首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The longnose dace, Rhinichthys cataractae, is a primary freshwater fish inhabiting riffle habitats in small headwater rivers and streams across the North American continent, including drainages east and west of the Continental Divide. The mitochondrially encoded cytochrome b gene (1140 bp) and 2298–2346 bp of the nuclear‐encoded genes S7 and RAG1 were obtained from 87 individuals of R. cataractae (collected from 17 sites throughout its range) and from several close relatives. Phylogenetic analyses recovered a monophyletic R. cataractae species‐group that contained Rhinichthys evermanni, Rhinichthys sp. ‘Millicoma dace’, and a non‐exclusive R. cataractae. Within the R. cataractae species‐group, two well‐supported lineages were identified, including a western lineage (containing R. evermanni, R. sp. ‘Millicoma dace’ and individuals of R. cataractae from Pacific slope drainages) and an eastern lineage (containing individuals of R. cataractae from Arctic, Atlantic, and Gulf slope drainages). Within the eastern lineage of R. cataractae, two well‐supported groups were recovered: a south‐eastern group, containing individuals from the Atlantic slope, southern tributaries to the Mississippi River, and the Rio Grande drainage; and a north‐eastern group, containing individuals from the Arctic slope and northern tributaries to the Mississippi River. Estimates of the timing of divergence within the R. cataractae species‐group, combined with ancestral area‐reconstruction methods, indicate a separation between the eastern and western lineages during the Pliocene to early‐Pleistocene, with a direction of colonization from the west of the Continental Divide eastward. Within the southern portion of its range, R. cataractae likely entered the Rio Grande drainage during the Pleistocene via stream capture events between the Arkansas River (Mississippi River drainage) and headwaters of the Rio Grande. A close relationship between populations of R. cataractae in the Rio Grande drainage and the adjacent Canadian River (Mississippi River drainage) is consistent with hypothesized stream capture events between the Pecos (Rio Grande drainage) and Canadian rivers during the late‐Pleistocene. The population of R. cataractae in the lower Rio Grande may have become separated from other populations in the Rio Grande drainage (upper Rio Grande and Pecos River) and Canadian River during the late‐Pleistocene, well before initiation of recent and significant anthropogenic disturbance within the Rio Grande drainage. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 317–333.  相似文献   

2.
The Rio Grande cutthroat trout, Oncorhynchus clarkii virginalis, has declined precipitously over the past century, and currently exhibits a highly fragmented distribution within the Canadian, Pecos and Rio Grande river systems of the western United States. The relationships between populations in the three river drainages, and between O. c. virginalis and the closely related taxa O. c. pleuriticus and O. c. stomias, are not well understood. In order to guide management decisions for the subspecies, we investigated the distribution of variation at 12 microsatellite loci and two regions of the mitochondrial genome. We observed a high level of genetic differentiation between O. c. virginalis populations occupying different headwater streams (global Fst = 0.41). However, we found evidence for previous gene flow within the Rio Grande drainage, indicating that inter-population differentiation may have been exacerbated by the recent effects of population fragmentation. Despite large-scale anthropogenic movement of individuals from the Rio Grande into the Canadian and Pecos, the genetic signature of long-term evolutionary independence between the three drainages has been retained.  相似文献   

3.
Aim To elucidate the role of vicariance versus dispersal at the microevolutionary scale in annual killifish populations belonging to the Austrolebias bellottii species complex (Rivulidae). Within this complex, A. bellottii and A. apaii have low vagility and occur widely within the study area, making them excellent models for testing biogeographic hypotheses of differentiation. Location South America, in the Paraná–Uruguay–La Plata river basin. Methods Molecular data and morphometric analyses were used to reconstruct the phylogeographic history and morphological variation of 24 populations of two taxa of the A. bellottii species complex. Phylogenetic analyses using maximum likelihood (ML) and Bayesian inference (BI) model‐based methods, estimates of clade divergence times implemented in beast , non‐metric multidimensional scaling, analysis of molecular variance results, and morphological analyses elucidated the role of vicariance versus dispersal hypotheses in population differentiation in the aforementioned river basin. Results In the A. bellottii species complex from the Paraná–Uruguay–La Plata river basin, past allopatric fragmentation from vicariance events seems to be the most plausible scenario for diversification since the Late Miocene and more recently since the Plio‐Pleistocene. The Plio‐Pleistocene vicariance produced the differentiation of three major clades in A. bellottii populations. One clade from the eastern Uruguay River drainage was separated from another in western Uruguay and the Paraná–La Plata River drainages. A later vicariance event split populations to the south (lower Paraná–La Plata Basin) and north (middle Paraná) of the western Paraná River drainage. However, our results do not exclude the possibility of dispersal events among A. bellottii populations from both the Uruguay and Paraná river drainages, which could occur in these river basins during hypothesized connectivity cycles of the Late Pliocene and Pleistocene. Main conclusions Past allopatric fragmentation caused by different vicariance events seems to be the main driver of diversification in the A. bellottii species complex since the Plio‐Pleistocene. However, the current molecular data suggest that populations from both drainages of the Paraná–Uruguay rivers may have experienced cycles of connectivity during the Pleistocene, perhaps including multiple vicariance or dispersal events from populations located in the western lower Uruguay River drainage, which encompassed climatic and geological changes in the Paraná–Uruguay–La Plata Basin.  相似文献   

4.
Acipenser gueldenstaedtii is a species of sturgeon described from Caspian Sea and Black Sea and their tributaries, occurring in the Eastern Atlantic, Europe and Middle East. This and other two sturgeon species have been accidentally introduced in the Rio Negro, Uruguay, a tributary of the Rio de La Plata. Recently, it has been demonstrated the presence and establishment of A. gueldenstaedtii widespread in the Rio Paraná basin, the largest tributary of the Rio de La Plata, corresponding to the second largest river drainage in the Neotropics. We herein register the presence of the species in the next northern freshwater drainage in South America, representing the first record for Brazil. We further discuss the possibility of dispersal through marine environments to other freshwater drainages in South America through the analysis of its documented occurrence and marine ecoregions in southwestern Atlantic.  相似文献   

5.
Aim The phylogeography of Rhabdochona lichtenfelsi, a nematode parasite specific to endemic goodeids in Mexico, is used to infer the biogeographical history of fragmentation and recent evolution of the Mesa Central drainages. Geological history of the west‐central region of Mexico suggests that extant freshwater basins are the result of different vicariant events that fragmented ancient watercourses and lakes within the Mesa Central. Location Major freshwater river basins of the Mesa Central, Mexico: Ameca, Cotija, Lerma, Rio Verde, Panuco, and lakes Cuitzeo and Zacapu. Methods Haplotype diversity and phylogeographical structure of 10 populations of R. lichtenfelsi, sampled from the complete range of this species, were analysed with partial sequences of cytochrome c oxidase subunit I (456 bp). Analyses performed included phylogenetic tree estimation methods (neighbour‐joining, maximum parsimony and maximum likelihood), genetic diversity, distance and structure estimates, and nested clade analysis. Results High overall haplotype diversity, unique haplotypes, and strongly structured populations were found in the basins sampled. Three phylogenetically and demographically identifiable clades were recovered. These clades fit an isolation‐by‐distance model. Significant population expansion was observed for two clades and for the entire population. Time of divergence was estimated as 1.0 and 0.84 Ma for the different clades. Main conclusions The distribution of R. lichtenfelsi haplotypes does not correspond to the present distribution of the basins of Mesa Central, but instead reflects the distribution of those basins during a recent geological period (Pleistocene). While our current knowledge of the evolution and geographical relationships of the Mesa Central basins comes from studies of freshwater fish encompassing a more ancient history, our results suggest that, during the past million years, old basins and connections existed where today isolated freshwater bodies stand, thus unravelling a novel biogeographical history for the Mesa Central of Mexico.  相似文献   

6.
To investigate phylogenetic relationships amongLeuciscusspecies occurring in Portuguese inland waters, the cytochromebgene was sequenced from representatives of the main rivers. This study supports the recognition of the species level forL. pyrenaicus,including populations from the southern Portuguese drainages (Tejo, Sado, and Guadiana drainages), and forL. carolitertii,including populations from the northern Portuguese drainages. The existence of two new species occurring in the extreme southwestern drainages of Mira and Arade is also suggested. The present results support the monophyly of the Mira and the Arade populations, as well as an early divergence of these two lineages. The present-day distribution ofLeuciscusspecies is seen as a consequence of Pliocene and Pleistocene events, such as river disjunctions and posterior confluence in epicontinental seas and river captures. A mixture of haplotypes was observed in the Mondego and the Tejo drainages, which could be a consequence of ancient river captures, with a possible mitochondrial DNA introgression in the Tejo drainage and a recent introduction by man in the Mondego drainage. The pattern of differentiation among mtDNA haplotypes and their geographic distribution is discussed in terms of evolutionary aspects.  相似文献   

7.
Assiminea pecos is an endangered species of amphibious gastropod that occupies four widely separated portions of the Rio Grande region in the southwestern United States (Pecos River basin) and northeastern Mexico (Cuatro Cienegas basin). Our statistical and discriminant function analyses of shell variation among the disjunct populations of this species indicate that Mexican specimens differ in their morphometry from those of the United States and can be diagnosed by several characters. We also analyzed variation in the mitochondrial genome by sequencing 658 bp of mitochondrial COI from populations of A. pecos, representatives of the other three North American species of Assiminea, and several outgroups. Our results indicated substantial divergence of the Mexican population of A. pecos, which was consistently depicted as a monophyletic unit nested within or sister to the shallowly structured group comprised of American members of this species. Consistent with our findings, we describe the Mexican population as a new species, which is provisionally placed in the large, worldwide genus Assiminea pending further study of the phylogentic relationships of the North American assimineids. Our molecular data suggest that the Rio Grande region assimineids, which are among the few inland members of the otherwise estuarine subfamily Assimineinae, diverged from coastal progenitors in the late Miocene, with subsequent Pleistocene vicariance of Mexican and American species perhaps associated with development of the modern, lower course of the Rio Grande. Handling editor: K. Martens  相似文献   

8.
Thorough sampling is necessary to delineate lineage diversity for polytypic ‘species’ such as Cyprinella lutrensis. We conducted extensive mtDNA sampling (cytochrome b and ND4) from the Pecos River, Rio Grande, and South Canadian River, New Mexico. Our study focussed on the Pecos River due to its complex geological history and potential to harbour multiple lineages. We used geometric–morphometric, morphometric, and meristic analyses to test for phenotypic divergence and combined nucDNA with mtDNA to test for cytonuclear disequilibrium and combined our sequences with published data to conduct a phylogenetic re‐assessment of the entire C. lutrensis clade. We detected five co‐occurring mtDNA lineages in the Pecos River, but no evidence for cytonuclear disequilibrium or phenotypic divergence. Recognized species were interspersed amongst divergent lineages of ‘C. lutrensis’. Allopatric divergence among drainages isolated in the Late Miocene and Pliocene apparently produced several recognized species and major divisions within ‘C. lutrensis’. Pleistocene re‐expansion and subsequent re‐fragmentation of a centralized lineage founded younger, divergent lineages throughout the Rio Grande basin and Edwards Plateau. There is also evidence of recent introductions to the Rio Grande, Pecos and South Canadian Rivers. Nonetheless, deeply divergent lineages have coexisted since the Pleistocene.  相似文献   

9.
Epactionotus species are known for inhabiting the rocky-bottom stretches of fast-flowing rivers in a limited geographic area along the Atlantic coast of southern Brazil. These species are endemic to single coastal river drainages (two neighbouring drainages for Epactionotus bilineatus) isolated from each other by the coastal lacustrine environments or the Atlantic Ocean. E. bilineatus is from the Maquiné and Três Forquilhas River basins, both tributaries of the Tramandaí River system, whereas E. itaimbezinho is endemic to the Mampituba River drainage and Epactionotus gracilis to the Araranguá River drainage. Recent fieldwork in the Atlantic coastal drainages of southern Brazil revealed new populations in the Urussanga, Tubarão, d'Una and Biguaçu River drainages. Iterative species delimitation using molecular data (cytochrome c oxidase subunit I) and morphology (morphometrics and meristics) was applied to evaluate species recognition of isolated populations. With regard to new data, the genus was re-diagnosed, the status of Epactionotus species/populations was re-evaluated, formerly described species were supported and population structure was recognized. As for the newly discovered populations, both morphological and molecular data strongly support the population from the Biguaçu River drainage, in Santa Catarina State, as a new species. Molecular data revealed strong per-basin population structure, which may be related to species habitat specificity and low or no dispersal among drainages.  相似文献   

10.
Most of the recognized species of the genus Dionda inhabit drainages of the Gulf of Mexico from central Mexico to central Texas, USA, and have been considered a monophyletic group based on morphological, osteological, and allozyme investigations. Phylogenetic relationships of 15 species of Dionda and 34 species from closely related genera were inferred from one mitochondrial (cytb) and three nuclear gene sequences (S7, Rhodopsin, Rag1) totaling 4487 nucleotides. Separate analyses of all four genes yield congruent phylogenies; however the 15 putative species of Dionda evaluated were never recovered as a monophyletic group when species from nine related genera were included in the analyses. Among the ingroup taxa, one well-supported and highly divergent clade is consistently recognized and consists of six recognized and three undescribed northern species currently recognized in the genus Dionda. These nine species inhabit present or past tributaries of the Rio Grande basin of northern Mexico and southern USA, and were recovered as a basal clade in all analyses. Another large, also strongly supported clade, consisting of seven genera, include five southern recognized species currently in the genus Dionda, forming the sister group to the Codoma clade. These five species comprise the "Southern Dionda clade" and inhabit headwaters of the Pánuco-Tamesí drainage and some adjacent coastal rivers in the Tampico Embayment. The consistent and repeated identification of eight different clades recovered in most of the separate gene analyses strongly supports a division of the non-natural genus Dionda. A new genus, Tampichthys, is proposed for the clade of species endemic to east-central Mexico and formerly in Dionda. Tampichthys and the putative monotypic genus Codoma are more related to Mexican species of the genera Cyprinella and Notropis than to other species referred to Dionda sensu stricto.  相似文献   

11.
Belonesox belizanus Kner (Teleostei: Poeciliidae) is a wide‐spread livebearing species that occurs on the Atlantic Slope of Central America from southern Mexico to northern Costa Rica. Previous work has noted morphological variation within the species, and recognized two subspecies: Belonesox belizanus belizanus and Belonesox belizanus maxillosus. We used 1122 bp of cytochrome b and 617 bp of S7‐1 DNA to conduct a phylogeographical study of Belonesox, aiming to examine the genetic distinctiveness of these taxa and other populations of Belonesox throughout the range. Bayesian phylogenetic and haplotype analyses indicated that B. b. maxillosus is not distinctive from other northern populations of Belonesox. However, a distinct phylogeographical break is evident near the Rio Grande in southern Belize. One clade comprises the putative B. b. maxillosus and all populations sampled north of the Rio Grande. The other clade comprises the Rio Grande and all populations south thereof. Fossil‐calibrated divergence time estimates suggest that isolation of the northern and southern lineages of Belonesox occurred approximately 14.1 Mya. The phylogeographical structure recovered in the present study is interesting, considering that relatively few studies have examined molecular variation across this portion of Middle America in a time‐calibrated framework. Furthermore, the present study suggests that more work is needed to adequately understand the factors that have shaped diversity of this region. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 848–860.  相似文献   

12.
Examination of 248 adult specimens of whitemouth croaker Micropogonias furnieri from five localities along the Brazilian coast revealed 8735 parasites belonging to 41 metazoan species. Samples from Ceará to Bahia and Rio de Janeiro to Santa Catarina showed a high level of correct assignation (92 and 87%, respectively) and cross assignation (i.e. almost all specimens misidentified in Ceará were assigned to Bahia and almost all specimens misidentified in Bahia were classified as Ceará), so samples were pooled in the northern and south‐eastern samples, and Rio Grande do Sul was considered a southern area. Eight parasite species were characteristic of the northern localities, five species were found just in the area associated with south‐eastern localities and two species were characteristic of the southern area providing first evidence of stock discreteness. The multivariate discriminant analysis successfully discriminated three groups of localities associated with three stocks of M. furnieri in Brazil: a northern stock associated with Ceará and Bahia, a south‐eastern stock related to Rio de Janeiro and Santa Catarina and a southern stock in the area of Rio Grande do Sul, which could be considered as the northern limit of the stock associated with the Common Fishing Zone of Uruguay and Argentina.  相似文献   

13.
Historical‐to‐recent climate change and anthropogenic disturbance affect species distributions and genetic structure. The Rio Grande watershed of the United States and Mexico encompasses ecosystems that are intensively exploited, resulting in substantial degradation of aquatic habitats. While significant anthropogenic disturbances in the Rio Grande are recent, inhospitable conditions for freshwater organisms likely existed prior to such disturbances. A combination of anthropogenic and past climate factors may contribute to current distributions of aquatic fauna in the Rio Grande basin. We used mitochondrial DNA and 18 microsatellite loci to infer evolutionary history and genetic structure of an endangered freshwater mussel, Popenaias popeii, throughout the Rio Grande drainage. We estimated spatial connectivity and gene flow across extant populations of P. popeii and used ecological niche models (ENMs) and approximate Bayesian computation (ABC) to infer its evolutionary history during the Pleistocene. structure results recovered regional and local population clusters in the Rio Grande. ENMs predicted drastic reductions in suitable habitat during the last glacial maximum. ABC analyses suggested that regional population structure likely arose in this species during the mid‐to‐late Pleistocene and was followed by a late Pleistocene population bottleneck in New Mexico populations. The local population structure arose relatively recently, perhaps due to anthropogenic factors. Popenaias popeii, one of the few freshwater mussel species native to the Rio Grande basin, is a case study for understanding how both geological and anthropogenic factors shape current population genetic structure. Conservation strategies for this species should account for the fragmented nature of contemporary populations.  相似文献   

14.
We studied the population genetics of Podocnemis unifilis turtles within and among basins in the Orinoco and Amazon drainages using microsatellites. We detected high levels of genetic diversity in all sampled localities. However, ‘M-ratio’ tests revealed a substantial recent population decline in ten localities, in accord with current widespread exploitation. Our results reveal a consistent pattern across multiple analyses, showing a clear subdivision between the populations inhabiting the Amazon and Orinoco drainages despite a direct connection via the Casiquiare corridor, and suggesting the existence of two biogeographically independent and widely divergent lineages. Genetic differentiation followed an isolation-by-distance model concordant with hypotheses about migration. It appears that migration occurs via the flooded forest in some drainages, and via river channels in those where geographic barriers preclude dispersal between basins or even among nearby tributaries of the same basin. These observations caution against making generalizations based on geographically restricted data, and indicate that geographically proximate populations may be demographically separate units requiring independent management.  相似文献   

15.
Aim By dissolving natural physical barriers to movement, human‐mediated species introductions have dramatically reshuffled the present‐day biogeography of freshwater fishes. The present study investigates whether the antiquity of Australia's freshwater ichthyofauna has been altered by the widespread invasion of non‐indigenous fish species. Location Australia. Methods Using fish presence–absence data for historical and present‐day species pools, we quantified changes in faunal similarity among major Australian drainage divisions and among river basins of north‐eastern Australia according to the Sørensen index, and related these changes to major factors of catchment disturbance that significantly alter river processes. Results Human‐mediated fish introductions have increased faunal similarity among primary drainages by an average of 3.0% (from 17.1% to 20.1% similarity). Over three‐quarters of the pairwise changes in drainage similarity were positive, indicating a strong tendency for taxonomic homogenization caused primarily by the widespread introduction of Carassius auratus, Gambusia holbrooki, Oncorhynchus mykiss and Poecilia reticulata. Faunal homogenization was highest in drainages subjected to the greatest degree of disturbance associated with human settlement, infrastructure and change in land use. Scenarios of future species invasions and extinctions indicate the continued homogenization of Australian drainages. In contrast, highly idiosyncratic introductions of species in river basins of north‐eastern Australia have decreased fish faunal similarity by an average of 1.4%. Main conclusions We found that invasive species have significantly changed the present‐day biogeography of fish by homogenizing Australian drainages and differentiating north‐eastern river basins. Decreased faunal similarity at smaller spatial scales is a result of high historical similarity in this region and reflects the dynamic nature of the homogenization process whereby sporadic introductions of new species initially decrease faunal similarity across basins. Our study points to the importance of understanding the role of invasive species in defining patterns of present‐day biogeography and preserving the antiquity of Australia's freshwater biodiversity.  相似文献   

16.
Aim New Zealand is an ideal location in which to investigate the roles of landscape and climate change on speciation and biogeography. An earlier study of the widespread endemic cicada Maoricicada campbelli (Myers) found two phylogeographically distinguishable major clades – northern South Island plus North Island (northern‐SI + NI) and Otago. These two clades appeared to have diverged on either side of an area of the South Island known as the Biotic Gap. We sampled more intensively to test competing theories for this divergence. We aimed to discover if M. campbelli had survived within the Biotic Gap during recent glacial maxima, and if predicted areas of secondary contact between the two major clades existed. Location New Zealand. Methods We analysed mitochondrial DNA sequences (1520 bp; 212 individuals; 91 populations) using phylogenetic (maximum likelihood, Bayesian), population genetic (analysis of molecular variance) and molecular dating methods (Bayesian relaxed clock with improved priors). Results We found strong geographical structuring of genetic variation. Our dating analyses suggest that M. campbelli originated 1.83–2.58 Ma, and split into the two major clades 1.45–2.09 Ma. The main subclades in the northern‐SI + NI clade arose almost simultaneously at 0.69–1.03 Ma. Most subclades are supported by long internal branches and began to diversify 0.40–0.78 Ma. We found four narrow areas of secondary contact between the two major clades. We also found a difference between calling songs of the Otago vs. northern‐SI + NI clades. Main conclusions Phylogeographical patterns within M. campbelli indicate an early Pleistocene split into two major clades, followed by late Pleistocene range expansion and in situ population differentiation of subclades. The northern‐SI + NI clade diversified so rapidly that the main subclade relationships cannot be resolved, and we now have little evidence for a disjunction across the Biotic Gap. Structure within the main subclades indicates rapid divergence after a common bottlenecking event, perhaps attributable to an extremely cold glacial maximum at c. 0.43 Ma. Clade structure and dating analyses indicate that M. campbelli survived in many refugia during recent glacial maxima, including within the Biotic Gap. The narrow overlap between the two major clades is attributed to recent contact during the current interglacial and slow gene diffusion. The two major clades appear to be in the early stages of speciation based on genetic and behavioural differences.  相似文献   

17.
Abstract. We use a comparative phylogeographical framework to evaluate the hypothesis of hydrological exchange during the Pleistocene among the now disjunct Lena, Amur, and Enisei basins in Siberia, and to provide evidence on the causal mechanism of their present day faunal dissimilarities. Approximately 600 bases of the mitochondrial control region were sequenced in five distinct lineages among three genera of salmonid fishes, Hucho, Brachymystax and Thymallus. All three basins were fixed for divergent (2–5.4%) lineages of Thymallus whereas a single shared haplotype was present in all three basins for Hucho taimen ( Pallas, 1773 ) and one shared haplotype between the Lena and Amur basins out of a total of five for blunt‐snouted and one out of five for sharp‐snouted Brachymystax lenok ( Pallas, 1773 ). For both blunt‐ and sharp‐snouted lenok the haplotypes found within each basin did not form clades, so no relationship between genotypes and geographical occurrence was found. Our data support relatively recent hydrological mixing of the major river drainage systems in eastern and far‐eastern Siberia, congruent with the hypothesis of large‐scale palaeo‐hydrological exchange stemming from glacial advance, retreat and melting during Pleistocene climate fluctuations. Furthermore, these results in conjunction with a comparison of overall faunal composition suggest that environmental differences rather than historical contingency may be responsible for the faunal dissimilarities of the Amur, Lena, and Enisei river basins.  相似文献   

18.
Aim To investigate the phylogeographic structure of the widespread freshwater prawn, Macrobrachium australiense, within and between major Australian drainage basins using mitochondrial sequence data. This will enable the investigation of historical connections between major drainages and examination of hypotheses of biogeographic associations among Australian freshwater basins. Location Inland, eastern and northern Australia. Methods Sequencing 16S rRNA and ATPase 6 protein coding mitochondrial DNA genes from M. australiense from 19 locations from inland, eastern and northern Australia. Results Within drainage basins, haplotype trees are monophyletic, with the exception of the Finke River from the Lake Eyre Basin. Macrobrachium australiense from the two main inland drainages, the Murray–Darling and Lake Eyre Basin are divergent from each other and do not form a monophyletic group, instead the Murray–Darling Basin haplotypes clade with eastern coastal haplotypes. Haplotypes from neighbouring eastern coastal drainages were found to be quite divergent from each other. Main conclusions The phylogeographic relationships among M. australiense suggest that the two major inland drainages, the Murray–Darling Basin and the Lake Eyre Basin, are not biogeographically closely associated to each other. Instead the Murray–Darling Basin is more closely allied with the eastern coastal drainages across the Great Dividing Range. Despite their proximity the neighbouring southeast Queensland coastal Mary and Brisbane Rivers are also biogeographically divergent from each other. The results also indicate that the Finke River appears to have been isolated from the remainder of the Lake Eyre Basin catchment for a significant period of time.  相似文献   

19.
20.
We conducted phylogenetic analyses based on complete mitochondrial cytochrome b gene sequences among southern and central Mexican cyprinid species, included in the genera Notropis and Hybopsis. In addition 15 northern species of the genera Notropis and Hybopsis were included in the analyses in order to place the Mexican species into a larger phylogenetic framework. The phylogenetic relationships supported the existence of five major clades: (1) including species of the subgenus Alburnops of the genus Notropis plus N. shumardi; (2) species of the subgenus Notropis; (3) species of the genus Hybopsis; (4) species of the N. texanus + N. volucellus species group of the genus Notropis; (5) Mexican endemic species of the genus Notropis plus the genus Yuriria. Previous phylogenetic inferences based on morphological characters resolved the Mexican minnows analysed as N. sallaei, N. calientis, N. boucardi and Y. alta, non‐monophyletic. According to our cytochrome b evidence all Mexican minnows of the genera Notropis and Yuriria formed a monophyletic group with respect to the northern species of the genera Notropis and Hybopsis. Within the Mexican clade, three well‐supported clades were identified: the first included the closely related species N. moralesi and N. boucardi, which occur in three independent drainages of south Mexico; the second consisted of two different lineages, N. imeldae and an undescribed species of Notropis, inhabiting two independent drainages of south Mexico; the third comprised two central Mexican Notropis species (N. calientis and N. sallaei) and the Y. alta populations. Based on this study and pending a more extensive taxonomic revision of the genus Notropis, we adopt the conservative criterion of considering all Notropis species from southern and central Mexico examined, including Y. alta, as belonging to the genus Notropis. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 323–337.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号