首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloroplast DNA (cpDNA) variation was surveyed with 20 restriction endonucleases for the eastern Asian and eastern North American disjunct genus Symplocarpus (Araceae). The cpDNA phylogeny reveals a sister group relationship between S. foetidus from eastern North America and S. renifolius from eastern Asia. The cpDNA divergence between the two intercontinental sister species is 0.61%, which suggests an estimated divergence time of 6.1 million years ago during the late Miocene. The Bering land bridge hypothesis is compatible with the estimated time of divergence for the migration of Symplocarpus between eastern Asia and North America. Furthermore, a single origin of the exothermic spadices in Symplocarpus is suggested by the phylogeny. The cpDNA data also provide independent support for the recognition of three species within the genus.  相似文献   

2.
Aralia sect. Aralia (Araliaceae) consists of approximately eight species disjunctly distributed in Asia and North America. Phylogenetic and biogeographic analyses were conducted using sequences of the internal transcribed spacer regions of the nuclear ribosomal DNA. Aralia racemosa from eastern North America was sister to A. californica from western North America. Aralia cordata from eastern Asia did not form a species-pair relationship with the eastern North American A. racemosa. The two subspecies of A. racemosa formed a monophyletic group. Biogeographic analyses showed a close area relationship between eastern North America and western North America. The Himalayas were cladistically basal and eastern Asia was placed between the Himalayas and North America. The biogeographic analysis supported the origin of the eastern Asian and eastern North American disjunct pattern in Aralia sect. Aralia via the Bering land bridges. Comparisons with results of phylogenetic analyses of other genera suggested that (1) the floristic connection between eastern North America and western North America may be stronger than previously thought; and (2) the biogeographic patterns in the Northern Hemisphere are complex. Furthermore, a lack of correlation between sequence divergence values and phylogenetic positions was observed, suggesting the importance of a phylogenetic framework in biogeographic analyses.  相似文献   

3.
紫荆属的系统发育和生物地理学研究   总被引:4,自引:0,他引:4  
紫荆属(Cercis L.)约含8种,间断分布于亚洲东、西部、欧洲南部和北美。应用核糖体DNA的ITS基因序列研究紫荆属的系统发育关系。在最简约性分析,北美的两个种和南欧、西亚的一个种构成一单系群而隐藏于东亚的种类中。这表明紫荆属北美的种类和南欧、西亚的种类之间的关系比它们的各自与东亚的种类的关系要密切。研究还发现北美洲东、西部的种类可能具较近亲缘。紫荆属以白令陆桥或北大西洋陆桥为迁移途径的可能性似乎都不能排除;北半球的生物地理分布式样可具有复杂的起源。  相似文献   

4.
Toxicodendron is a genus in the Rhus complex of Anacardiaceae with a disjunct distribution between eastern Asia and North America, extending to southeastern Asia and the neotropics. Nuclear (internal transcribed spacer, external transcribed spacer, and NIA-i3) and chloroplast (ndhF and trnL-F) sequences were used to construct phylogenetic relationships of Toxicodendron. Phylogenetic analysis of these data strongly support Toxieodendron as a monophyletic group distinct from other genera of the Rhus complex, and the phylogeny does not fully corroborate classification at the sectional level. Two temperate disjunct lineages were detected, one from section Toxicodendron and the other between the eastern North American Toxicodendron vernix and the eastern Asian Toxicodendron vernieifluum. Their divergence times were estimated to be 13.46 (7.95-19.42) and 7.53 (2.76-12.86) mya, respectively. The disjunction between section Griffithii (taxa from warm temperate to tropical Asia) and Toxieodendron striatum (from the neotropics) was supported and their divergence time was estimated to be 20.84 (11.1 6-30.52) mya in the early Miocene. Our biogeographic results and the paleontological data support the Bering land bridge as the most likely route to explain the temperate disjunctions, yet the tropical disjunction in Toxicodendron seems to be best explained by the North Atlantic land bridge hypothesis.  相似文献   

5.
Sassafras (Lauraceae) consists of three species disjunct between eastern Asia (S. tzumu and S. randaiense) and eastern North America (S. albidum). Phylogenetic analysis based on sequences of nuclear ribosomal ITS and three chloroplast non-coding regions (rpl16, trnL-F, and psbA-trnH) showed that Sassafras is monophyletic and that the eastern North American S. albidum is sister to the clade of its two eastern Asian counterparts. Their intercontinental divergence was estimated to be 13.80 ± 2.29−16.69 ± 2.52 million years ago (mya) using the penalized likelihood method with the ITS and three chloroplast markers. Biogeographic analyses combined with fossil evidence suggest that Sassafras has a relict distribution in the Northern Hemisphere without a Gondwanan link. The divergence time of the two eastern Asian species (the continental Chinese Sassafras tzumu and S. randaiense endemic to Taiwan) is estimated to be 0.61 ± 0.75−2.23 ± 0.76 mya. Sassafras randaiense from Taiwan was most likely derived from an ancestor from continental China.  相似文献   

6.
将Vitis romanetii Romanet du Caillaud ex Planchon var.tomentosa C.L.Li作为绒毛秋葡萄V.romanetii Romanet du Caillaud ex Planchon var.arachnoidea Y.L.Cao&Y.H.He的一个多余名称。  相似文献   

7.
This review shows a close biogeographic connection between eastern Asia and western North America from the late Cretaceous to the late Neogene in major lineages of vascular plants (flowering plants, gymnosperms, ferns and lycophytes). Of the eastern Asian–North American disjuncts, conifers exhibit a high proportion of disjuncts between eastern Asia and western North America. Several lineages of ferns also show a recent disjunct pattern in the two areas. In flowering plants, the pattern is commonly shown in temperate elements between northeastern Asia and northwestern North America, as well as elements of the relict boreotropical and Neogene mesophytic and coniferous floras. The many cases of intercontinental biogeographic disjunctions between eastern Asia and western North America in plants supported by recent phylogenetic analyses highlight the importance of the Bering land bridge and/or the plant migrations across the Beringian region from the late Cretaceous to the late Neogene, especially during the Miocene. The Beringian region has permitted the filtering and migration of certain plant taxa since the Pliocene after the opening of the Bering Strait, as many conspecific taxa or closely related species occur on both sides of Beringia.  相似文献   

8.
Analysis of DNA microsatellites was used to assign genomic identity to the local grapevines ( Vitis vinifera ssp. sativa ) of the Holy Land. Most of the 24 analysed cultivars were sampled from the Indigenous Fruit Trees Rescue Gardens (Sataf collection) near Jerusalem. To determine the genotype identity of these cultivars, primers of the following microsatellites were used: VrZAG47, VrZAG62, VrZAG79, VVS2, VVMD5 and VVMD7. The amplicon sizes of the various microsatellites were measured by genotyping. The genetic similarity between cultivars within the local collection was computed and presented as a dendrogram. Three vines showed identical allele sizes for all six microsatellites. Two of these cultivars are likely to be genetically identical, whereas one, although potentially closely related, showed phenotypic difference at least in the colour of the berries. In comparing the allelic frequencies of the various microsatellite sizes with those of European cultivars (available in accessible web databases), it was found that the cultivar group most similar to the Holy Land grapevines is the Greek vine population. Historical and archaeological information indicates that the Sataf collection may represent only part of the expected diversity of local vines. It is thus possible that many of the missing vines still occur as unattended feral plants.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 513–521.  相似文献   

9.
Muhlenbergia torreyi occurs in the southwestern United States, northern Mexico, and northwestern Argentina. Allozyme data were used to evaluate genetic diversity within and among populations of this amphitropical disjunct species. Electrophoretic examination of 22 putative enzyme loci in 15 populations revealed high levels of genetic variation (P ranging from 64.7 to 82.4;H from 0.527 to 0.757) and high levels of genetic diversity (F ranging from −0.584 to −0.939). All populations possess high levels of heterogeneity (F 1S approaching −1, mean of −0.837) and exhibit lower levels of genetic fixation among populations (F ST mean of 0.127). A comparison of genetic identity values among populations from North and South America indicates that the genetic variation is slightly greater (I=0.93) in North America than in South America (I=0.96). A total of 51 alleles were shared among all populations, and four unique alleles were detected: two from North American populations and two from South America. It seems likely thatMuhlenbergia torreyi has dispersed to South America recently, because the populations there are less variable. Chromosome numbers, not determined by the authors, of 2n=20, 21 forM. torreyi and 2n=80, 82 forM. arenicola are reported.Muhlenbegia arenicola is first reported from South America.
Resumen   Muhlenbergia torreyi habita en el suroeste de Estados Unidos, norte de México, y noreste de Argentina. Mediante el análisis de alozimas se evaluó la diversidad genética dentro y entre poblaciones de esta especie, que es disjunctiva anfitropical. El exámen electroforético de 22 loci putativos enzimáticos en 15 poblaciones, reveló altos niveles de variación genética (P varía de 64.7 a 82.4;H varía de 0.527 a 0.757) y altos niveles de diversidad genética (F varía de −0.584 a −0.939). Todas las poblaciones poseen altos niveles de heterogeneidad dentro de las mismas poblaciones (F IS cerca −1, media de −0.837) y exhiben bajos niveles de fijación genética entre poblaciones (F ST media de 0.127). Una comparación de valores de identidad genética entre poblaciones de Norte y Sudamérica indican que la variación genética es un poco mayor (I=0.93) en Norte América que en Sudamérica (I=0.96). Las poblaciones poseían un total de 51 alelos en común y se detectaron cuatro alelos únicos; dos en las poblaciones norteamericanas y dos en las poblaciones sudamericanas. Probablemente,Muhlenbergia torreyi ha sido dispersada recientemente hacia Sudamérica porque esta poblacion es menos variable. El número de cromosomas, no determinado por los autores, de 2n=20, 21 paraM. torreyi and 2n=80, 82 paraM. arenicola son reportados.Muhlenbergia arenicola es reportada por primera vez en Sudamérica.
  相似文献   

10.
Bocconia (10 species) and Macleaya (2 species) are two disjunct genera between South America and eastern Asia (EAS) in the Papaveraceae offering an opportunity to compare its biogeographic history with that of the well‐known disjunction between EAS and eastern North American (ENA). Our phylogenetic analyses of the chloroplast matK and rbcL gene sequences of Ranunculales including two species of Macleaya and six species of Bocconia supported the monophyly of Bocconia, Macleaya, and Chelidonioideae to which Bocconia and Macleaya belong. Nucleotide sequences of matK, rbcL, and nrDNA ITS supported the sister relationship of Bocconia and Macleaya. Biogeographic analyses of Chelidonioideae using S‐DIVA (statistical dispersal vicariance analysis) and DEC (dispersal extinction cladogenesis) methods inferred Eurasia as the most likely ancestral area of Bocconia and Macleaya and suggested no extinction events in either Bocconia or Macleaya. This agrees with the “Out‐of‐Asia” pattern of the EAS‐ENA disjunction. Molecular dating of Ranunculales with fossil‐based calibrations showed that Bocconia and Macleaya diverged in the late Eocene and early Oligocene, which is much earlier than most EAS‐ENA disjunct taxa. The disjunction may have formed via long distance dispersal or boreotropical connections via the North Atlantic and Bering land bridges. Both Bocconia and Macleaya diversified in the late mid‐Miocene, but Bocconia has apparently experienced a greater diversification probably aided by the evolution of the bird dispersal syndrome in fruit and seed after migration to South America. The greater diversification of Bocconia is also evidenced by the diverse leaf morphology and growth habit in response to colonization in various local habitats in South America.  相似文献   

11.
Vitis L. (the grape genus) is the economically most important fruit crop, as the source of grapes and wine. Phylogenetic relationships within the genus have been highly controversial. Herein, we employ sequence data from whole plastomes to attempt to enhance Vitis phylogenetic resolution. The results support the New World Vitis subgenus Vitis as monophyletic. Within the clade, V. californica is sister to the remaining New World Vitis subgenus Vitis. Furthermore, within subgenus Vitis, a Eurasian clade is robustly supported and is sister to the New World clade. The clade of Vitis vinifera ssp. vinifera and V. vinifera ssp. sylvestris is sister to the core Asian clade of Vitis. Several widespread species in North America are found to be non‐monophyletic in the plastome tree, for example, the broadly defined Vitis cinerea and V. aestivalis each needs to be split into several species. The non‐monophyly of some species may also be due to common occurrences of hybridizations in North American Vitis. The classification of North American Vitis by Munson into nine series is discussed based on the phylogenetic results. Analyses of divergence times and lineage diversification support a rapid radiation of Vitis in North America beginning in the Neogene.  相似文献   

12.
Internal transcribed spacer (ITS nuclear rDNA) data have been obtained from 190 terrestrial orchid species, encompassing all genera and the great majority of the widely recognized species of Orchidinae, a heterogeneous selection of species of Habenariinae, and single species of Satyriinae and Disinae (the latter serving as outgroup). The resulting parsimony‐based phylogeny reveals 12 well‐resolved clades within the Orchidinae, based on Anacamptis s.l., Serapias, Ophrys, SteveniellaHimantoglossum s.l. (including ‘Comperia’ and ‘Barlia’, most species being 2n = 36), Neotinea s.l., TraunsteineraChamorchis, Orchis s.s., PseudorchisAmerorchisGalearisNeolindleyaPlatanthera s.l. (most 2n = 42), Dactylorhiza s.l., Gymnadenia s.l. (most 2n = 40, 80), Ponerorchis s.l.Hemipilia s.l.AmitostigmaNeottianthe, and Brachycorythis (most 2n = 42). Relationships are less clearly resolved among these 12 clades, as are those within Habenariinae; the subtribe appears either weakly supported as monophyletic or as paraphyletic under maximum parsimony, and the species‐rich genus Habenaria is clearly highly polyphyletic. The triphyly of Orchis as previously delimited is confirmed, and the improved sampling allows further generic transfers to Anacamptis s.l. and Neotinea s.l. In addition, justifications are given for: (1) establishing Steveniella as the basally divergent member of an appreciably expanded Himantoglossum that incorporates the former genera ‘Barlia’ and ‘Comperia’, (2) reuniting ‘Piperia’ with a broadly defined Platanthera as section Piperia, necessitating ten new combinations, (3) broadening Ponerorchis to include Chusua, and Hemipilia to include single ‘orphan’ species of Ponerorchis and Habenaria, and (4) recognizing ‘Gymnadeniacamtschatica as the monotypic Neolindleya camtschatica within the PseudorchisPlatanthera clade. Few further generic transfers are likely in Orchidinae s.s., but they are anticipated among habenariid genera, on acquisition of additional morphological and molecular evidence; one probable outcome is expansion of Herminium. Species‐level relationships are also satisfactorily resolved within most of the major clades of Orchidinae, with the notable exceptions of Serapias, the derived sections of Ophrys, Himantoglossum s.s., some sections within Dactylorhiza, the former genus ‘Nigritella’ (now tentatively placed within Gymnadenia s.l.), Hemipilia s.l., and possibly Ponerorchis s.s. Relationships among the 12 major clades broadly accord with bona fide records of intergeneric hybridization. Current evidence supports the recently recognized 2n = 36 clade; it also indicates a 2n = 40 clade that is further diagnosed by digitate root‐tubers, and is derived relative to the recently recognized clade of exclusively Asian genera (Ponerorchis s.l.Hemipilia s.l.AmitostigmaNeottianthe). This in turn appears derived relative to the Afro‐Asiatic Brachycorythis group; together, these two clades identify the plesiomorphic chromosome number as 2n = 42. If the African genus Stenogolottis is correctly placed as basally divergent within a monophyletic Habenariinae, the tribe Orchideae and subtribes Orchidinae and Habenariinae could all have originated in Africa, though in contrast the Asiatic focus of the basally divergent members of most major clades of Orchidinae suggests an Asiatic radiation of the subtribe. Morphological characters informally ‘mapped’ across the molecular phylogeny and showing appreciable levels of homoplasy include floral and vegetative pigmentation, flower shape, leaf posture, gynostemium features, and various pollinator attractants. Qualitative comparison of, and reciprocal illumination between, degrees of sequence and morphological divergence suggests a nested set of radiations of progressively decreasing phenotypic magnitude. Brief scenarios, both adaptive and non‐adaptive, are outlined for specific evolutionary transitions. Recommendations are made for further species sampling, concentrating on Asian Orchidinae (together with the Afro‐Asiatic Brachycorythis group) and both Asian and Southern Hemisphere Habenariinae, and adding plastid sequence data. Taxonomic changes listed are: Anacamptis robusta (T.Stephenson) R.M.Bateman, comb. nov. , A. fragrans (Pollini) R.M.Bateman, comb. nov. , A. picta (Loiseleur) R.M.Bateman, comb. nov. , Neotinea commutata (Todari) R.M.Bateman, comb. nov. , N. conica (Willdenow) R.M.Bateman, comb. nov. , Platanthera elegans Lindley ssp. maritima (Rydberg) R.M.Bateman, comb. nov. , P. elegans Lindley ssp. decurtata (R.Morgan & Glicenstein) R.M.Bateman, comb. nov. , P. elongata (Rydberg) R.M.Bateman, comb. nov. , P. michaelii (Greene) R.M.Bateman, comb. nov. , P. leptopetala (Rydberg) R.M.Bateman, comb. nov. , P. transversa (Suksdorf) R.M.Bateman, comb. nov. , P. cooperi (S.Watson) R.M.Bateman, comb. nov. , P. colemanii (R.Morgan & Glicenstein) R.M.Bateman, comb. nov. , P. candida (R.Morgan & Ackerman) R.M.Bateman, comb. nov. and P. yadonii (R.Morgan & Ackerman) R.M.Bateman, comb. nov. © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 142 , 1–40.  相似文献   

13.
We used cladistic analysis of chloroplast gene sequences (ndhF and rpl16) to test biogeographic hypotheses in the woody genus Gleditsia. Previous morphological comparisons suggested the presence of two eastern Asian-eastern North American species pairs among the 13 known species, as well as other intra- and inter-continental disjunctions. Results from phylogenetic analyses, interpreted in light of the amount of sequence divergence observed, led to the following conclusions. First, there is a fundamental division of the genus into three clades, only one of which contains both Asian and North American species. Second, the widespread and polymorphic Asian species, G. japonica, is sister to the two North American species, G. triacanthos and G. aquatica, which themselves are closely related inter se, but are both polymorphic and paraphyletic. Third, the lone South American Gleditsia species, G. amorphoides, forms a clade with two eastern Asian species. Gleditsia thus appears to have only one Asian-North American disjunction and no intercontinental species pairs. Low sequence divergence between G. amorphoides and its closest Asian relatives implicates long-distance dispersal in the origin of this unusual disjunction. Sequence divergence between Asian and North American Gleditsia is much lower than between Asian and North American species of its closest relative, Gymnocladus. Estimates of Asian-North American divergence times for Gymnocladus are in general accordance with fossil data, but estimates for Gleditsia suggest recent divergences that conflict with ages of known North American Gleditsia fossils.  相似文献   

14.
Apple snails (Ampullariidae) are a diverse family of pantropical freshwater snails and an important evolutionary link to the common ancestor of the largest group of living gastropods, the Caenogastropoda. A clear understanding of relationships within the Ampullariidae, and identification of their sister taxon, is therefore important for interpreting gastropod evolution in general. Unfortunately, the overall pattern has been clouded by confused systematics within the family and equivocal results regarding the family's sister group relationships. To clarify the relationships among ampullariid genera and to evaluate the influence of including or excluding possible sister taxa, we used data from five genes, three nuclear and two mitochondrial, from representatives of all nine extant ampullariid genera, and species of Viviparidae, Cyclophoridae, and Campanilidae, to reconstruct the phylogeny of apple snails, and determine their affinities to these possible sister groups. The results obtained indicate that the Old and New World ampullariids are reciprocally monophyletic with probable Gondwanan origins. All four Old World genera, Afropomus, Saulea, Pila, and Lanistes, were recovered as monophyletic, but only Asolene, Felipponea, and Pomella were monophyletic among the five New World genera, with Marisa paraphyletic and Pomacea polyphyletic. Estimates of divergence times among New World taxa suggest that diversification began shortly after the separation of Africa and South America and has probably been influenced by hydrogeological events over the last 90 Myr. The sister group of the Ampullariidae remains unresolved, but analyses omitting certain outgroup taxa suggest the need for dense taxonomic sampling to increase phylogenetic accuracy within the ingroup. The results obtained also indicate that defining the sister group of the Ampullariidae and clarifying relationships among basal caenogastropods will require increased taxon sampling within these four families, and synthesis of both morphological and molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 61–76.  相似文献   

15.
Chloroplast DNA and two categories of nuclear markers - isozymes and microsatellites - were used to examine a very rich natural community of oaks (Quercus spp.) situated in west-central Romania. The community consists of five oak species: Q. robur, Q. petraea, Q. pubescens, and Q. frainetto - that are closely related -, and Q. cerris. A total of five chloroplast haplotypes was identified. Q. cerris was fixed for a single haplotype. The other four species shared the two most common haplotypes. One haplotype was confined to Q. robur and a very rare one was restricted to Q. petraea. Both types of nuclear markers revealed a larger genetic variation for Q. pubescens and Q. petraea than for Q. frainetto and Q. robur, although the differences between species are in most cases not significant. At the nuclear level, Q. cerris could be clearly separated from the other four oak species confirming the taxonomic classification. Regardless of the estimate used, the levels of polymorphism revealed by microsatellites were much higher than those based on isozymes. For the four closely related species the overall genetic differentiation was significant at both categories of nuclear markers. Several loci, such as Acp-C for isozymes, and ssrQpZAG36 and ssrQrZAG96 for microsatellites were very useful to discriminate among species. However, the level of differentiation varied markedly between pairs of species. The genetic affinities among the species may reflect different phylogenetic distances and/or different rates of recurrent gene flow at this site.  相似文献   

16.
Mitchella is a small genus of the Rubiaceae with only two species. It is the only herbaceous semishrub of the family showing a disjunct distribution in eastern Asia and eastern North America, extending to Central America. Its phylogeny and biogeographical diversification remain poorly understood. In this study, we conducted phylogenetic and biogeographical analyses for Mitchella and its close relative Damnacanthus based on sequences of the nuclear internal transcribed spacer (ITS) and four plastid markers (rbcL, atpB‐rbcL, rps16 and trnL‐F). Mitchella is monophyletic, consisting of an eastern Asian M. undulata clade and a New World M. repens clade. Our results also support Michella as the closest relative to the eastern Asian Damnacanthus. The divergence time between the two intercontinental disjunct Mitchella species was dated to 7.73 Mya, with a 95% highest posterior density (HPD) of 3.14?12.53 Mya, using the Bayesian relaxed clock estimation. Ancestral area reconstructions suggest that the genus originated in eastern Asia. The semishrub Mitchella appears to have arisen from its woody ancestor in eastern Asia and then migrated to North America via the Bering land bridge in the late Miocene. © 2013 The Linnean Society of London  相似文献   

17.
18.
Range‐wide variation in 54 populations of Dahurian larch (Larix gmelinii) and related taxa in Northeast Asia was assessed with four mitochondrial PCR‐RFLP and five chloroplast SSR markers. Eleven mitotypes and 115 chlorotypes were detected. The highest diversity was observed in the southern Russian Far East where hybrids of L. gmelinii, L. olgensis and L. kamtschatica are distributed. In contrast, only two mitotypes occurred in L. cajanderi and L. gmelinii. The Japanese larch (L. kaempferi) was found to be closely related to populations of L. kamtschatica inhabiting the Kuril Islands and South Sakhalin, populations from the northern part of Sakhalin being more closely related to continental species. In general, both mitochondrial (GST = 0.786; NST = 0.823) and chloroplast (GST = 0.144; RST = 0.432) markers showed a strong phylogeographical structure and evidence of isolation‐by‐distance. Yet both markers did not allow a clear delineation of species borders. In particular, and contrary to expectations, cpDNA was not significantly better than mtDNA at delineating species borders. This lack of concordance between morphological species and molecular markers could reflect extensive ancestral haplotype sharing and past and ongoing introgression. Finally the distribution of mtDNA and cpDNA variation suggests the presence of several refugia during Pleistocene glacial intervals. In particular, mtDNA and cpDNA reveal weak but visible differentiation between L. gmelinii and L. cajanderi, suggesting independent glacial histories of these species.  相似文献   

19.
Aim We investigated the phylogeography, geographical variation in leaf morphology, freezing tolerance and climatic niches of two widespread evergreen sister oak species (Quercus) in the series Virentes. Location South‐eastern USA, Mexico and Central America. Methods Nuclear microsatellites and non‐recombining nuclear and chloroplast DNA sequences were obtained from trees throughout the range of two sister lineages of live oaks, represented by Quercus virginiana in the temperate zone and Q. oleoides in the tropics. Divergence times were estimated for the two major geographical and genetic breaks. Differentiation in leaf morphology, analysed from field specimens, was compared with the molecular data. Freezing sensitivities of Q. virginiana and Q. oleoides populations were assessed in common garden experiments. Results The geographical break between Q. virginiana and Q. oleoides was associated with strong genetic differentiation of possible early Pleistocene origin and with differentiation in freezing sensitivity, climatic envelopes and leaf morphology. A second important geographical and genetic break within Q. oleoides between Costa Rica and the rest of Central America showed a mid‐Pleistocene divergence time and no differentiation in leaf morphology. Population genetic differentiation was greater but genetic diversity was lower within the temperate Q. virginiana than within the tropical Q. oleoides, and genetic breaks largely corresponded to breaks in leaf morphology. Main conclusions Two major breaks, one between Mexico and the USA at the boundary of the two species, and a more recent one within Q. oleoides between Honduras and Costa Rica, implicate climatic changes as potential causes. The latter break may be associated with the formation of the Cordillera de Guanacaste, which was followed by seasonal changes in precipitation. In the former case, an ‘out of the tropics’ scenario is hypothesized, in which the acquisition of freezing tolerance in Q. virginiana permitted colonization of and expansion in the temperate zone, while differences in climatic tolerances between the species limited secondary contact. More pronounced Pleistocene changes in climate and sea level in the south‐eastern USA relative to coastal Mexico and Central America may explain the greater population differentiation within temperate Q. virginiana and greater genetic diversity in tropical Q. oleoides. These patterns are predicted to hold for other taxa that span temperate and tropical zones of North and Central America.  相似文献   

20.
Diapensia L. is the second largest genus of Diapensiaceae. The taxonomic treatment within Diapensia and relationships within Diapensiaceae have been disputed. Chloroplast genome sequence data have proved to be useful for plant phylogenetic analyses and species delimitation. In this study, we de novo sequenced and assembled 22 chloroplast genomes of 15 species of Diapensiaceae, including all recognized species of Diapensia with multiple samples. A super‐matrix containing a total of 107 genes and 18 taxa was constructed for phylogenetic analyses to resolve phylogenetic relationships among genera of the family and within Diapensia. The resulting phylogenetic tree showed the following strongly supported relationships: (Galax, (Pyxidanthera, (Berneuxia, ((Schizocodon, Diapensia), and Shortia s.s.)))). The dated phylogeny and reconstructed lineage‐through‐time plot for the family indicated rapid diversification in the Neogene and an acceleration of diversification rate after c. 8 Ma. Biogeographic analysis suggested that Diapensia originated in the Northeast Asian mountains approximately 6.06 Ma, followed by northward dispersal to the Arctic and southwestward dispersal to the Himalaya–Hengduan Mountains. Phylogenetic relationships within Diapensia were well resolved. Based on the phylogenetic results, we proposed to reinstate the species status of Diapensia bulleyana Forrest ex Diels, and raised D. purpurea f. albida to the species rank (D. albida [W. E. Evans] J. F. Ye comb. & stat. nov.). The distribution ranges of all species delineated based on the phylogenetic results were revised accordingly based on specimen occurrences. Our study adds new examples for the power of plastid genome data for resolving phylogenetic relationships and clarifying taxonomic disputes among closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号