no significant differentiation between the sympatric social forms of F. podzolica, nor did differentiation among populations appear to be affected by colony social organization. These unexpected patterns of genetic structure may have resulted from differences either in the spatial distribution of the social forms or in their social flexibility.Received 12 January 2004; revised 23 February 2004; accepted 10 March 2004.  相似文献   

12.
Insect societies headed by multiple queens (polygyny) raise evolutionary questions, such as how does genetic heterogeneity among colony members affect in-nest interactions; or, are all queens equally reproductive or equally treated by workers? Answering such questions requires intensive and continuous observations of in-nest behavior. Here, we addressed these questions in the polygyne supercolonial ant, Cataglyphis niger, using a barcoding system that enables the tracking of individual interactions, together with polymorphic DNA microsatellite markers that indicate the matriline and patriline of all individuals. Our findings that both queens and workers have low interrelatedness corroborate earlier reports regarding the supercolony structure of C. niger. Ovary inspection and worker genotyping revealed that all the queens contribute similarly to nest demography. Tracking positions of individual workers through time revealed that only a small proportion of them are constantly engaged in tending the queens and can be considered as retinue workers. However, genotyping these workers and the attended queens revealed no relationship to genetic relatedness, again typical of a true polygyne and supercolonial species. Unlike invasive supercolonial species, C. niger is native to Israel, enabling us to address questions regarding the driving forces, other than kin selection, that stabilize this society.  相似文献   

13.
Hybridization in ants can have consequences different from those observed in most other species, with many of the potential deleterious effects being mitigated due to haplodiploidy and eusociality. In some species where colonies are either headed by multiple queens or single queens that mate with many males, hybridization is associated with genetic caste determination, where hybrids develop into workers and purebred individuals develop into queens. A previous study suggested that hybridization occurs between two Dorylus army ant species with multiply mated queens. However, the extent and exact pattern of hybridization have remained unclear, and its possible effect on caste determination has not been investigated. In this study, we aimed to determine the extent and direction of hybridization by measuring how frequently hybrids occur in colonies of both species, and to investigate the possibility of genetic caste determination. We show that hybridization is bidirectional and occurs at equal rates in both species. Hybrid workers make up only 1–2% of the population, and successful interspecific matings represent approximately 2% of all matings in both species. This shows that, although interspecific matings that give rise to worker offspring occur regularly, they are much rarer than intraspecific mating. Finally, we find no evidence of an association between hybridization and genetic caste determination in this population. This means that genetic caste determination is not a necessary outcome of hybridization in ants, even in species where queens mate with multiple males.  相似文献   

14.
Ants are among the most successful species at invading new environments. Their success undeniably comes from their various modes of reproduction and colony breeding structures, which influence their dispersal ability, reproductive potential, and foraging strategies. Almost all invasive ant species studied so far form supercolonies, a dense network of interconnected nests comprising numerous queens, without aggression toward non‐nestmates. This strategy results in invasive colonies that are able to grow extremely fast and large while avoiding intraspecific competition, allowing them to monopolize environmental resources and outcompete native species. Here, we developed and used 10 microsatellite markers to investigate the population structure and breeding system of the dark rover ant Brachymyrmex patagonicus Mayr in its introduced range. We determined whether this species exhibits a supercolonial structure by assessing whether different nests belonged to the same genetic colony. We inferred its dispersal ability by investigating isolation by distance and estimated the numbers of queens per colonies and mating per queen through parent‐offspring inferences. We found that most of the colonies of B. patagonicus were comprised of a single nest, headed by a single queen. Each nest was distinct from one another, without isolation by distance, which suggests strong dispersal ability through nuptial flights. These features are commonly observed in noninvasive and native ant species, but they are surprising for a successful invasive ant, as they strongly differ from other invasive ants. Overall, we discuss how this seemingly unfavorable strategy for an invasive ant might favor the invasive success of the dark rover ant in the United States.  相似文献   

15.
Kompass im Kopf     
Ant compass – how desert ants learn to navigate Successful spatial orientation is a daily challenge for many animals. Cataglyphis desert ants are famous for their navigational performances. They return to the nest after extensive foraging trips without any problems. How do ants take their navigational systems into operation? After conducting different tasks in the dark nest for several weeks, they become foragers under bright sun light. This transition requires both a drastic switch in behavior and neuronal changes in the brain. Experienced foragers mainly rely on visual cues. They use a celestial compass and landmark panoramas. For that reason, naïve ants perform stereotype learning walks to calibrate their compass systems and acquire information about the nest's surroundings. During their learning walks, the ants frequently look back to the nest entrance to learn the homing direction. For aligning their gazes, they use the earth's magnetic field as a compass reference. This magnetic compass in Cataglyphis ants was previously unknown.  相似文献   

16.
Several genetic and nongenetic benefits have been proposed toexplain multiple mating (polyandry) in animals, to compensatefor costs associated with obtaining additional mates. The mostprominent hypotheses stress the benefits of increased geneticdiversity. In social insects, queens of most species mate onlyonce or have effective mating frequencies close to one. Yet,in a few species of ants, bees, and wasps, polyandry is therule. In these species, colonies are usually headed by a singlequeen, whereas multiple queening adds diversity in several ofthe remaining species, especially in ants. Here we investigatedmating frequency, inbreeding and relatedness between the queensand their mates in the polygynous ant Plagiolepis pygmaea, andthe effect of polyandry on the genetic diversity as a functionof the effective population size of individual colonies. Ourresults show that polyandry occurs frequently in the species.However, queens are frequently inseminated by close relatives,and additional sires add little genetic diversity among offspringof individual queens. In addition, the increase in diversityat the colony level is only marginal. Hence, contrary to establishednotions, polyandry in P. pygmaea seems not to be driven by substantialbenefits of genetic diversity. Nonetheless, very small or asyet unidentified genetic benefits to one party (males, workers,queens) in conjunction with low costs of mating may favor polyandry.Alternatively, nongenetic factors, such as convenience polyandry,may be more important than genetic factors in promoting polyandryin P. pygmaea.  相似文献   

17.
Mating frequency of Vespa analis queens and the genetic relatedness of their workers was analyzed by DNA microsatellite genotyping. Of 20 colonies studied, 18 had a queen inseminated by a single male and two had queens each inseminated by two males. The estimated effective number of matings was 1.05 ± 0.037 (mean ± SE), with 75–85% of the offspring of the two multiply mated queens sired by a single male. The pedigree relatedness between nestmate workers averaged over the 20 colonies was estimated to be 0.74 ± 0.008, almost identical to the predicted value of 0.75 for colonies headed by a singly mated queen. Multiple matrilines; that is, the presence of workers not related to the current queens, were detected in six colonies, suggesting that queen replacement occurred via usurpation of the founding queens in these six colonies. These results demonstrate that the kin structure of V. analis is similar to that reported in other vespid species.  相似文献   

18.
In most social insects, the brood is totipotent and environmental factors determine whether a female egg will develop into a reproductive queen or a functionally sterile worker. However, genetic factors have been shown to affect the female's caste fate in a few ant species. The desert ant Cataglyphis hispanica reproduces by social hybridogenesis. All populations are characterized by the coexistence of two distinct genetic lineages. Queens are almost always found mated with a male of the alternate lineage than their own. Workers develop from hybrid crosses between the genetic lineages, whereas daughter queens are produced asexually via parthenogenesis. Here, we show that the association between genotype and caste in this species is maintained by a ‘hard‐wired’ genetic caste determination system, whereby nonhybrid genomes have lost the ability to develop as workers. Genetic analyses reveal that, in a rare population with multiple‐queen colonies, a significant proportion of nestmate queens are mated with males of their own lineage. These queens fail to produce worker offspring; they produce only purebred daughter queens by sexual reproduction. We discuss how the production of reproductive queens through sexual, intralineage crosses may favour the stability of social hybridogenesis in this species.  相似文献   

19.
1. Multiple mating by queens has been shown to enhance disease resistance in insect societies, because higher genetic diversity among nestmates improves collective immune defences or offers a certain level of herd immunity. However, it has remained ambiguous whether polygynous societies with large numbers of queens also benefit from increased genetic diversity. 2. We used one of the very few ant species that can be reared across generations, the pharaoh ant, Monomorium pharaonis Linnaeus, to create experimental colonies with two types of enhanced genetic diversity: (i) mixed workers from three divergent inbred lineages representing the ‘polygyny‐equivalent' of multiple mating by queens (i.e. increased between‐worker variation); and (ii) uniform workers whose overall heterozygosity was increased by two subsequent generations of crossing between the same divergent inbred lineages (i.e. increased within‐worker variation). 3. We found significant differences in worker survival among the three inbred lineages, with exposure to conidiospores of the fungal pathogen Beauveria bassiana causing significant mortality to the workers independently of their diversity type. Increased diversity did not improve the resistance to Beauveria. 4. Enhanced heterozygosity colonies had worker survival rates similar to the most resistant inbred lineage, whereas colonies with mixed workers from the three inbred lineages had lower worker and larval survival. Workers did not show any infection‐avoidance behaviour. 5. Average larval survival appeared unaffected by the presence of conidiospores. It benefitted from increased heterozygosity but was reduced in mixed colonies independent of infection. This suggests that negative, but cryptic social interactions in mixed colonies may affect overall survival. 6. The present results do not provide evidence for or against a link between increased genetic variation and increased disease resistance in pharaoh ants, but show that colonies differ considerably in general survival. Thus, increasing the genetic diversity of pharaoh ant colonies may not provide survival advantages in the face of pathogen exposure, and polygyny and polyandry may not be directly comparable mechanisms for creating adaptive resistance towards pathogens.  相似文献   

20.
The efficiency of social groups is generally optimized by a division of labour, achieved through behavioural or morphological diversity of members. In social insects, colonies may increase the morphological diversity of workers by recruiting standing genetic variance for size and shape via multiply mated queens (polyandry) or multiple‐breeding queens (polygyny). However, greater worker diversity in multi‐lineage species may also have evolved due to mutual worker policing if there is worker reproduction. Such policing reduces the pressure on workers to maintain reproductive morphologies, allowing the evolution of greater developmental plasticity and the maintenance of more genetic variance for worker size and shape in populations. Pheidole ants vary greatly in the diversity of worker castes. Also, their workers lack ovaries and are thus invariably sterile regardless of the queen mating frequency and numbers of queens per colony. This allowed us to perform an across‐species study examining the genetic effects of recruiting more patrilines on the developmental diversity of workers in the absence of confounding effects from worker policing. Using highly variable microsatellite markers, we found that the effective mating frequency of the soldier‐polymorphic P. rhea (avg. meN = 2.65) was significantly higher than that of the dimorphic P. spadonia (avg. meN = 1.06), despite a significant paternity skew in P. rhea (avg. B = 0.10). Our findings support the idea that mating strategies of queens may co‐evolve with selection to increase the diversity of workers. We also detected patriline bias in the production of different worker sizes, which provides direct evidence for a genetic component to worker polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号