首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Pike DA  Stiner JC 《Oecologia》2007,153(2):471-478
Severe climatic events affect all species, but there is little quantitative knowledge of how sympatric species react to such situations. We compared the reproductive seasonality of sea turtles that nest sympatrically with their vulnerability to tropical cyclones (in this study, “tropical cyclone” refers to tropical storms and hurricanes), which are increasing in severity due to changes in global climate. Storm surges significantly decreased reproductive output by lowering the number of nests that hatched and the number of hatchlings that emerged from nests, but the severity of this effect varied by species. Leatherback turtles (Dermochelys coriacea) began nesting earliest and most offspring hatched before the tropical cyclone season arrived, resulting in little negative effect. Loggerhead turtles (Caretta caretta) nested intermediately, and only nests laid late in the season were inundated with seawater during storm surges. Green turtles (Chelonia mydas) nested last, and their entire nesting season occurred during the tropical cyclone season; this resulted in a majority (79%) of green turtle nests incubating in September, when tropical cyclones are most likely to occur. Since this timing overlaps considerably with the tropical cyclone season, the developing eggs and nests are extremely vulnerable to storm surges. Increases in the severity of tropical cyclones may cause green turtle nesting success to worsen in the future. However, published literature suggests that loggerhead turtles are nesting earlier in the season and shortening their nesting seasons in response to increasing sea surface temperatures caused by global climate change. This may cause loggerhead reproductive success to improve in the future because more nests will hatch before the onset of tropical cyclones. Our data clearly indicate that sympatric species using the same resources are affected differently by tropical cyclones due to slight variations in the seasonal timing of nesting, a key life history process.  相似文献   

2.
Jaguars (Panthera onca) are opportunistic predators that prey on large profitable prey items, such as sea turtles at nesting beaches. Here, we use jaguar and sea turtle track-count surveys, combined with satellite telemetry of one jaguar, to evaluate whether jaguar hunting behavior and movements are influenced by seasonal sea turtle nesting in the Sector Santa Rosa of Área de Conservación Guanacaste in northwest Costa Rica. We used generalized linear models to evaluate the effect of moon phase and sea surface temperature on olive ridley (Lepidochelis olivacea) and green turtle (Chelonia mydas) nesting abundance, as well as the combination of these predictors on the frequency of jaguar predation activity (proximity to nesting beaches) and movements. For home-range size and location analyses, we calculated kernel density estimates for each season at three different temporal scales. Sea turtle nesting season influenced jaguar activity patterns, as well as sea turtle abundance was related to jaguar locations and predation events, but jaguar home-range size (88.8 km2 overall) did not differ between nesting seasons or among temporal scales. Environmental conditions influenced sea turtle nesting and, as a consequence, also influenced jaguar movements and foraging activity. Our study defined the home range of a female jaguar in the tropical dry forest and its relationship to seasonally abundant turtles. Additional information related to the effect of tourism on jaguar–sea turtle interactions would improve conservation of these species at unique nesting beaches in the area.  相似文献   

3.
Oceanic dispersal characterizes the early juvenile life-stages of numerous marine species of conservation concern. This early stage may be a ‘critical period’ for many species, playing an overriding role in population dynamics. Often, relatively little information is available on their distribution during this period, limiting the effectiveness of efforts to understand environmental and anthropogenic impacts on these species. Here we present a simple model to predict annual variation in the distribution and abundance of oceanic-stage juvenile sea turtles based on species’ reproductive output, movement and mortality. We simulated dispersal of 25 cohorts (1993–2017) of oceanic-stage juveniles by tracking the movements of virtual hatchling sea turtles released in a hindcast ocean circulation model. We then used estimates of annual hatchling production from Kemp's ridley Lepidochelys kempii (n = 3), green Chelonia mydas (n = 8) and loggerhead Caretta caretta (n = 5) nesting areas in the northwestern Atlantic (inclusive of the Gulf of Mexico, Caribbean Sea and eastern seaboard of the U.S.) and their stage-specific mortality rates to weight dispersal predictions. The model's predictions indicate spatial heterogeneity in turtle distribution across their marine range, identify locations of increasing turtle abundance (notably along the U.S. coast), and provide valuable context for temporal variation in the stranding of young sea turtles across the Gulf of Mexico. Further effort to collect demographic, distribution and behavioral data that refine, complement and extend the utility of this modeling approach for sea turtles and other dispersive marine taxa is warranted. Finally, generating these spatially-explicit predictions of turtle abundance required extensive international collaboration among scientists; our findings indicate that continued conservation of these sea turtle populations and the management of the numerous anthropogenic activities that operate in the northwestern Atlantic Ocean will require similar international coordination.  相似文献   

4.
Sea turtle egg mortality, egg predation, and small organisms associated with turtle nests were studied at Playa Ostional, Costa Rica. Sites with concentrated sea turtle nesting were compared with solitary nesting sites as a function of place and time based on ANOVA, Akaike's Information Criterion, and Bayesian analyses. Results indicate that sea turtle egg mortality was significantly associated (P < 0.005) with flowing water that erodes or saturates nesting sites, and with overlapped nesting in which sea turtles disturb each other's nests. Sarcophagid and calliphorid fly larvae (Bayesian prior = 1.19; posterior = 2.27), fungi (prior = 1.14; posterior = 1.92), mites (prior = 0.51; posterior = 1.15), and several other types of small organisms increased in number after turtle egg laying (N= 303 nests; 34,451 turtle eggs). During peak sea turtle nesting periods, visitation to nesting sites by poachers and vertebrate predators was high, and relative number of nests disturbed by these predators was low (P < 0.02). In multimodel analysis, the three most parsimonious models were: (1) turtle egg mortality and distance from mean high tide; (2) turtle egg predation and distance from mean high tide; and (3) turtle egg mortality and nesting density, with Akaike weights of 0.224, 0.203, and 0.153 respectively. Intensive sea turtle nesting might result in upwelling and turnover of nesting debris and nest organisms, and may influence biotic community structure of sandy beach ecosystems.  相似文献   

5.

Background

The Gulf coastal ecosystems in Florida are foci of the highest species richness of imperiled shoreline dependent birds in the USA. However environmental processes that affect their macroecological patterns, like occupancy and abundance, are not well unraveled. In Florida the Snowy Plover (Charadrius alexandrinus nivosus) is resident along northern and western white sandy estuarine/ocean beaches and is considered a state-threatened species.

Methodology/Principal Findings

Here we show that favorable nesting areas along the Florida Gulf coastline are located in regions impacted relatively more frequently by tropical cyclones. The odds of Snowy Plover nesting in these areas during the spring following a tropical cyclone impact are seven times higher compared to the odds during the spring following a season without a cyclone. The only intensity of a tropical cyclone does not appear to be a significant factor affecting breeding populations.

Conclusions/Significance

Nevertheless a future climate scenario featuring fewer, but more extreme cyclones could result in a decrease in the breeding Snowy Plover population and its breeding range. This is because the spatio-temporal frequency of cyclone events was found to significantly affect nest abundance. Due to the similar geographic range and habitat suitability, and no decrease in nest abundance of other shorebirds in Florida after the cyclone season, our results suggest a common bioclimatic feedback between shorebird abundance and tropical cyclones in breeding areas which are affected by cyclones.  相似文献   

6.
Environmental factors shape the spatial distribution and dynamics of populations. Understanding how these factors interact with movement behavior is critical for efficient conservation, in particular for migratory species. Adult female green sea turtles, Chelonia mydas, migrate between foraging and nesting sites that are generally separated by thousands of kilometers. As an emblematic endangered species, green turtles have been intensively studied, with a focus on nesting, migration, and foraging. Nevertheless, few attempts integrated these behaviors and their trade‐offs by considering the spatial configurations of foraging and nesting grounds as well as environmental heterogeneity like oceanic currents and food distribution. We developed an individual‐based model to investigate the impact of local environmental conditions on emerging migratory corridors and reproductive output and to thereby identify conservation priority sites. The model integrates movement, nesting, and foraging behavior. Despite being largely conceptual, the model captured realistic movement patterns which confirm field studies. The spatial distribution of migratory corridors and foraging hot spots was mostly constrained by features of the regional landscape, such as nesting site locations, distribution of feeding patches, and oceanic currents. These constraints also explained the mixing patterns in regional forager communities. By implementing alternative decision strategies of the turtles, we found that foraging site fidelity and nesting investment, two characteristics of green turtles' biology, are favorable strategies under unpredictable environmental conditions affecting their habitats. Based on our results, we propose specific guidelines for the regional conservation of green turtles as well as future research suggestions advancing spatial ecology of sea turtles. Being implemented in an easy to learn open‐source software, our model can coevolve with the collection and analysis of new data on energy budget and movement into a generic tool for sea turtle research and conservation. Our modeling approach could also be useful for supporting the conservation of other migratory marine animals.  相似文献   

7.
We evaluate the conservation status and threats faced by sea turtle nesting populations at Bioko Island, Equatorial Guinea (Central Africa). Beaches were monitored to obtain a detailed sea turtle nest census and, where possible, tagging of adult females was undertaken. Four sea turtle species were found nesting in the area: the green turtle (Chelonia mydas), the leatherback (Dermochelys coriacea), the olive ridley (Lepidochelys olivacea) and the hawksbill (Eretmochelys imbricata); with the former two species nesting in regionally important numbers. Nesting activity was concentrated between November and February, with a peak in December–January. Tagging and recapture of green turtles in two consecutive seasons suggested an estimated 560 (interquartile range: 420–1,681) and 414 (interquartile range: 190–1,255) nesting females in the area, respectively. Estimated numbers of nesting leatherbacks ranged from 123 to 215 and 243 to 293 in the first and second season, respectively. The other two species were less abundant (olive ridley: 19–29 and 28–43; hawksbill: 4–10 and 2 turtles). Data were compared with more recent surveys in the area and contextualised with information on human related threats. Despite the size of nesting stocks, ongoing permitted and illegal take of adult turtles at the nesting site constitutes a serious threat for these breeding aggregations. Additionally, tag returns from throughout the Gulf of Guinea suggest that the level of take in regional fisheries may also be a major threat.  相似文献   

8.
Sex determination and hatching success in sea turtles is temperature dependent and as a result global warming poses a threat to sea turtles. Warmer sand temperatures may skew sea turtle population′s sex ratios towards predominantly females and decrease hatching success. Therefore, understanding the rates at which sand temperatures are likely to increase as climate change progresses is warranted. We recorded sand temperature and used historical sea surface and air temperature to model past and to predict future sand temperature under various scenarios of global warming at key sea turtle nesting grounds (n = 7) used by the northern Great Barrier Reef (nGBR) green turtle, Chelonia mydas, population. Reconstructed temperatures from 1990 to the present suggest that sand temperatures at the nesting sites studied have not changed significantly during the last 18 years. Current thermal profile at the nesting grounds suggests a bias towards female hatchling production into this population. Inter-beach thermal variance was observed at some nesting grounds with open areas in the sand dune at northern facing beaches having the warmest incubating environments. Our model projections suggest that a near complete feminization of hatchling output into this population will occur by 2070 under an extreme scenario of climate change (A1T emission scenario). Importantly, we found that some nesting grounds will still produce male hatchlings, under the most extreme scenario of climate change, this finding differs from predictions for other locations. Information from this study provides a better understanding of possible future changes in hatching success and sex ratios at each site and identifies important male producing regions. This allowed us to suggest strategies that can be used at a local scale to offset some of the impacts of warmer incubating temperatures to sea turtles.  相似文献   

9.
Sea turtle populations underwent severe decline in historical times, mainly through harvesting eggs and adults on nesting beaches. With the reduction of this threat in many areas, coupled with other conservation actions, some populations have demonstrated encouraging recovery, although remaining below their previous levels and undergone additional modern threats such as incidental capture in fisheries and pollution. Trends in sea turtle populations have usually been assessed through monitoring of females or nests on nesting beaches. Here we present data from a 22-year monitoring period for a juvenile green sea turtle Chelonia mydas mixed-stock in southeastern Brazil that were incidentally captured in passive non-lethal pound nets. A total of 3639 green turtles were captured in 5323 fishing days.pound−1 with mortality rate of 2%. Captures occurred in all months, but bycatch rates, excluding recapture events, were higher in September and October, probably due to the recruitment of turtles migrating from southern areas, as well as recruits from the oceanic zone. Capture rates increased by 9.2% per year in the period from 1995 to 2016, in line with increasing source populations, particularly the main source contributor at Ascension Island, but also Trindade Island (Brazil) and Aves Island (Venezuela). Mean Curved Carapace Length of green turtles was higher during austral summer/early autumn and decreased markedly in May, probably due to the small-sized individuals that recruited to the study site. We show that the incidental capture of sea turtles in non-lethal fisheries, such as Brazilian pound nets, could also provide data on trends of populations nesting in distant places, and can contribute to the assessment of population status of sea turtles within Regional Management Units throughout the Atlantic Ocean.  相似文献   

10.
Population genetics and phylogeography of sea turtles   总被引:7,自引:1,他引:6  
Bowen BW  Karl SA 《Molecular ecology》2007,16(23):4886-4907
The seven species of sea turtles occupy a diversity of niches, and have a history tracing back over 100 million years, yet all share basic life-history features, including exceptional navigation skills and periodic migrations from feeding to breeding habitats. Here, we review the biogeographic, behavioural, and ecological factors that shape the distribution of genetic diversity in sea turtles. Natal homing, wherein turtles return to their region of origin for mating and nesting, has been demonstrated with mtDNA sequences. These maternally inherited markers show strong population structure among nesting colonies while nuclear loci reveal a contrasting pattern of male-mediated gene flow, a phenomenon termed 'complex population structure'. Mixed-stock analyses indicate that multiple nesting colonies can contribute to feeding aggregates, such that exploitation of turtles in these habitats can reduce breeding populations across the region. The mtDNA data also demonstrate migrations across entire ocean basins, some of the longest movements of marine vertebrates. Multiple paternity occurs at reported rates of 0-100%, and can vary by as much as 9-100% within species. Hybridization in almost every combination among members of the Cheloniidae has been documented but the frequency and ultimate ramifications of hybridization are not clear. The global phylogeography of sea turtles reveals a gradient based on habitat preference and thermal regime. The cold-tolerant leatherback turtle (Dermochelys coriacea) shows no evolutionary partitions between Indo-Pacific and Atlantic populations, while the tropical green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and ridleys (Lepidochelys olivacea vs. L. kempi) have ancient separations between oceans. Ridleys and loggerhead (Caretta caretta) also show more recent colonization between ocean basins, probably mediated by warm-water gyres that occasionally traverse the frigid upwelling zone in southern Africa. These rare events may be sufficient to prevent allopatric speciation under contemporary geographic and climatic conditions. Genetic studies have advanced our understanding of marine turtle biology and evolution, but significant gaps persist and provide challenges for the next generation of sea turtle geneticists.  相似文献   

11.
Often climatic niche models predict that any change in climatic conditions will impact species abundance or distribution. However, the accuracy of models that just incorporate climatic information to predict future species habitat use is widely debated. Alternatively, environmental conditions may simply need to be above some minimum threshold of climatic suitability, at which point, other factors drive population size. Using the example of nesting sites of loggerhead sea turtles (Caretta caretta) in the Mediterranean (n = 105), we developed climatic niche models to examine whether a climatic suitability threshold could be identified as a climatic indicator in order for large populations of a widespread species to exist. We then assessed the climatic suitability of sites above and below this threshold in the past (∼1900) and future (∼2100). Most large sites that are currently above the climatic threshold were above the threshold in the past and future, particularly when future nesting seasonality shifted to start 1–2 months earlier. Our analyses highlight the importance of future phenological shifts for maintaining suitability. Our results provide a positive outlook for sea turtle conservation, suggesting that climatic conditions may remain suitable in the future at sites that currently support large nesting populations. Our study also provides an alternative way of interpreting the outputs of climatic niche models, by generating a threshold as an index of a minimum climatic suitability required to sustain large populations. This type of approach offers the possibility to benefit from information provided by climate-driven models, while reducing their inherent uncertainties.  相似文献   

12.
Artificial light at night poses a significant threat to multiple taxa across the globe. In coastal regions, artificial lighting close to marine turtle nesting beaches is disruptive to their breeding success. Prioritizing effective management of light pollution requires an understanding of how the light exposure of nesting areas changes over time in response to changing temporal and spatial distributions of coastal development. We analyzed multitemporal, satellite night‐light data, in combination with linear mixed model analysis, to determine broadscale changes in artificial light exposure at Australian marine turtle nesting areas between 1993 and 2010. We found seven marine turtle management units (MU), from five species, have experienced significant increases in light exposure over time, with flatback turtles nesting in east Australia experiencing the fastest increases. The remaining 12 MUs showed no significant change in light exposure. Unchanging MUs included those previously identified as having high exposure to light pollution (located in western Australia and southern Queensland), indicating that turtles in these areas have been potentially exposed to high light levels since at least the early nineties. At a finer geographic scale (within‐MU), nine MUs contained nesting areas with significant increases in light exposure. These nesting areas predominantly occurred close to heavily industrialized coastal areas, thus emphasizing the importance of rigorous light management in industry. Within all MUs, nesting areas existed where light levels were extremely low and/or had not significantly increased since 1993. With continued coastal development, nesting females may shift to these darker/unchanging ‘buffer’ areas in the future. This is valuable information that informs our understanding of the capacity and resilience of marine turtles faced with coastal development: an understanding that is essential for effective marine turtle conservation.  相似文献   

13.
Leatherback sea turtles, Dermochelys coriacea, undertake broad oceanic movements. While satellite telemetry has been used to investigate the post-nesting behaviour of female turtles tagged on tropical nesting beaches, long-term behavioural patterns of turtles of different sexes and sizes have not been described. Here we investigate behaviour for 25 subadult and adult male and female turtles satellite-tagged in temperate waters off Nova Scotia, Canada. Although sex and reproductive condition contributed to variation in migratory patterns, the migratory cycle of all turtles included movement between temperate and tropical waters. Marked changes in rates of travel, and diving and surfacing behaviour, accompanied southward movement away from northern foraging areas. As turtles approached higher latitudes the following spring and summer, they assumed behaviours consistent with regular foraging activity and eventually settled in coastal areas off Canada and the northeastern USA. Behavioural patterns corresponding to various phases of the migratory cycle were consistent across multiple animals and were repeated within individuals that completed return movements to northern waters. We consider the potential biological significance of these patterns, including how turtle behaviour relates to predator avoidance, thermoregulation and prey distribution.  相似文献   

14.
In West Africa, the Gulf of Guinea islands are important nesting places for four sea turtle species. The Green turtle (Chelonia mydas), the Hawksbill (Eretmochelys imbricata), the Olive Ridley (Lepidochelys olivacea) and the Leatherback (Dermochelys coriacea) turtles nest on Bioko's southern beaches. The Green, Hawksbill and Leatherback turtles breed on Príncipe and São Tomé. The Leatherback turtle nests, at least, on Annobón. The Leatherback turtle is reported on the four islands for the first time, and the Olive Ridley turtle for Bioko. Bioko is probably the most important island in terms of number of species and nesting individuals; the Green turtle being the most abundant species. However, the nesting places are at present restricted to barely 20 km along the coastline. On Príncipe and São Tomé, the most common species is the Hawksbill turtle. Sea turtle nesting populations are being severely depleted on the four islands. The main causes of cverexploitation are the meat and egg trade on Bioko and the Hawksbill shell-craft trade on São Tomé and Príncipe.  相似文献   

15.
Animals living in tropical regions may be at increased risk from climate change because current temperatures at these locations already approach critical physiological thresholds. Relatively small temperature increases could cause animals to exceed these thresholds more often, resulting in substantial fitness costs or even death. Oviparous species could be especially vulnerable because the maximum thermal tolerances of incubating embryos is often lower than adult counterparts, and in many species mothers abandon the eggs after oviposition, rendering them immobile and thus unable to avoid extreme temperatures. As a consequence, the effects of climate change might become evident earlier and be more devastating for hatchling production in the tropics. Loggerhead sea turtles (Caretta caretta) have the widest nesting range of any living reptile, spanning temperate to tropical latitudes in both hemispheres. Currently, loggerhead sea turtle populations in the tropics produce nearly 30% fewer hatchlings per nest than temperate populations. Strong correlations between empirical hatching success and habitat quality allowed global predictions of the spatiotemporal impacts of climate change on this fitness trait. Under climate change, many sea turtle populations nesting in tropical environments are predicted to experience severe reductions in hatchling production, whereas hatching success in many temperate populations could remain unchanged or even increase with rising temperatures. Some populations could show very complex responses to climate change, with higher relative hatchling production as temperatures begin to increase, followed by declines as critical physiological thresholds are exceeded more frequently. Predicting when, where, and how climate change could impact the reproductive output of local populations is crucial for anticipating how a warming world will influence population size, growth, and stability.  相似文献   

16.
Restriction-site analyses of mitochondrial DNA (mtDNA) from the loggerhead sea turtle (Caretta caretta) reveal substantial phylogeographic structure among major nesting populations in the Atlantic, Indian, and Pacific oceans and the Mediterranean sea. Based on 176 samples from eight nesting populations, most breeding colonies were distinguished from other assayed nesting locations by diagnostic and often fixed restriction-site differences, indicating a strong propensity for natal homing by nesting females. Phylogenetic analyses revealed two distinctive matrilines in the loggerhead turtle that differ by a mean estimated sequence divergence p = 0.009, a value similar in magnitude to the deepest intraspecific mtDNA node (p = 0.007) reported in a global survey of the green sea turtle Chelonia mydas. In contrast to the green turtle, where a fundamental phylogenetic split distinguished turtles in the Atlantic Ocean and the Mediterranean Sea from those in the Indian and Pacific oceans, genotypes representing the two primary loggerhead mtDNA lineages were observed in both Atlantic–Mediterranean and Indian-Pacific samples. We attribute this aspect of phylogeographic structure in Caretta caretta to recent interoceanic gene flow, probably mediated by the ability of this temperate-adapted species to utilize habitats around southern Africa. These results demonstrate how differences in the ecology and geographic ranges of marine turtle species can influence their comparative global population structures.  相似文献   

17.
Sea turtles nest on sandy beaches and tend to show high fidelity to specific nesting areas, but, despite this fidelity, the inter-annual variation in nesting numbers may be large. This variation may reflect the fact that turtles do not usually nest in consecutive years. Here, theoretical models are developed in which the interval between successive nesting years (the remigration interval) reflects conditions encountered on the feeding grounds, with good feeding years leading to a reduction in the remigration interval and vice versa. These simple models produce high levels of inter-annual variation in nesting numbers with, on occasion, almost no turtles nesting in some years even when the population is large and stable. The implications for assessing the size of sea turtle populations are considered.  相似文献   

18.
Historical ecology research is valuable for assessing long‐term baselines, and is increasingly applicable to conservation and management. In this study, we describe how historical range data can inform key aspects of protected species management, including evaluating conservation status and recovery, and determining practical management units. We examine contemporary (1973–2012) and historical (1250–1950) data on nesting beach distributions for green sea turtles Chelonia mydas in the Hawaiian Islands. Green turtle populations in Hawai‘i declined until federal and international protections began in the 1970s, but over the past four decades one index population has shown encouraging increases and broader recovery has been inferred. We find that 80% of historically major nesting populations are extirpated, or have heavily reduced nesting abundances in comparison with current estimates. Furthermore, historical nesting areas were not geographically isolated, but distributed across the archipelago. In comparison, today more than 90% of green turtle nesting in Hawai‘i occurs at a single site that is vulnerable to sea level rise. This research suggests that assessing recovery without historical data on spatial patterns may overlook important ecological dynamics at the popu lation or ecosystem level, which can result in improper or inadequate conservation assessments and recovery targets.  相似文献   

19.
A captive colony of green sea turtles, Chelonia mydas, has beenmaintained and observed at a commercial sea turtle farm on GrandCayman Island, B.W.I., since 1973. Observations of this breedingcolony show that the mating and nesting behaviour of the captivegreen sea turtle is similar to that observed in wild populations.Evidence indicates that mating observed prior to a female'snesting in a given season determines the hatchabilityof thatseason's egg production. Annual per female egg production ofthe captive colony appears to be two to five times greater thanthat reported for wild colonies. Observations on the reproductivebiology of green sea turtles hatched and raised under farm conditionssuggests that the minimum age of sexual maturity is eight tonine years of age. The number of eggs per nest, the number ofnests per season per female and hatch rate tend to increasewith successive seasons nesting for these turtles reaching sexualmaturity.  相似文献   

20.
Recovery of sea turtle populations requires addressing: multiple sources of mortality; nonmarket, diffuse benefits with costs localized on the poor; and a transboundary resource with incomplete jurisprudence, markets, and institutions. Holistic recovery strategies include: beach conservation protecting nesting females, their eggs, and critical breeding habitat to maximize hatchling production; enhanced at-sea survival of turtles on the high seas and in commercial coastal fisheries; and reduced artisanal coastal fisheries mortality of turtles. The traditional approach of focusing long-term sustained conservation efforts on the nesting beaches has by itself led to increases in several sea turtle populations. However, current conservation is inadequate to reverse declines in other cases such as the critically endangered leatherback populations in the Pacific. This article discusses policy instruments comprising a holistic recovery strategy that reconciles fishing with biodiversity conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号