首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Growth, density and production of juvenile Atlantic salmon and brown trout were studied in three different sections of the Kvassheimsåna River in south-western Norway from 1979 to 1983. Section 1. in the upper part of the river, is located above a waterfall impassable for migratory salmonids and is surrounded by grazing land. Sections 2 and 3, in the middle and lower parts of the river, are influenced by agricultural activity. Total nitrogen concentration varied between 250 and 1000 μg l ?1 in section 1 and 1500 and 2500 μg l?1 in sections 2 and 3. Total phosphorus (Tot-P) concentrations also increased with decreasing altitude: 19–46 μg l?1 in section I and 31–101 μg l ?1 in sections 2 and 3. The number of 0 + salmon in sections 2 and 3 varied between 30.1 and 167.8 specimens 100 m ?2, with means 90.2 and 95.2 specimens 100 m ?2:, respectively; the density of 1 + salmon, with mean values of 16.3 and 51.0 specimens 100m?2 was significantly correlated with the original fry density. The growth rate of 0+ salmon was not inversely related to cohort density, but was significantly so for 1 + salmon. Mean annual salmon production in section 2 was 1595 g 100 m?2 year 1, and in section 3 was 841 g 100m?2 year 1. A logarithmic function gave the best curve fit between salmon production and mean annual biomass. Thus, production levelled off for the highest values recorded in section 2, and perhaps approached the carrying capacity of the stream. A multiple regression analysis showed that yearly variation in 1 + salmon density was the single factor accounting for most of the total variability in production (60%). Variation in water temperature and nutrient content were not significantly related to variation in fish production. Densities of brown trout were low in all sections (<20 specimens 100m ?2). Fry density was highest in section 3 and parr density in section 1. All age groups of sympatric brown trout grew significantly faster in sections 2 and 3 compared with allopatric brown trout in section 1.  相似文献   

2.
Direct underwater observation of micro‐habitat use by 1838 young Atlantic salmon Salmo salar [mean LT 7·9 ± 3.1(s.d.) cm, range 3·19] and 1227 brown trout Salmo trutta (LT 10·9 ± 5·0 cm, range 3·56) showed both species were selective in habitat use, with differences between species and fish size. Atlantic salmon and brown trout selected relatively narrow ranges for the two micro‐habitat variables snout water velocity and height above bottom, but with differences between size‐classes. The smaller fishes <7 cm held positions in slower water closer to the bottom. On a larger scale, the Atlantic salmon more often used shallower stream areas, compared with brown trout. The larger parr preferred the deeper stream areas. Atlantic salmon used higher and slightly more variable mean water velocities than brown trout. Substrata used by the two species were similar. Finer substrata, although variable, were selected at the snout position, and differences were pronounced between size‐classes. On a meso‐habitat scale, brown trout were more frequently observed in slow pool‐glide habitats, while young Atlantic salmon favoured the faster high‐gradient meso‐habitats. Small juveniles <7 cm of both species were observed most frequently in riffle‐chute habitats. Atlantic salmon and brown trout segregated with respect to use of habitat, but considerable niche overlap between species indicated competitive interactions. In particular, for small fishes <7 cm of the two species, there was almost complete niche overlap for use of water depth, while they segregated with respect to water velocity. Habitat suitability indices developed for both species for mean water velocity and water depth, tended to have their optimum at lower values compared with previous studies in larger streams, with Atlantic salmon parr in the small streams occupying the same habitat as favoured by brown trout in larger streams. The data indicate both species may be flexible in their habitat selection depending on habitat availability. Species‐specific habitat overlap between streams may be complete. However, between‐species habitat partitioning remains similar.  相似文献   

3.
4.
D. Cote   《Journal of fish biology》2007,70(4):1134-1147
The density, biomass and estimated production of brook trout Salvelinus fontinalis and Atlantic salmon Salmo salar were related to habitat factors in streams of Terra Nova National Park, Newfoundland, Canada. Fish communities at 29 sites (18 brooks; 15 watersheds) were sampled in the summer of 2002, 2003 and 2005. Salmonid density, biomass per unit area and production (derived from biomass and fish size using allometric P:B relationships) were compared with site habitat characteristics (wetted width, lactustrine habitat, per cent riffle habitat, canopy coverage and stream gradient), using an interactive stepwise multiple linear regression. Salmonid biomass (mean: 2·87 g m?2; range: 0·33–10·88 g m?2) and estimated production (mean: 3·05 g m?2 year?1; range: 0·32–10·98 g m?2 year?1) within the study area varied by an order of magnitude, however, habitat variables accounted for much of this variation. Specifically, wetted width and lacustrine area of the tributary played important roles in explaining density, biomass and production. Wetted width was important for all measurements of brook trout and total salmonids while lacustrine area was important for all measurements of Atlantic salmon and played a lesser role in total salmonid biomass. Other factors such as the percentage of riffle habitat, site gradient and canopy coverage provided modest improvements to the fit of some relationships. When models using the same environmental factors were compared, those using production estimates derived from allometric P:B equations in the literature provided improved predictive capability than did those from direct density and biomass estimates. It is proposed that allometric P:B relationships have utility in improving comparisons of stream fish communities, particularly in studies with insufficient resources to measure production directly.  相似文献   

5.
Prey intake by Atlantic salmon Salmo salar and brown trout Salmo trutta was measured across different riparian vegetation types: grassland, open canopy deciduous and closed canopy deciduous, in upland streams in County Mayo, Western Ireland. Fishes were collected by electrofishing while invertebrates were sampled from the benthos using a Surber sampler and drifting invertebrates collected in drift traps. Aquatic invertebrates dominated prey numbers in the diets of 0+ year Atlantic salmon and brown trout and 1+ year Atlantic salmon, whereas terrestrial invertebrates were of greater importance for diets of 1+ and 2+ year brown trout. Terrestrial prey biomass was generally greater than aquatic prey for 1+ and 2+ year brown trout across seasons and riparian types. Prey intake was greatest in spring and summer and least in autumn apart from 2+ year brown trout that sustained feeding into autumn. Total prey numbers captured tended to be greater for all age classes in streams with deciduous riparian canopy. Atlantic salmon consumed more aquatic prey and brown trout more terrestrial prey with an ontogenetic increase in prey species richness and diversity. Atlantic salmon and brown trout diets were most similar in summer. Terrestrial invertebrates provided an important energy subsidy particularly for brown trout. In grassland streams, each fish age class was strongly associated with aquatic, mainly benthic invertebrates. In streams with deciduous riparian canopy cover, diet composition partitioned between conspecifics with older brown trout associated with surface drifting terrestrial invertebrates and older Atlantic salmon associated with aquatic invertebrates with a high drift propensity in the water column and 0+ year fish feeding on benthic aquatic invertebrates. Deciduous riparian canopy cover may therefore facilitate vertical partitioning of feeding position within the water column between sympatric Atlantic salmon and brown trout. Implications for riparian management are discussed.  相似文献   

6.
We investigated the influence of variation in body size and growth rate on age of smolting in Atlantic salmon and brown trout in four different Norwegian rivers. In Atlantic salmon smolt ages varied between 2 and 6 years, and in brown trout between 2 and 7 years. Smolt age was negatively correlated with parr growth, and positively correlated with smolt size. Age at smolting was more variable in the two northern than the two southern rivers. Smolt sizes and ages were also more variable in brown trout than in Atlantic salmon. Based on the observed variation in smolt size and age, we reject the hypothesis that a threshold size alone regulates age at smolting. Within populations smolt age depends on growth rate so that fast-growing parr smolted younger and smaller than slow-growing parr. We hypothesize that smolt size and age is a trade-off between expected benefits and costs imposed by differences in individual growth rate.  相似文献   

7.
Over‐winter survival of salmonids in streams is thought to be an important population regulation mechanism. Yet because of the difficulty of conducting field studies due to adverse weather or ice conditions, compared to other seasons, salmonid ecology during winter is least understood. Consequently, we sought to examine interspecific feeding associations of an important salmonid stream assemblage in the Lake Ontario watershed during winter. The diets of Atlantic salmon (Salmo salar) parr, brown trout (S. trutta) parr, and rainbow trout (Oncorhynchus mykiss) parr were significantly different in February but not in March. Salmonid diets differed from the benthos and the drift during both months. Dipterans (chironomids, simuliids, and tipulids) and ephemerellids were the major prey taxa consumed. All three species fed more heavily on prey items from the benthos than from the drift. The diet of Atlantic salmon had the highest similarity to the benthos whereas the diet of brown trout had the lowest similarity to the drift. All three salmonid species generally selected ephemerellids, limnephilids, and chironomids and avoided elmids. These winter feeding observations are the first reported for this specific salmonid assemblage and will help managers better understand interspecific associations during this critical period.  相似文献   

8.
Atlantic salmon Salmo salar fry and parr were subjected to 5 min of forced activity and the subsequent changes in oxygen consumption and ammonia excretion rates were evaluated over a 24 h period. In a second experiment, individual Atlantic salmon fry and parr were freeze‐clamped in liquid nitrogen, before, immediately following a 5 min activity period, or after periods of recovery up to 2 h. Samples were analysed for whole body phosphocreatine (PCr), ATP and lactate. Five minutes of forced activity resulted in significant increases in both oxygen consumption and ammonia excretion rates. Changes in the oxygen consumption rates were greater in the parr compared with the fry. In contrast, the post‐exercise ammonia excretion rates were nearly twice as high for the fry compared with the parr. Exercise also caused a marked decrease in PCr levels (c. 47 and 65% in fry and parr, respectively), no change in ATP levels and a significant increase in lactate levels in Atlantic salmon fry and parr. Recovery of PCr occurred quickly (between 15 and 30 min) in fry and parr. Although the post‐activity levels of lactate were lower in fry (c. 3 μmol g?1) compared with parr (c. 14 μmol g?1), lactate levels returned to control levels within 60 min in fry, but it took >2 h for this metabolite to recover in parr. Compared with parr, these findings show that Atlantic salmon fry possess a reduced anaerobic capacity, and these results are consistent with the theoretical and experimental evidence that smaller fish support burst swimming through aerobic processes.  相似文献   

9.
A major limiting factor in the development of algae as a feedstock for the bioenergy industry is the consistent production and supply of biomass. This study is the first to access the suitability of the freshwater macroalgal genus Oedogonium to supply biomass for bioenergy applications. Specifically, we quantified the effect of CO2 supplementation on the rate of biomass production, carbon capture, and feedstock quality of Oedogonium when cultured in large‐scale outdoor tanks. Oedogonium cultures maintained at a pH of 7.5 through the addition of CO2 resulted in biomass productivities of 8.33 (±0.51) g DW m?2 day?1, which was 2.5 times higher than controls which had an average productivity of 3.37 (±0.75) g DW m?2 day?1. Under these productivities, Oedogonium had a carbon content of 41–45% and a higher heating value of 18.5 MJ kg?1, making it an ideal biomass energy feedstock. The rate of carbon fixation was 1380 g C m?2 yr?1 and 1073.1 g C m?2 yr?1 for cultures maintained at a pH of 7.5 and 8.5, and 481 g C m?2 yr?1 for cultures not supplemented with CO2. This study highlights the potential of integrating the large‐scale culture of freshwater macroalgae with existing carbon waste streams, for example coal‐fired power stations, both as a tool for carbon sequestration and as an enhanced and sustainable source of bioenergy.  相似文献   

10.
The aim of the study was to determine the reduction of the overall environmental load (in terms of organic and nutrient load) in effluents of a flow‐through trout farm. Effluents of a flow‐through system for rainbow trout (Oncorhynchus mykiss) production passed through constructed wetlands with free water surface. Removal of nutrients was determined in three wetlands of 350 m2 each at hydraulic residence times (HRTs) of 3.5, 5.5 and 11 h. The areal load of total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) varied in terms of HRTs from 12.3–36.8 g m?2 day?1, 21.7–65.2 g m?2 day?1, 0.23–0.70 g m?2 day?1, and 1.46–4.37 g m?2 day?1. Values for reduction of suspended solids, COD, TP, and TN were 67–72%, 30–31%, 41–53% ,and 19–30%, respectively. Significantly lower nutrient concentrations in the effluent among the wetlands were only found for nitrogen parameters: TN and ammonia concentrations were lower in the wetlands with a HRT of 5.5 h (0.89 mg L?1, 0.11 mg L?1) and 11 h (0.81 mg L?1, 0.11 mg L?1) compared with the one with 3.5 h (0.96 mg L?1, 0.16 mg L?1).  相似文献   

11.
Effects of artificial salmon lice infection and pharmaceutical salmon lice prophylaxis on survival and rate of progression of Atlantic salmon (n = 72) and brown trout post-smolts (n = 72) during their fjord migration, were studied by telemetry. The infected groups were artificially exposed to infective salmon lice larvae in the laboratory immediately before release in the inner part of the fjord to simulate a naturally high infection pressure. Groups of infected Atlantic salmon (n = 20) and brown trout (n = 12) were also retained in the hatchery to control the infection intensity and lice development during the study period. Neither salmon lice infection nor pharmaceutical prophylaxis had any effects on survival and rate of progression of fjord migrating Atlantic salmon post-smolts compared to control fish. Atlantic salmon spent on average only 151.2 h (maximum 207.3 h) in passing the 80 km fjord system and had, thus, entered the ocean when the more pathogenic pre-adult and adult lice stages developed. The brown trout, in comparison to Atlantic salmon, remained to a larger extent than Atlantic salmon in the inner part of the fjord system. No effect of salmon lice infection, or protection, was found in brown trout during the first weeks of their fjord migration. Brown trout will, to a larger extent than Atlantic salmon, stay in the fjord areas when salmon lice infections reach the more pathogenic pre-adult and adult stages. In contrast to Atlantic salmon, they will thereby possess the practical capability of returning to freshwater when encountering severe salmon lice attacks.  相似文献   

12.
1. Low organic matter availability is thought to be a primary factor influencing evolutionary and ecological processes in cave ecosystems. We examined links among organic matter abundance, macroinvertebrate community structure and breakdown rates of red maple (Acer rubrum) and corn litter (Zea mays) in coarse‐ (10 × 8 mm) and fine‐mesh (500‐μm) litter bags over two seasonal periods in four cave streams in the south‐eastern U.S.A. 2. Organic matter abundance differed among cave streams, averaging from near zero to 850 g ash‐free dry mass m?2. Each cave system harboured a different macroinvertebrate community. However, trophic structure was similar among caves, with low shredder biomass (2–17% of total biomass). 3. Corn litter breakdown rates (mean k = 0.005 day?1) were faster than red maple (mean k = 0.003 day?1). Breakdown rates in coarse‐mesh bags (k = 0.001–0.012 day?1) were up to three times faster than in fine‐mesh bags (k = 0.001–0.004 day?1). Neither invertebrate biomass in litter bags nor breakdown rates were correlated with the ambient abundance of organic matter. Litter breakdown rates showed no significant temporal variation. Epigean (surface‐adapted) invertebrates dominated biomass in litter bags, suggesting that their effects on cave ecosystem processes may be greater than hypogean (cave‐adapted) taxa, the traditional focus of cave studies. 4. The functional diversity of our cave communities and litter breakdown rates are comparable to those found in previous litter breakdown studies in cave streams, suggesting that the factors that control organic matter processing (e.g. trophic structure of communities) may be broadly similar across geographically diverse areas.  相似文献   

13.
Radio tagged wild Atlantic salmon Salmo salar(n = 30) and sea trout Salmo trutta(n = 19) were simultaneously released from a sea pen outside the mouth of the River Lærdalselva and their migration to spawning areas was recorded. The distance from the river mouth to a position held at spawning ranged from 2 to 24 km and did not differ between the species (mean ± s .d . 15·9 ± 4·3 and 14·9 ± 5·2 km for Atlantic salmon and sea trout, respectively). The duration of the migration phase, however, was significantly shorter for Atlantic salmon than for sea trout (8–12 days, respectively). All Atlantic salmon migrated straight to an area near the spawning ground, whereas 50% of the sea trout had a stepwise progression with one or more periods with erratic movements before reaching the spawning area. After the migration phase, a distinct search phase with repeated movements up‐ and downstream at or close to the position held at spawning was identified for the majority of the fishes (75%, both species). This search phase was significantly shorter for Atlantic salmon than for sea trout (mean 13–31 days, respectively). Mean ± s .d . length of the river stretch used during the search phase was larger for sea trout (3·3 ± 2·5 km) than for Atlantic salmon (1·2 ± 0·9 km). A distinct holding phase, with no movements until spawning, was also observed in the majority of the Atlantic salmon (80%, mean duration 22 days) and sea trout (65%, mean duration 12 days). For both species, a weak, non‐significant trend was observed in the relationship between time spent on the migration phase, and time spent on the search (r2 = 0·43) and holding phase (r2 = 0·24). There was a highly significant decrease, however, in the duration of the holding phase with an increase in the time spent on the search phase (r2 = 0·67).  相似文献   

14.
We investigated whether rates of net primary production (NPP) and biomass turnover of floating grasses in a central Amazon floodplain lake (Lake Calado) are consistent with published evidence that CO2 emissions from Amazon rivers and floodplains are largely supplied by carbon from C4 plants. Ground‐based measurements of species composition, plant growth rates, plant densities, and areal biomass were combined with low altitude videography to estimate community NPP and compare expected versus observed biomass at monthly intervals during the aquatic growth phase (January–August). Principal species at the site were Oryza perennis (a C3 grass), Echinochloa polystachya, and Paspalum repens (both C4 grasses). Monthly mean daily NPP of the mixed species community varied from 50 to 96 g dry mass m?2 day?1, with a seasonal average (±1SD) of 64±12 g dry mass m?2 day?1. Mean daily NPP (±1SE) for P. repens and E. polystachya was 77±3 and 34±2 g dry mass m?2 day?1, respectively. Monthly loss rates of combined above‐ and below‐water biomass ranged from 31% to 75%, and averaged 49%. Organic carbon losses from aquatic grasses ranged from 30 to 34 g C m?2 day?1 from February to August. A regional extrapolation indicated that respiration of this carbon potentially accounts for about half (46%) of annual CO2 emissions from surface waters in the central Amazon, or about 44% of gaseous carbon emissions, if methane flux is included.  相似文献   

15.
1. We compared fungal biomass, production and microbial respiration associated with decomposing leaves in one softwater stream (Payne Creek) and one hardwater stream (Lindsey Spring Branch). 2. Both streams received similar annual leaf litter fall (478–492 g m?2), but Lindsey Spring Branch had higher average monthly standing crop of leaf litter (69 ± 24 g m?2; mean ± SE) than Payne Creek (39 ± 9 g m?2). 3. Leaves sampled from Lindsey Spring Branch contained a higher mean concentration of fungal biomass (71 ± 11 mg g?1) than those from Payne Creek (54 ± 8 mg g?1). Maximum spore concentrations in the water of Lindsay Spring Branch were also higher than those in Payne Creek. These results agreed with litterbag studies of red maple (Acer rubrum) leaves, which decomposed faster (decay rate of 0.014 versus 0.004 day?1), exhibited higher maximum fungal biomass and had higher rates of fungal sporulation in Lindsey Spring Branch than in Payne Creek. 4. Rates of fungal production and respiration per g leaf were similar in the two streams, although rates of fungal production and respiration per square metre were higher in Lindsey Spring Branch than in Payne Creek because of the differences in leaf litter standing crop. 5. Annual fungal production was 16 ± 6 g m?2 (mean ± 95% CI) in Payne Creek and 46 ± 25 g m?2 in Lindsey Spring Branch. Measurements were taken through the autumn of 2 years to obtain an indication of inter‐year variability. Fungal production during October to January of the 2 years varied between 3 and 6 g m?2 in Payne Creek and 7–27 g m?2 in Lindsey Spring Branch. 6. Partial organic matter budgets constructed for both streams indicated that 3 ± 1% of leaf litter fall went into fungal production and 7 ± 2% was lost as respiration in Payne Creek. In Lindsey Spring Branch, fungal production accounted for 10 ± 5% of leaf litter fall and microbial respiration for 13 ± 9%.  相似文献   

16.
Juvenile Atlantic salmon and brown trout were depleted at three sites ( c . 108–380 m2) of a natural stream during the summer months of 1991 and 1992. Local population changes and movements of fish marked in sections adjacent to each depleted area were monitored thereafter. There was very little movement of marked salmon parr into the central regions of the depleted areas following the immediate post-marking period. Upstream movement by young-of-the-year fish from high density sections in mid-late summer was noted for trout but not salmon. Unmarked 1-year-old salmon parr immigrated into depleted areas in June 1992, and the pattern of recolonization was consistent with migration upstream from the adjoining river. It is concluded that resident salmon were very strongly site-attached and resource tracking was of no functional significance as a compensatory mortality mechanism. The occurrence of a long distance migratory component in the population during early-mid summer indicates that this, rather than local resource tracking, constitutes a potential compensatory mechanism.  相似文献   

17.
Two cohorts of Atlantic salmon parr and one of brown trout were studied in periods with and without the presence of mink, Mustela vison . In all localities a marked increase in mortality rate was observed during periods when mink were present. Mink were observed catching salmon parr, and approximately 10% of the parr had bite marks, especially on the tail fins. In the smallest stream with brown trout, the mortality rate was 0.80 during a few days with mink present; remnants of trout were found along the stream. The present study suggests that mink predation may be a major cause of mortality of salmonids in small streams. The results indicate that predation efficiency may vary with characteristics of the habitat, especially stream width and discharge, and fish density.  相似文献   

18.
Summer habitat use by sympatric Arctic charr Salvelinus alpinus, young Atlantic salmon Salmo salar and brown trout Salmo trutta was studied by two methods, direct underwater observation and electrofishing, across a range of habitats in two sub-arctic rivers. More Arctic charr and fewer Atlantic salmon parr were observed by electrofishing in comparison to direct underwater observation, perhaps suggesting a more cryptic behaviour by Arctic charr. The three species segregated in habitat use. Arctic charr, as found by direct underwater observation, most frequently used slow (mean ±s .d . water velocity 7·2 ± 16·6 cm s−1) or often stillwater and deep habitats (mean ±s .d . depth 170·1 ± 72·1 cm). The most frequently used mesohabitat type was a pool. Young Atlantic salmon favoured the faster flowing areas (mean ±s .d . water velocity 44·0 ± 16·8 cm s−1 and depth 57·1 ± 19·0 cm), while brown trout occupied intermediate habitats (mean ±s .d . water velocity 33·1 ± 18·6 cm s−1 and depth 50·2 ± 18·0 cm). Niche overlap was considerable. The Arctic charr observed were on average larger (total length) than Atlantic salmon and brown trout (mean ±s .d . 21·9 ± 8·0, 10·2 ± 3·1 and 13·4 ± 4·5 cm). Similar habitat segregation between Atlantic salmon and brown trout was found by electrofishing, but more fishes were observed in shallower habitats. Electrofishing suggested that Arctic charr occupied habitats similar to brown trout. These results, however, are biased because electrofishing was inefficient in the slow-deep habitat favoured by Arctic charr. Habitat use changed between day and night in a similar way for all three species. At night, fishes held positions closer to the bottom than in the day and were more often observed in shallower stream areas mostly with lower water velocities and finer substrata. The observed habitat segregation is probably the result of interference competition, but the influence of innate selective differences needs more study.  相似文献   

19.
Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale‐up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late logarithmic, and stationary phase of Nannochloropsis sp., Isochrysis sp., Tetraselmis sp., and Rhodomonas sp. grown in L1‐, f/2‐, and K‐medium. Of the tested species, Tetraselmis sp. exhibited a lipid productivity of 3.9–4.8 g m?2 day?1 in any media type, with comparable lipid productivity by Nannochloropsis sp. and Isochrysis sp. when grown in L1‐medium. The dry biomass productivity of Tetraselmis sp. (33.1–45.0 g m?2 day?1) exceeded that of the other species by a factor 2–10. Of the organisms studied, Tetraselmis sp. had the best dry biomass and/or lipid production profile in large‐scale cultures. The present study provides a practical benchmark, which allows comparison of microalgal production systems with different footprints, as well as terrestrial systems. Biotechnol. Bioeng. 2010;107: 245–257. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
Studies have shown a strong linkage between zooplankton and fisheries' potential in tropical lakes. High zooplankton production provides the basis for fish production, but knowledge of zooplankton production dynamics in African lakes is extremely limited. Crustacean zooplankton production and the biomass of dominant rotifers in Lake Bosumtwi were assessed over a 2‐year period. The crustaceans comprised an endemic and extremely abundant cyclopoid copepod, Mesocyclops bosumtwii and the cladoceran Moina micrura. Mean standing stock of the crustaceans was 429 mg dw m?3, whilst annual production averaged 2.1 g dw m?3 y?1. Production doubled from 1.4 g dw m?3 y?1 in 2005 to 2.8 g dw m?3 y?1 in 2006. Copepods accounted for 98.5% of crustacean production. The biomass of the dominant rotifers Brachionus calyciflorus and Hexarthra intermedia was less than 1% of total zooplankton biomass. Daily turnover rate and turnover time of the crustaceans was 0.19 day?1 and 6.2 days respectively. Crustacean production yielded no statistical relationship with phytoplankton biomass. Production was well within the range of tropical lakes. Peak crustacean production synchronized maximum rainfall, lake mixing and phytoplankton production. Most importantly, no one year's set of dynamics can be used to characterize zooplankton production in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号