首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Carbon dioxide exchange, soil C and N, leaf mineral nutrition and leaf carbon isotope discrimination (LCID‐Δ) were measured in three High Arctic tundra ecosystems over 2 years under ambient and long‐term (9 years) warmed (~2°C) conditions. These ecosystems are located at Alexandra Fiord (79°N) on Ellesmere Island, Nunavut, and span a soil water gradient; dry, mesic, and wet tundra. Growing season CO2 fluxes (i.e., net ecosystem exchange (NEE), gross ecosystem photosynthesis (GEP), and ecosystem respiration (Re)) were measured using an infrared gas analyzer and winter C losses were estimated by chemical absorption. All three tundra ecosystems lost CO2 to the atmosphere during the winter, ranging from 7 to 12 g CO2‐C m?2 season?1 being highest in the wet tundra. The period during the growing season when mesic tundra switch from being a CO2 source to a CO2 sink was increased by 2 weeks because of warming and increases in GEP. Warming during the summer stimulated dry tundra GEP more than Re and thus, NEE was consistently greater under warmed as opposed to ambient temperatures. In mesic tundra, warming stimulated GEP with no effect on Re increasing NEE by ~10%, especially in the first half of the summer. During the ~70 days growing season (mid‐June–mid‐August), the dry and wet tundra ecosystems were net CO2‐C sinks (30 and 67 g C m?2 season?1, respectively) and the mesic ecosystem was a net C source (58 g C m?2 season?1) to the atmosphere under ambient temperature conditions, due in part to unusual glacier melt water flooding that occurred in the mesic tundra. Experimental warming during the growing season increased net C uptake by ~12% in dry tundra, but reduced net C uptake by ~20% in wet tundra primarily because of greater rates of Re as opposed to lower rates of GEP. Mesic tundra responded to long‐term warming with ~30% increase in GEP with almost no change in Re reducing this tundra type to a slight C source (17 g C m?2 season?1). Warming caused LCID of Dryas integrafolia plants to be higher in dry tundra and lower in Salix arctic plants in mesic and wet tundra. Our findings indicate that: (1) High Arctic ecosystems, which occur in similar mesoclimates, have different net CO2 exchange rates with the atmosphere; (2) long‐term warming can increase the net CO2 exchange of High Arctic tundra by stimulating GEP, but it can also reduce net CO2 exchange in some tundra types during the summer by stimulating Re to a greater degree than stimulating GEP; (3) after 9 years of experimental warming, increases in soil carbon and nitrogen are detectable, in part, because of increases in deciduous shrub cover, biomass, and leaf litter inputs; (4) dry tundra increases in GEP, in response to long‐term warming, is reflected in D. integrifolia LCID; and (5) the differential carbon exchange responses of dry, mesic, and wet tundra to similar warming magnitudes appear to depend, in part, on the hydrologic (soil water) conditions. Annual net ecosystem CO2‐C exchange rates ranged from losses of 64 g C m?2 yr?1 to gains of 55 g C m?2 yr?1. These magnitudes of positive NEE are close to the estimates of NPP for these tundra types in Alexandra Fiord and in other High Arctic locations based on destructive harvests.  相似文献   

2.
This study explores the relationship between the normalized difference vegetation index (NDVI) and aboveground plant biomass for tussock tundra vegetation and compares it to a previously established NDVI–biomass relationship for wet sedge tundra vegetation. In addition, we explore inter-annual variation in NDVI in both these contrasting vegetation communities. All measurements were taken across long-term experimental treatments in wet sedge and tussock tundra communities at the Toolik Lake Long Term Ecological Research (LTER) site, in northern Alaska. Over 15 years (for wet sedge tundra) and 14 years (for tussock tundra), N and P were applied in factorial experiments (N, P and N+P), air temperature was increased using greenhouses with and without N+P fertilizer, and light intensity was reduced by 50% using shade cloth. during the peak growing seasons of 2001, 2002, and 2003, NDVI measurements were made in both the wet sedge and tussock tundra experimental treatment plots, creating a 3-year time series of inter-annual variation in NDVI. We found that: (1) across all tussock experimental tundra treatments, NDVI is correlated with aboveground plant biomass (r 2=0.59); (2) NDVI–biomass relationships for tussock and wet sedge tundra communities are community specific, and; (3) NDVI values for tussock tundra communities are typically, but not always, greater than for wet sedge tundra communities across all experimental treatments. We suggest that differences between the response of wet sedge and tussock tundra communities in the same experimental treatments result from the contrasting degree of heterogeneity in species and functional types that characterize each of these Arctic tundra vegetation communities.  相似文献   

3.
4.
Concerns about a possible feedback effect on global warming following possible increased emissions of methane from tundra environments have lead to series of methane flux studies of northern wetland/tundra environments. Most of these studies have been carried out in boreal sub-Arctic regions using different techniques and means of assessing representativeness of the tundra. Here are reported a time series of CH4 flux measurements from a true Arctic tundra site. A total of 528 independent observations were made at 22 fixed sites during the summers of 1991 and 1992. The data are fully comparable to the most extensive dataset yet produced on methane emissions from sub-Arctic tundra-like environments. Based on the data presented, from a thaw-season with approximately 55% of normal precipitation, a global tundra CH4 source of 18–30 Tg CH4 yr−1 is estimated. This is within the range of 42±26 Tg CH4 yr−1 found in a similar sub-Arctic tundra environment. No single-parameter relationship between one environmental factor and CH4 flux covering all sites was found. This is also in line with conclusions drawn in the sub-Arctic. However, inter-season variations in CH4 flux at dry sites were largely controlled by the position of the water table, while flux from wetter sites seemed mainly to be controlled by soil temperature.  相似文献   

5.
Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4–7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring.  相似文献   

6.
7.
Recent changes in climate have led to significant shifts in phenology, with many studies demonstrating advanced phenology in response to warming temperatures. The rate of temperature change is especially high in the Arctic, but this is also where we have relatively little data on phenological changes and the processes driving these changes. In order to understand how Arctic plant species are likely to respond to future changes in climate, we monitored flowering phenology in response to both experimental and ambient warming for four widespread species in two habitat types over 21 years. We additionally used long‐term environmental records to disentangle the effects of temperature increase and changes in snowmelt date on phenological patterns. While flowering occurred earlier in response to experimental warming, plants in unmanipulated plots showed no change or a delay in flowering over the 21‐year period, despite more than 1 °C of ambient warming during that time. This counterintuitive result was likely due to significantly delayed snowmelt over the study period (0.05–0.2 days/yr) due to increased winter snowfall. The timing of snowmelt was a strong driver of flowering phenology for all species – especially for early‐flowering species – while spring temperature was significantly related to flowering time only for later‐flowering species. Despite significantly delayed flowering phenology, the timing of seed maturation showed no significant change over time, suggesting that warmer temperatures may promote more rapid seed development. The results of this study highlight the importance of understanding the specific environmental cues that drive species’ phenological responses as well as the complex interactions between temperature and precipitation when forecasting phenology over the coming decades. As demonstrated here, the effects of altered snowmelt patterns can counter the effects of warmer temperatures, even to the point of generating phenological responses opposite to those predicted by warming alone.  相似文献   

8.
Rapidly rising temperatures are expected to cause latitudinal and elevational range shifts as species track their optimal climate north and upward. However, a lack of adaptation to environmental conditions other than climate – for example photoperiod, biotic interactions, or edaphic conditions – might limit the success of immigrants in a new location despite hospitable climatic conditions. Here, we present one of the first direct experimental tests of the hypothesis that warmer temperatures at northern latitudes will confer a fitness advantage to southern immigrants relative to native populations. As rates of warming in the Arctic are more than double the global average, understanding the impacts of warming in Arctic ecosystems is especially urgent. We established experimentally warmed and nonwarmed common garden plots at Alexandra Fiord, Ellesmere Island in the Canadian High Arctic with seeds of two forb species (Oxyria digyna and Papaver radicatum) originating from three to five populations at different latitudes across the Arctic. We found that plants from the local populations generally had higher survival and obtained a greater maximum size than foreign individuals, regardless of warming treatment. Phenological traits varied with latitude of the source population, such that southern populations demonstrated substantially delayed leaf‐out and senescence relative to northern populations. Our results suggest that environmental conditions other than temperature may influence the ability of foreign populations and species to establish at more northerly latitudes as the climate warms, potentially leading to lags in northward range shifts for some species.  相似文献   

9.
Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importance of these conditions is limited due to the scarcity of studies, especially in the High Arctic. We investigated variations in vascular plant community composition and species richness based on 288 plots distributed on three sites along a coast‐inland gradient in Northeast Greenland using a stratified random design. We used an information theoretic approach to determine whether variations in species richness were best explained by macroclimate, by factors related to local topography (including soil water) or by plant‐plant interactions. Latent variable models were used to explain patterns in plant community composition. Species richness was mainly determined by variations in soil water content, which explained 35% of the variation, and to a minor degree by other variables related to topography. Species richness was not directly related to macroclimate. Latent variable models showed that 23.0% of the variation in community composition was explained by variables related to topography, while distance to the inland ice explained an additional 6.4 %. This indicates that some species are associated with environmental conditions found in only some parts of the coast–inland gradient. Inclusion of macroclimatic variation increased the model's explanatory power by 4.2%. Our results suggest that the main impact of climate changes in the High Arctic will be mediated by their influence on local soil water conditions. Increasing temperatures are likely to cause higher evaporation rates and alter the distribution of late‐melting snow patches. This will have little impact on landscape‐scale diversity if plants are able to redistribute locally to remain in areas with sufficient soil water.  相似文献   

10.
Climate warming is leading to shrub expansion in Arctic tundra. Shrubs form ectomycorrhizal (ECM) associations with soil fungi that are central to ecosystem carbon balance as determinants of plant community structure and as decomposers of soil organic matter. To assess potential climate change impacts on ECM communities, we analysed fungal internal transcribed spacer sequences from ECM root tips of the dominant tundra shrub Betula nana growing in treatments plots that had received long‐term warming by greenhouses and/or fertilization as part of the Arctic Long‐Term Ecological Research experiment at Toolik Lake Alaska, USA. We demonstrate opposing effects of long‐term warming and fertilization treatments on ECM fungal diversity; with warming increasing and fertilization reducing the diversity of ECM communities. We show that warming leads to a significant increase in high biomass fungi with proteolytic capacity, especially Cortinarius spp., and a reduction of fungi with high affinities for labile N, especially Russula spp. In contrast, fertilization treatments led to relatively small changes in the composition of the ECM community, but increased the abundance of saprotrophs. Our data suggest that warming profoundly alters nutrient cycling in tundra, and may facilitate the expansion of B. nana through the formation of mycorrhizal networks of larger size.  相似文献   

11.
Footprints of climate change in the Arctic marine ecosystem   总被引:3,自引:0,他引:3  
In this article, we review evidence of how climate change has already resulted in clearly discernable changes in marine Arctic ecosystems. After defining the term ‘footprint’ and evaluating the availability of reliable baseline information we review the published literature to synthesize the footprints of climate change impacts in marine Arctic ecosystems reported as of mid‐2009. We found a total of 51 reports of documented changes in Arctic marine biota in response to climate change. Among the responses evaluated were range shifts and changes in abundance, growth/condition, behaviour/phenology and community/regime shifts. Most reports concerned marine mammals, particularly polar bears, and fish. The number of well‐documented changes in planktonic and benthic systems was surprisingly low. Evident losses of endemic species in the Arctic Ocean, and in ice algae production and associated community remained difficult to evaluate due to the lack of quantitative reports of its abundance and distribution. Very few footprints of climate change were reported in the literature from regions such as the wide Siberian shelf and the central Arctic Ocean due to the limited research effort made in these ecosystems. Despite the alarming nature of warming and its strong potential effects in the Arctic Ocean the research effort evaluating the impacts of climate change in this region is rather limited.  相似文献   

12.
13.
Tundra‐atmosphere exchanges of carbon dioxide (CO2) and water vapour were measured near Daring Lake, Northwest Territories in the Canadian Low Arctic for 3 years, 2004–2006. The measurement period spanned late‐winter until the end of the growing period. Mean temperatures during the measurement period varied from about 2 °C less than historical average in 2004 and 2005 to 2 °C greater in 2006. Much of the added warmth in 2006 occurred at the beginning of the study, when snow melt occurred 3 weeks earlier than in the other years. Total precipitation in 2006 (163 mm) was more than double that of the driest year, 2004 (71 mm). The tundra was a net sink for CO2 carbon in all years. Mid‐summer net ecosystem exchange of CO2 (NEE) achieved maximum values of ?1.3 g C m?2 day?1 (2004) to ?1.8 g C m?2 day?1 (2006). Accumulated NEE values over the 109‐day period were ?32,?51 and ?61 g C m?2 in 2004, 2005 and 2006, respectively. The larger CO2 uptake in 2006 was attributed to the early spring coupled with warmer air and soil conditions. In 2004, CO2 uptake was limited by the shorter growing season and mid‐summer dryness, which likely reduced ecosystem productivity. Seasonal total evapotranspiration (ET) ranged from 130 mm (2004) to 181 mm (2006) and varied in accordance with the precipitation received and with the timing of snow melt. Maximum daily ET rates ranged from 2.3 to 2.7 mm day?1, occurring in mid July. Ecosystem water use efficiency (WUEeco) varied slightly between years, ranging from 2.2 in the driest year to 2.5 in the year with intermediate rainfall amounts. In the wettest year, increased soil evaporation may have contributed to a lower WUEeco (2.3). We speculate that most, if not all, of the modest growing season CO2 sink measured at this site could be lost due to fall and winter respiration leading to the tundra being a net CO2 source or CO2 neutral on an annual basis. However, this hypothesis is untested as yet.  相似文献   

14.
An experimental test of limits to tree establishment in Arctic tundra   总被引:2,自引:1,他引:2  
1 Five treeline species had low seed germination rates and low survivorship and growth of seedlings when transplanted into Alaskan tundra. Seed germination of all species increased with experimental warming, suggesting that the present treeline may in part result from unsuccessful recruitment under cold conditions.
2 Growth, biomass and survivorship of seedlings of treeline species transplanted into tundra were largely unaffected by experimental warming. However, transplanted seedlings of three species ( Betula papyrifera , Picea glauca and Populus tremuloides ) grew more when below‐ground competition with the extant community was reduced. All three measures of transplant performance were greater in shrub tundra than in the less productive tussock or heath tundra. Establishment of trees in tundra may thus be prevented by low resource availability and competition.
3 Two species ( Alnus crispa and Populus balsamifera ) had low seed germination and survivorship of germinated seeds; transplants of these species did not respond to the manipulations and lost biomass following transplanting into tundra. Isolated populations of these two species north of the present treeline in arctic Alaska probably became established during mid‐Holocene warming rather than in recent times.
4 Of all the species studied here, Picea glauca was the most likely to invade intact upland tundra. Its seeds had the highest germination rates and it was the only species whose seedlings survived subsequently. Furthermore, transplanted seedlings of Picea glauca had relatively high survivorship and positive growth in tundra, especially in treatments that increased air temperature or nutrient availability, two factors likely to increase with climate warming.  相似文献   

15.
Henry  Greg H.R. 《Plant Ecology》1998,134(1):119-129
Wet sedge-dominated communities (sedge meadows) were sampled in five lowland oases in the Queen Elizabeth Islands of the Canadian High Arctic to assess species-environment relationships. The sites spanned 4° of latitude, and varied in lithology and intensity of grazing by muskoxen (Ovibos moschatus). A suite of 8 vascular species were common in all meadow stands, with an additional 4–6 species found in most stands. The position of these species in dominance-diversity curves was not significantly different between grazed and ungrazed meadows however, the grazed sites appeared to follow a log-normal distribution, while the ungrazed sites were more geometric. Redundancy analysis indicated that grazing intensity is important in determining structure in arctic sedge meadows, largely through increasing the cover of bryophytes and the availability of nitrogen. Greatest species richness was found in the more southerly sites which were moderately grazed and had diversity in microtopography. Abbreviations: AF – Alexandra Fiord, PBP – Polar Bear Pass, PMB – Princess Marie Bay, TL – Truelove Lowland, SP – Sverdrup Pass Nomenclature: Porsild, A.E. & Cody, W.J. 1980. Vascular plants of continental Northwest Territories. National Museums of Canada, Ottawa.  相似文献   

16.
Despite uncertainties related to sustained funding, ideological rivalries and the turnover of research personnel, long-term studies and studies espousing a long-term perspective in ecology have a history of contributing landmark insights into fundamental topics, such as population- and community dynamics, species interactions and ecosystem function. They also have the potential to reveal surprises related to unforeseen events and non-stationary dynamics that unfold over the course of ongoing observation and experimentation. The unprecedented rate and magnitude of current and expected abiotic changes in tundra environments calls for a synthetic overview of the scope of ecological responses these changes have elicited. In this special issue, we present a series of contributions that advance the long view of ecological change in tundra systems, either through sustained long-term research, or through retrospective or prospective modelling. Beyond highlighting the value of long-term research in tundra systems, the insights derived herein should also find application to the study of ecological responses to environmental change in other biomes as well.  相似文献   

17.
18.
北极苔原土壤中可培养细菌的分离及其抗菌活性测定   总被引:1,自引:0,他引:1  
【目的】北极地区具有高纬度、低温、高辐射等独特的环境条件。北冰洋及周围大面积的陆地区域鲜有人类踪迹,其中微生物数量不可低估。本研究旨在了解北极土壤中的可培养微生物的多样性及其抗菌活性。【方法】对来源于北极黄河站附近的7份不同植物根下苔原土壤进行直接涂布和富集培养后涂布。【结果】共获得细菌菌株721株,对其中608株进行细菌16S rRNA基因序列测定,归属于86个属,229个种,主要分布于变形菌门(Proteobacteria,54.3%)、放线菌门(Actinobacteria,21.2%)、拟杆菌门(Bacteroidetes,12.8%)、厚壁菌门(Firmicutes,10.0%)和奇异球菌门(Deinococcus-Thermus,1.6%)。其中从16S rRNA基因序列同源性推测有22株细菌菌株为潜在新种/属。从分离菌株中筛选出16株可抑制金黄色葡萄球菌(Staphylococcusaureus)或鲍氏不动杆菌(Acinetobacterbaumannii)生长的拮抗菌。【结论】获得了北极土壤地区特有的微生物菌株资源,为进一步筛选拮抗菌的活性物质提供了菌株基础。  相似文献   

19.
Understanding plant trait responses to elevated temperatures in the Arctic is critical in light of recent and continuing climate change, especially because these traits act as key mechanisms in climate‐vegetation feedbacks. Since 1992, we have artificially warmed three plant communities at Alexandra Fiord, Nunavut, Canada (79°N). In each of the communities, we used open‐top chambers (OTCs) to passively warm vegetation by 1–2 °C. In the summer of 2008, we investigated the intraspecific trait responses of five key species to 16 years of continuous warming. We examined eight traits that quantify different aspects of plant performance: leaf size, specific leaf area (SLA), leaf dry matter content (LDMC), plant height, leaf carbon concentration, leaf nitrogen concentration, leaf carbon isotope discrimination (LCID), and leaf δ15N. Long‐term artificial warming affected five traits, including at least one trait in every species studied. The evergreen shrub Cassiope tetragona responded most frequently (increased leaf size and plant height/decreased SLA, leaf carbon concentration, and LCID), followed by the deciduous shrub Salix arctica (increased leaf size and plant height/decreased SLA) and the evergreen shrub Dryas integrifolia (increased leaf size and plant height/decreased LCID), the forb Oxyria digyna (increased leaf size and plant height), and the sedge Eriophorum angustifolium spp. triste (decreased leaf carbon concentration). Warming did not affect δ15N, leaf nitrogen concentration, or LDMC. Overall, growth traits were more sensitive to warming than leaf chemistry traits. Notably, we found that responses to warming were sustained, even after many years of treatment. Our work suggests that tundra plants in the High Arctic will show a multifaceted response to warming, often including taller shoots with larger leaves.  相似文献   

20.
Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high‐arctic tundra heath sites in NE‐Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above‐ and belowground tundra carbon turnover, possibly governed by microbial resource availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号