首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Access to resources depends on an individual's position within the environment. This is particularly important to animals that invest heavily in nest construction, such as social insects. Many ant species have a polydomous nesting strategy: a single colony inhabits several spatially separated nests, often exchanging resources between the nests. Different nests in a polydomous colony potentially have differential access to resources, but the ecological consequences of this are unclear. In this study, we investigate how nest survival and budding in polydomous wood ant (Formica lugubris) colonies are affected by being part of a multi‐nest system. Using field data and novel analytical approaches combining survival models with dynamic network analysis, we show that the survival and budding of nests within a polydomous colony are affected by their position in the nest network structure. Specifically, we find that the flow of resources through a nest, which is based on its position within the wider nest network, determines a nest's likelihood of surviving and of founding new nests. Our results highlight how apparently disparate entities in a biological system can be integrated into a functional ecological unit. We also demonstrate how position within a dynamic network structure can have important ecological consequences.  相似文献   

2.
Identifying habitat or nesting microhabitat variables associated with high levels of nest success is important to understand nest site preferences and bird–habitat relationships. Little is known about cavity availability and nest site requirements of cavity nesters in southern hemisphere temperate forests, although nest site limitation is suggested. Here we ask which characteristics are selected by the Austral parakeet (Enicognathus ferrugineus) for nesting in Araucaria araucana–Nothofagus pumilio forest in Argentine Patagonia. We compared nest plot and tree characteristics with unused plots and trees among areas of different A. araucana–N. pumilio density. We also examine whether nest plot and tree use and selection, and the associated consequences for fitness of Austral parakeets are spatially related to forest composition. Austral parakeets showed selectivity for nests at different spatial scales, consistently choosing isolated live and large trees with particular nest features in a non‐random way from available cavities. Mixed A. araucana–N. pumilio forests are ideal habitat for the Austral parakeets of northern Patagonia, offering numerous potential cavities, mainly in N. pumilio. We argue that Austral parakeet reproduction and fitness is currently very unlikely to be limited by cavity availability, although this situation may be rapidly changing. Natural and human disturbances are modifying south temperate forests with even‐aged mid‐successional stands replacing old growth forests. Cavity nesting species use and need old growth forests, due to the abundance of cavities in large trees and the abundance of larvae in old wood. Neither of the latter resources is sufficiently abundant in mid‐successional forests, increasing the vulnerability and threatening the survival of the Austral.  相似文献   

3.
A colony of red wood ants can inhabit more than one spatially separated nest, in a strategy called polydomy. Some nests within these polydomous colonies have no foraging trails to aphid colonies in the canopy. In this study we identify and investigate the possible roles of non-foraging nests in polydomous colonies of the wood ant Formica lugubris. To investigate the role of non-foraging nests we: (i) monitored colonies for three years; (ii) observed the resources being transported between non-foraging nests and the rest of the colony; (iii) measured the amount of extra-nest activity around non-foraging and foraging nests. We used these datasets to investigate the extent to which non-foraging nests within polydomous colonies are acting as: part of the colony expansion process; hunting and scavenging specialists; brood-development specialists; seasonal foragers; or a selfish strategy exploiting the foraging effort of the rest of the colony. We found that, rather than having a specialised role, non-foraging nests are part of the process of colony expansion. Polydomous colonies expand by founding new nests in the area surrounding the existing nests. Nests founded near food begin foraging and become part of the colony; other nests are not founded near food sources and do not initially forage. Some of these non-foraging nests eventually begin foraging; others do not and are abandoned. This is a method of colony growth not available to colonies inhabiting a single nest, and may be an important advantage of the polydomous nesting strategy, allowing the colony to expand into profitable areas.  相似文献   

4.
Honey‐making bee colonies in Bwindi Impenetrable National Park were investigated with Batwa Pygmies locating 228 nests of Apis and five stingless bees (Meliponini). The relative importance of predation, food supply, nesting site, and elevation affecting abundance were studied for meliponines in particular. Nest predation and overall nest abundance had no correlation with elevation along a 1400 m gradient, nor did flowering phenology or pollen collection. Many suitable, large trees were unoccupied by bee nests. In 174 ha of forest plots, 2 Meliponula lendliana, 13 M. nebulata, 16 M. ferruginea, 16 M. bocandei, and 20 Apis mellifera adansonii nests occurred, suggesting a habitat‐wide density of 39 nests/km2. Compared to other studies, Ugandan Meliponini were uncommon (0.27 colonies/ha, tropical mean = 1.9/ha), while Apis mellifera was numerous (0.12 nests/ha, tropical mean = 0.06/ha), despite park policy allowing humans to exploit Apis. Meliponine colony mortality from predators averaged 12 percent/yr and those near ground were most affected. Tool‐using humans and chimpanzees caused 82 percent of stingless bee nest predation. Selective factors affecting nest heights and habit may include auditory hunting by predators for buzzing bees, and indirect mutualists such as termites that leave potential nesting cavities. Mobility and free‐nesting by honey bee colonies should enable rapid community recovery after mortality, especially in parks where human honey hunting is frequent, compared to sedentary and nest‐site‐bound Meliponini.  相似文献   

5.
We examined nesting behavior in monk parakeets (Myiopsitta monachus) in their native habitat in the Brazilian Pantanal. Unique among parrots, monk parakeets build communal nest structures that contain many cavities, each belonging to an individual pair. We studied 41 parakeet colonies that had 104 nest structures. We hypothesized that nest structures would be located in trees providing the greatest support and protection from predators and inclement weather, and that nest sites and nest cavities would differ from random locations with respect to tree characteristics, location of houses, and presence of jabiru stork (Jabiru mycteria) nests, as suggested anecdotally by other authors. Fewer than half of the colonies were close (<350 m) to houses. There was a strong association with jabiru storks; 21 of 23 stork nests had monk parakeet nest cavities attached, accounting for 51% of parakeet colonies. Of the 21 jabiru-associated colonies, 6 had additional parakeet structures and 15 had only the jabiru-attached parakeet structure. Monk parakeet colonies associated with jabiru nests had significantly more nesting cavities than did monospecific monk parakeet colonies, due mainly to those attached directly to the jabiru nest. In jabiru-associated colonies, parakeet nest structures were located higher and in taller trees than in monospecific colonies. There was no difference in trunk diameters of parakeet nesting trees with or without jabirus. Although we tabulated 24 tree species as nest trees, nearest-neighbor trees, or matched-point trees, only 6 species were used for nesting. When compared to matched points, monk parakeet structures were preferentially located in piuva (Tabebuia spp.) and mandovi trees (Sterculia apetela). Parakeet structures were in taller trees with thicker trunk diameters than matched points. Most nest cavities (71%) faced in a northerly direction (northwest to northeast), away from cold southerly winds. Choice of a nest site and orientation appears to reflect structural, weather, and predator constraints. Thick, tall trees with stout branches provided stable sites for their large nest structures, which are known to collapse because of their own weight and strong winds. Nesting with jabirus confers structural advantages (they could attach many nests to the bottom of the jabiru nest, potentially gaining benefits from social facilitation), early warning, and predator defense.  相似文献   

6.
ABSTRACT Species in the family Psittacidae may be particularly vulnerable to anthropogenic habitat transformations that reduce availability of suitable breeding sites at different spatial scales. In southern Chile, loss of native forest cover due to agricultural conversion may impact populations of Slender‐billed Parakeets (Enicognathus leptorhynchus), endemic secondary cavity‐nesting psittacids. Our objective was to assess nest‐site selection by Slender‐billed Parakeets in an agricultural‐forest mosaic of southern Chile at two spatial scales: nest trees and the habitat surrounding those trees. During the 2008–2009 breeding seasons, we identified nest sites (N= 31) by observing parakeet behavior and using information provided by local residents. Most (29/31) nests were in mature Nothofagus obliqua trees. By comparing trees used for nesting with randomly selected, unused trees, we found that the probability of a tree being selected as a nest site was positively related to the number of cavity entrances, less dead crown, and more basal injuries (e.g., fire scars). At the nesting‐habitat scale, nest site selection was positively associated with the extent of basal injuries and number of cavity entrances in trees within 50 m of nest trees. These variables are likely important because they allow nesting parakeets to minimize cavity search times in potential nesting areas, thereby reducing energetic demands and potential exposure to predators. Slender‐billed Parakeets may thus use a hierarchical process to select nest sites; after a habitat patch is chosen, parakeets may then inspect individual trees in search of a suitable nest site. Effective strategies to ensure persistence of Slender‐billed Parakeets in agricultural‐forest mosaics should include preservation of both individual and groups of scattered mature trees.  相似文献   

7.
Little is known about the natural history of wild honey bee (Apis mellifera) colonies in the Eastern Cape Province of South Africa. The goal of this research was to examine nest site characteristics of honey bee (A. m. capensis/A. m. scutellata hybrid) colonies sampled from a variety of habitats (nature reserves, livestock farms, and an urban setting) in the Eastern Cape. We also determined how nest site location related to various colony strength parameters. In general, colonies not nesting in ground cavities tended to nest in locations >6 m high when nesting in cliffs and buildings and >2 m high when nesting in trees. Colonies typically nested in cavities whose entrances faced a southeasterly direction and were ~40 L in volume. We sampled a subset of colonies to determine the relationship between nest type and the following colony strength parameters: total area of comb in the colony, the volume of stored honey, pollen, and brood, adult bee population, the weight per adult bee, and the bee/nest cavity volume ratio. In general, colonies nesting in cliffs tended to be stronger than those nesting in the ground or trees. Our findings provide new insights into the nesting biology of honey bees in the Eastern Cape, South Africa, perhaps leading to the formation of conservation recommendations for honey bees in this region.  相似文献   

8.
Abstract 1. The odorous house ant, Tapinoma sessile, is a native ant species common throughout North America. In its natural habitat, T. sessile is a low‐key species that consists of small colonies. In invaded urban areas, T. sessile exhibits extreme polygyny and polydomy and becomes a dominant invasive pest. 2. The current study examined: (i) the density, persistence, and the spatial distribution of nests in a large supercolony of T. sessile, (ii) trail abundance and overall colony connectivity as facilitated by the network of trails, (iii) the abundance and the spatial distribution of competing ant species, and (iv) the effect of environmental factors on the number and distribution of T. sessile nests. 3. A distinct pattern of seasonal polydomy was observed, whereby the colony undergoes an annual fission‐fusion cycle. The colony occupies one or a few nests during the winter, experiences rapid exponential growth in the spring to colonize available nesting sites, reaches maximum nest density in the summer, and again coalesces in the winter, returning to the same winter location year after year. The trails show spatio‐temporal variation as well, depending on the location of nesting and foraging sites. Furthermore, nest movements may be driven by soil microclimate and proximity to man‐made structures. 4. In total, 119 ant nests were discovered in a 3.15 ha plot, 90 (76%) of which belonged to T. sessile. Tapinoma sessile exhibited strong colony connectivity as 78/90 (87%) of nests were connected to at least one other nest by a trail. Mean persistence time for T. sessile nests was 133 ± 5 days. 5. Results indicate that T. sessile is a highly adaptable native ant species that exhibits a high degree of flexibility in its colony social structure. A high degree of polygyny and polydomy may contribute to its ecological dominance and pest status in urban environments.  相似文献   

9.
Large trees support unique habitat structures (e.g. hollows) that form over centuries and cannot be provided by small trees. Large trees are also declining in human‐modified landscapes worldwide. One restoration strategy gaining popularity involves adding nest boxes to smaller trees to replicate natural hollows. However, limited empirical research has tested how hollow‐nesting fauna responds to the presence of nest boxes. We asked: can the addition of nest boxes increase tree visitation by hollow‐nesting birds? We conducted a before‐after control‐impact (BACI) experiment using 144 nest boxes and 96 sample trees comprised of three sizes (small [20–50 cm dbh], medium [51–80 cm], and large [>80 cm]) and located in four landscape contexts (reserves, pasture, urban parklands, and urban built‐up areas). We recorded a significant increase in hollow‐nesting bird abundance and richness at large trees after nest box additions. However, the same response was not observed at medium, small, or control trees. We also recorded nonsignificant increases in hollow‐nesting bird abundance and richness at trees in modified landscapes after nest box additions compared to trees in reserves and control trees. Our results suggest that adding nest boxes to smaller‐sized trees may not attract hollow‐nesting birds. Therefore, nest box management strategies may require re‐evaluation as it is often assumed that hollow supplementation will attract hollow‐using fauna and sufficiently ameliorate the loss of large, hollow‐bearing trees. We advocate that large tree retention remains crucial and should be prioritized. Large trees could be effective target structures for habitat restoration, especially in modified landscapes.  相似文献   

10.
Polydomous social insects may reduce the costs of foraging by the strategic distribution of nests throughout their territory or home-range. This efficiency may most likely be achieved if the resources are relatively stable in place and time, and the colonies and nests are distributed in response to the location of the resources. However, no study has investigated how the distribution of food sources influences the spatial patterns of nests within polydomous colonies under natural conditions. Our two year study of 140 colonies of the Australian ant Iridomyrmex purpureus revealed that the decentralization of nests within colonies is associated with the distribution of trees containing honey-dew producing hemiptera. We show there is a positive correlation between the maximum distance between trees containing hemiptera and the maximum distance between nests within a colony. In addition, we demonstrate the mechanism by which this pattern may arise; new nests are built nearer to trees containing hemiptera than existing nests. Further, the distance between trees containing hemiptera and the nearest nests was negatively correlated with the length of exploitation of that tree. Finally, we show that most food is delivered to the nearest nest after which other ants redistribute it between the nests. Combined, these data suggest that foraging efficiency may be an important selection pressure favouring polydomy in I. purpureus. Received 6 April 2006; revised 29 September; accepted 4 October 2006.  相似文献   

11.
Nesting is a critical yet hazardous life stage for many birds. For colonial‐breeding birds, the conspicuousness of the colony to predators suggests immense pressure to select optimal colonial nesting sites. But what drives selection of those sites? As with solitary nesting birds, reducing access by predators may be the single most important factor. If so, knowledge of the predators involved and the attributes of different potential colony sites can allow us to predict the features that make a site especially safe. We examined the attributes of trees used by breeding colonies of metallic starlings Aplonis metallica in tropical Australia, and experimentally tested if those attributes prevented nest access by predatory snakes. Our surveys confirmed that tree choice by starling nesting colonies is highly non‐random, with all colonies located in tall trees in rainforest clearings, with no low branches and smooth bark. Experimental tests demonstrated that the climbing ability of predatory snakes depends upon bark rugosity, and that colony access by snakes depends on tree attributes such as bark rugosity and canopy connectivity. Our study confirms that colonial‐nesting starlings select colony sites that provide a safe refuge from predation. Intense predation pressure may have driven the evolution of stringent breeding habitat criteria in many other species of colonial‐breeding birds.  相似文献   

12.
It has been argued that canopy trees in tropical rainforests harbor species-rich ant assemblages; however, how ants partition the space on trees has not been adequately elucidated. Therefore, we investigated within-tree distributions of nest sites and foraging areas of individual ant colonies on canopy trees in a tropical lowland rainforest in Southeast Asia. The species diversity and colony abundance of ants were both significantly greater in crowns than on trunks. The concentration of ant species and colonies in the tree crown seemed to be associated with greater variation in nest cavity type in the crown, compared to the trunk. For ants nesting on canopy trees, the numbers of colonies and species were both higher for ants foraging only during the daytime than for those foraging at night. Similarly, for ants foraging on canopy trees, both values were higher for ants foraging only during the daytime than for those foraging at night. For most ant colonies nesting on canopy trees, foraging areas were limited to nearby nests and within the same type of microhabitat (within-tree position). All ants foraging on canopy trees in the daytime nested on canopy trees, whereas some ants foraging on the canopy trees at night nested on the ground. These results suggest that spatial partitioning by ant assemblages on canopy trees in tropical rainforests is affected by microenvironmental heterogeneity generated by three-dimensional structures (e.g., trees, epiphytes, lianas, and aerial soils) in the crowns of canopy trees. Furthermore, ant diversity appears to be enriched by both temporal (diel) and fine-scale spatial partitioning of foraging activity.  相似文献   

13.
Social organisation of colonies of obligate plant-ants can affect their interaction with myrmecophyte hosts and with other ants competing for the resources they offer. An important parameter of social organisation is whether nest sites of a colony include one or several host individuals. We determined colony boundaries in a plant-ant associated with the rainforest understorey tree Leonardoxa africana subsp. africana, found in coastal forests of Cameroon (Central Africa). This myrmecophyte is strictly associated with two ants, Petalomyrmex phylax and Cataulacus mckeyi. Plants provide food and nesting sites for P. phylax, which protects young leaves against insect herbivores. This mutualism is often parasitised by C. mckeyi, which uses but does not protect the host. The presence of C. mckeyi on a tree excludes the mutualistic ant. Because Petalomyrmex -occupied trees are better protected, their growth and survival are superior to those of Cataulacus -occupied trees, giving P. phylax an advantage in occupation of nest sites. C. mckeyi often colonises trees that have lost their initial associate P. phylax, as a result of injury to the tree caused by disturbance. Polydomy may allow C. mckeyi to occupy small clumps of trees, without the necessity of claustral colony foundation in each tree. Investigating both the proximate (behavioural repertoire, colony odour) and the ultimate factors (genetic structure) that may influence colony closure, we precisely defined colony boundaries. We show that colonies of C. mckeyi are monogynous and facultatively polydomous, i.e. a colony occupies one to several Leonardoxa trees. Workers do not produce males. Thus, the hypothesis that polydomy allows workers in queenless nests to evade queen control for their reproduction is not supported in this instance. This particular colony structure may confer on C. mckeyi an advantage in short-distance dispersal, and this could help explain its persistence within the dynamic Leonardoxa system.  相似文献   

14.
We examined the genetic and spatial structure of Leptothorax ambiguus in a Vermont site. Nests of this tiny ant species have variable queen number and comprise larger polydomous colonies, as do their closest relatives in North America. Nests are patchily distributed in the forest, and sometimes occur in local abundance. We collected 121 nests in four years from plots in which all nests were mapped; furthermore, we subjected nests collected in two separate years to starch gel electrophoresis and estimated relatedness according to the Queller—Goodnight (1989) algorithm. Queens that share a nest site also share 33% of their alleles on average, and relatedness among worker nestmates is about 0.5. The existence of diploid males and nonzero F-values demonstrate inbreeding in this species, an unusual phenomenon for social insects in general. Mapping data showed that nests with like genotypes tended to cluster in space, forming polydomous colonies. Colonies consisted of 1–6 nest subunits, and about half of all colonies were polygynous. We compare these features of L. ambiguus to its close relative L. longispinosus and a European congener L. acervorum. These comparisons allow us to conclude that an interplay between ecological and genetic factors produces the observed pattern of multiple queening and nest spatial distribution in this species.  相似文献   

15.
Many studies have dealt with the habitat requirements of cavity‐nesting birds, but there is no meta‐analysis on the subject and individual study results remain vague or contradictory. We conducted a meta‐analysis to increase the available evidence for nest‐site selection of cavity‐nesting birds. Literature was searched in Web of Science and Google Scholar and included studies that provide data on the habitat requirements of cavity‐nesting birds in temperate and boreal forests of varying naturalness. To compare nest and non‐nest‐tree characteristics, the following data were collected from the literature: diameter at breast height (DBH) and its standard deviation (SD), sample size of trees with and without active nest, amount of nest and available trees described as dead or with a broken crown, and amount of nest and available trees that were lacking these characteristics. Further collected data included bird species nesting in the cavities and nest‐building type (nonexcavator/excavator), forest type (coniferous/deciduous/mixed), biome (temperate/boreal), and naturalness (managed/natural). From these data, three effect sizes were calculated that describe potential nest trees in terms of DBH, vital status (dead/alive), and crown status (broken/intact). These tree characteristics can be easily recognized by foresters. The results show that on average large‐diameter trees, dead trees, and trees with broken crowns were selected for nesting. The magnitude of this effect varied depending primarily on bird species and the explanatory variables forest type and naturalness. Biome had lowest influence (indicated by ΔAIC). We conclude that diameter at breast height, vitality, and crown status can be used as tree characteristics for the selection of trees that should be retained in selectively harvested forests.  相似文献   

16.
In many colonial bird species there is considerable intraspecific variation in colony size and inter‐nest distance (colony density). Possible causes of this variation and its effects on hatching success (survival of eggs) and breeding success (probability of a pair raising chicks) were studied in 48 Avocet Recurvirostra avosetta colonies in Schleswig‐Holstein (Germany) between 1991 and 1996. Colony density was influenced by time of year and habitat (categories: island or mainland, close to or far from feeding grounds). Colonies on islands had the highest densities. When all available space at a colony site was used, colonies became very dense (mean nearest‐neighbour nest distance less than 1 m). Colony size (number of clutches) was influenced by time of year, but not by habitat. Hatching success was low in high density colonies and in very low density ‘colonies’ (single nests) and high over a broad range of intermediate nest densities. The low success rate of single nests was caused by a very high predation rate, whereas the low success rate in very dense colonies was caused by a high rate of nest abandonment. Nest abandonment in very dense colonies was associated with a high level of aggressiveness among Avocets during the egg‐laying period. Due to territorial behaviour, Avocets seemed to be expelled from the densest breeding sites. In very dense colonies, high frequencies of clutches of unusual size occurred due to conspecific nest parasitism. The number of Avocets taking part in attacks on potential egg predators was small and (in colonies of more than one clutch) depended neither on colony size nor on colony density. Despite a low hatching success in very dense colonies, individuals breeding in the densest colonies had significantly better chances of raising chicks than Avocets breeding in less dense colonies. Coloniality seemed to be obligatory for Avocets in order to ensure hatching success. The size and density of colonies seemed to be associated with the availability of suitable nesting habitats (islands).  相似文献   

17.
Colonies of the ant Lasius neoniger have multiple nest entrances that are distributed throughout a colony's foraging area. Associated with each nest entrance is a group of workers that show strong fidelity to that nest entrance. Territorial expansion, as indicated by increases in the number of nest entrances per colony, is correlated with foraging activity. Although there is variation between colonies in the seasonal pattern of territorial expansion, most nests become active in early summer, increase the size of the area foraged until midsummer, and then decrease the number of active nest entrances in late summer. Over the study plot as a whole, the dispersion pattern of nest entrances changed from clumped, or tending to be clumped, in early spring to random in mid-and late summer. Within colonies, nest entrances were significantly overdispersed. Intra-and interspecific competition negatively affected foraging, and workers from a given nest entrance were most successful at retrieving prey less than approximately 15–20 cm from the entrance. The average distance between nest entrances within a colony was 37.7±3.3 cm (mean±95% confidence interval, n=115), which is approximately twice the distance at which workers can retrieve prey. The polydomous nest structure of L. neoniger appears to partition territory within a colony by spatial subdivision of its foragers, and thus may reduce loss of prey to competitors.  相似文献   

18.
Queen number varies in the population of O. hastatus in SE Brazil. Here, we evaluate how nesting ecology and colony structure are associated in this species, and investigate how reproduction is shared among nestmate queens. Queen number per colony is positively correlated with nesting space (root cluster of epiphytic bromeliads), and larger nest sites host larger ant colonies. Plant samplings revealed that suitable nest sites are limited and that nesting space at ant-occupied bromeliads differs in size and height from the general bromeliad community. Dissections revealed that queens in polygynous colonies are inseminated, have developed ovaries, and produce eggs. Behavioral observations showed that reproduction in polygynous colonies is mediated by queen–queen agonistic interactions that include egg cannibalism. Dominant queens usually produced more eggs. Field observations indicate that colonies can be initiated through haplometrosis. Polygyny in O. hastatus may result either from groups of cofounding queens (pleometrosis) or from adoption of newly mated queens by established colonies (secondary polygyny). Clumping of bromeliads increases nest space and probably adds stability through a strong root system, which may promote microhabitat selection by queens and favor pleometrosis. Rainstorms that frequently knock down bromeliads can be a source of colony break-up and may promote polygyny. Bromeliads are limited nest sites and may represent a risk for young queens leaving a suitable nest, thus favoring secondary polygyny. Although proximate mechanisms mediating queen number are poorly understood, this study suggests that heterogeneous microhabitat conditions probably contribute to the coexistence of variable forms of social structure in O. hastatus.  相似文献   

19.
Inter- and intraspecific competition was investigated in ants of the myrmicine genus leptothorax in a deciduous woodland near Würzburg, Germany. The most common species, A. (Myrafant) nylanderi, lives in rotting pine, oak, and elder sticks and may locally reach densities of 10 nests per m2. In the studied sites, only a small fraction of colonies were polydomous, i.e. single colonies typically did not inhabit several nest sites. The home ranges of nylanderi colonies overlap the ranges of other conspecific colonies and colonies of other species, especially L. (s.str.) gredleri. Foragers from different colonies encountering one another in the field back off without exhibiting strong aggression, suggesting that colonies do not defend absolute foraging territories. In laboratory experiments, the frequency and severity of agonistic interactions among workers from different colonies, all living in pine sticks, increased significantly with the distance between their nests. Workers from colonies nesting in different types of wood exhibited significantly more aggression. Experiments in which we transferred colonies from pine sticks into artificial pine or oak nests corroborate the hypothesis that nesting material strongly influences colony odour in L. nylanderi. The evolutionary significance of this apparent dear-enemy phenomenon is discussed.  相似文献   

20.
《Journal of Asia》2020,23(4):853-862
Termites are major pests of houses and buildings, and also living plants such as agricultural crops, trees in forests, urban areas and gardens. However, in Japan, the basic ecology of termites nesting in living trees is not fully understood. In this study, we observed 255 colonies (nests) of the drywood termite Neotermes sugioi, collected in the field on Okinawa Island, and reported the frequency composition of the reproductive castes, the size of wood with termite gallery, the population size of colonies, and the relative position of the reproductive and non-reproductive castes within nests. Most colonies were headed by a primary queen and a primary king. However, colonies headed only by primary queens, primary kings, or neotenic kings, each accounted for approximately 5% of the colonies. A colony size of 1,000– 4,000 individuals (2058.2 ± 1695.0 [mean ± SD]) was common and the average length of colony branches was less than 100 cm. Queens and kings were found in the same or nearby nest areas, and more predominantly in the central or root side of nest wood areas. The termites may experience colony fragmentation and reproductive loss as a consequence of typhoons. Incipient colonies (i.e., colonies at an early stage of development) were found on 11.3% of branches of Leucaena leucocephala that did not show any obvious signs of infestation. In future research, it will be necessary to update the list of trees damaged by this termite species, compare the damage by tree species, and evaluate the economic impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号