首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. 1. Regional scarabaeid dung beetle assemblages in southern Africa may contain over 100 species, ranging in live weight from 10 mg to 10 g. These show a wide variety of dung-use and reproductive strategies.
2. To facilitate analysis of these diverse assemblages, a system of classification analogous to guilds is proposed. Scarabaeid dung beetle species are allocated to one of seven functional groups (FGs) according to the way they use and disrupt dung. Each group therefore contains a set of species which are functional analogues of each other. This classification provides a conceptual framework within which to analyse the structure of dung beetle assemblages and the interactions between dung beetles and other dung-breeding species such as coprophagous flies.
3. There is a clear hierarchy of functional groups in their ability to compete for dung. Competitively dominant groups such as the large ball rollers (FG I) and fast-burying tunnellers (FG III) are mostly large, aggressive beetles which rapidly remove dung from the pad. The smaller ball rollers (FG II) are also effective competitors for dung. Subordinate groups are those which bury dung slowly over many days (FG IV and V) and those which breed inside the pad (FG VII, endocoprids). Kleptocoprids (FG VI) breed in dung buried by other beetles and so are not part of the hierarchy.
4. The use of this classification is illustrated by reference to three contrasting assemblages of dung beetles in a summer rainfall region of southern Africa. The potential of these beetles for biological control of dung-breeding flies is discussed.  相似文献   

2.
Populations of large mammals are severely depleted by hunting in tropical forests, with direct effects on plant regeneration. But indirect consequences on commensal taxa depending on them for food resources, like coprophagous beetles, are less documented. Cascading effects of species loss across Scarabaeinae are expected, with likely significant negative implications for ecosystem functions. We examined dung beetle assemblages using pitfall traps at three rain forest sites in French Guiana ranging from intact mammalian fauna (Nouragues) to moderate (Kaw) and heavy (Matoury) defaunation. The site with the most depauperate mammalian fauna showed significantly lower dung beetle species richness than the two other two sites, which were not different from each other. Mean abundance and biomass per trap were not different across sites whereas community composition strongly differed among sites. A positive correlation was observed between body size and the individual contribution to dissimilarity between Nouragues and Kaw. The species contributing the most to dissimilarity were large. By contrast, one medium-sized species, dominant in Matoury, contributed the most to dissimilarity between Matoury and other sites. Diurnal genera of large tunnellers showed a higher diversity and abundance in Nouragues compared to other sites, whereas a nocturnal genus showed no differences. Large rollers were more abundant in Kaw compared to other sites. None of the groups of small beetles but one were affected by defaunation. Our results suggest that loss of large mammal populations affects dung beetle assemblage structure and causes decreasing abundance or disappearance of large tunnellers species that have a major impact on several dung beetle-mediated ecological processes.  相似文献   

3.
This study examines the functional attributes of Neotropical dung beetles, and, based on the analysis, evaluates the role of dung beetles in pastures and tropical dry forest in El Salvador. Dung beetle diversity was lower in pastures than in forests. However, the total biomass of beetles at similarly-sized dung baits was frequently higher in pastures. Diversity loss followed structured patterns: (1) carrion and fruit feeding beetles were well represented (species number) in the forests but were largely absent from pastures; (2) large ball rollers and small fast tunnellers were present in forests but were absent from pastures; (3) large fast tunnellers and small slow tunnellers were poorly represented in pastures compared to forests but the few species that survived in pastures attained extremely high populations; and (4) each functional group in the species-poor pasture assemblages was divided almost equally into day and night active species. Substrate and habitat generalists that were present in both the forests and pastures were attracted to fruit and carrion in forested habitat but not in open pastures. In open habitats, flies and other insects may be the principal decomposers of decaying fruit and carrion.  相似文献   

4.
Abstract.  1. The maximum size of ingested particles was determined in 11 species of ball-rolling, adult dung beetle (Scarabaeidae: Scarabaeinae) by mixing small latex or glass balls of known diameter into their food. The tribes Scarabaeini, Gymnopleurini, and Sisyphini (four, four, and three species respectively) were represented, with mean body sizes ranging from 0.33 to 4.0 g fresh weight.
2. Only particles with maximum diameters of 4–85 µm were ingested. Hence rollers, like other known beetles feeding on fresh dung, filter out larger, indigestible plant fragments and confine ingestion to small particles of higher nutritional value.
3. The maximum diameter of ingested particles increased significantly with body weight, whereas taxon (tribe) had no additional effect. Because big rollers accept larger particles than do tunnellers (which make dung stores for feeding and breeding in the soil immediately below the pat) of similar weight, the slope of the diameter-against-weight regression for rollers was significantly higher than that found earlier for tunnellers.
4. An explanation could be that a typical food ball made by a roller is considerably smaller than the amount of dung available to a feeding tunneller of the same size. If the roller were as choosy about particle size as the tunneller, it might not get enough food. This applies to large rollers in particular because their food balls contain a higher proportion of coarse fibres than those made by small species.  相似文献   

5.
The millennial–scale evolutionary relationships between mammals and dung beetles have been eroded due to several drivers of contemporary biodiversity loss. Although some evidence of co‐decline has been shown for mammals and dung beetles at some Neotropical sites, a biome‐scale analysis for the entire Atlantic Forest of South America would strengthen our understanding of how relictual sets of mammal species can affect dung beetle co‐occurrences and co‐declines. We therefore collated hundreds of assemblages of both dung beetles and medium‐ to large‐bodied mammals throughout the world's longest tropical forest latitudinal gradient to examine to what extent mammal assemblages may exert a positive influence on dung beetle species composition and functional assembly, and whether this relationship is scale dependent. We also collated several climatic and other environmental variables to examine the degree to which they shape mammal–dung beetle relationships. The relationships between local mammal and dung beetle faunas were examined using regression models, variation partitioning, dissimilarity indices and ecological networks. We found a clear positive relationship between mammal and dung beetle species richness across this forest biome, indicating an ongoing process of mammal–dung beetle niche‐mediated co‐decline. We found a strong relationship between the species composition of both taxa, in which dung beetle species dissimilarity apparently track changes in mammalian dissimilarity, typically in 80% of all cases. Co‐variables such as phytomass and climatic variables also influenced mammal–dung beetle patterns of co‐decline along the Atlantic Forest. We conclude that dung beetle diversity and community assembly are shaped by the remaining co‐occurring mammal assemblages and their functional traits, and both groups were governed by environmental features. We emphasize that ecosystem‐wide effects of mammal population declines remain poorly understood both quantitatively and qualitatively, and curbing large vertebrate defaunation will ensure the persistence of co‐dependent species.  相似文献   

6.
Philip Nyeko 《Biotropica》2009,41(4):476-484
Very little is known about the diversity of arthropods in the fast-disappearing fragments of natural forests in sub-Saharan Africa. This study investigated: (1) the influence of forest fragment characteristics on dung beetle species richness, composition, abundance, and diversity; and (2) the relationship between dung beetle assemblages and rainfall pattern. Beetles were sampled through 12 mo using dung baited pitfall traps. A total of 18,073 dung beetles belonging to three subfamilies and 45 species were captured. The subfamily Scarabaeinae was the most abundant (99%) and species rich (89%). Fast-burying tunnellers (paracoprids) were the most dominant functional group. Catharsius sesostris, Copris nepos , and Heliocopris punctiventris were the three most abundant species, and had the highest contributions to dissimilarities between forests. With few exceptions, dung beetle abundance, species richness, and diversity were generally higher in larger forest fragments (100–150 ha) than in smaller ones (10–50 ha) and the nature reserve (1042 ha). Forest fragment size had a highly significant positive relationship with beetle abundance, but only when the nature reserve is excluded in the analysis. Dung beetle abundance and species richness showed direct weak relationships with litter depth (positive) and groundcover (negative) but not tree density, tree species richness, and fragment isolation distance. Dung beetle abundance and species richness were strongly correlated with monthly changes in rainfall. Results of this study indicate that forest fragments on agricultural lands in the Budongo landscape, especially medium-sized (100–150 ha) ones, represent important conservation areas for dung beetles.  相似文献   

7.
In the Queen Elizabeth National Park, Uganda, we compared the scarab beetle assemblages in the dung of three wild ungulates (African buffalo, a ruminant foregut fermenter; hippopotamus, nonruminant foregut fermenter; and warthog, nonruminant hindgut fermenter). Dung was collected from two sandy-clay soils with different percentage of coarse sand. We aimed at investigating habitat resource selection by dung beetle species within a savanna natural contest with abundant and diverse food availability. Analyses were performed to detect differences for dung beetle assemblages in abundance, diversity, functional groups. Species richness in the three dung types and in the two soil types was similar. However, warthog dung and sandy-rich soil appeared the preferred habitat resources, in terms of abundance and biomass, while hippopotamus dung hosted the lowest values for these parameters. The analysis of functional groups revealed that slow-burying tunnellers held the major role, both in terms of abundance and biomass, and were mainly found in warthog dung.  相似文献   

8.
We studied the diversity of dung beetle communities in Japanese pastures to identify the factors that maintain or enhance the diversity of dung beetles at a landscape scale. We surveyed dung beetles from 17 pastures located in the northeastern part of Tochigi Prefecture, which is in the center of mainland Japan. From 1999 to 2001, surveys were conducted during the 6-month grazing period (May to October) by using dung baited basket traps. We also collected information about the environmental conditions and pasture management practices. Twenty-five dung beetle species belonging to Geotrupinae, Scarabaeinae, and Aphodiinae (including 13 tunneler and 12 dweller species) were recorded. The abundance of dweller species decreased with increasing elevation, possibly because of the effect of rainfall, whereas the species richness of tunneler species was affected by cattle disturbance and soil condition. Beetle species richness significantly increased with the number of years that the pastures had been grazed. Ivermectin administration did not appear to have any adverse effect on dung beetle abundance, species richness, or species diversity. The dung beetle datasets of the current study (including specific tunneler and dweller beetle groups) supported the widely documented positive relationship between local abundance and species distribution ranges. The within pasture, within area, and between area hierarchical additive partitioning of regional total diversity indicated that landscape-scale management should be implemented to conserve the regional diversity of the dung beetle communities inhabiting Japanese pastures.  相似文献   

9.
The Mediterranean region as a whole has the highest dung beetle species richness within Europe. Natural coastal habitats in this region are among those which have suffered severe human disturbance. We studied dung beetle diversity and distinctiveness within one of the most important coastal protected areas in the west Euro‐Mediterranean region (the regional Park of Camargue, southern France) and made comparisons of dung beetle assemblages with other nearby Mediterranean localities, as well as with other coastal protected area (Doñana National Park, Spain). Our finding showed that: (1) The species richness of coastal habitats in the Camargue is low and only grasslands showed a similar level of species richness and abundance to inland habitats of other Mediterranean localities. The unique habitats of the coastal area (beaches, dunes and marshes) are largely colonized by species widely distributed in the hinterland. (2) In spite of their low general distinctiveness, dune and marsh edges are characterized by the occurrence of two rare, vulnerable, specialized and large roller dung beetle species of the genus Scarabaeus. As with other Mediterranean localities, current findings suggest a recent decline of Scarabaeus populations and the general loss of coastal dung beetle communities in Camargue. (3) The comparison of dung beetle assemblages between the Camargue and Doñana shows that, in spite of the low local dung beetle species richness in the Camargue, the regional dung beetle diversity is similar between both protected areas. Unique historical and geographical factors can explain the convergence in regional diversity as well as the striking divergence in the composition of dung beetle assemblages between both territories.  相似文献   

10.
Human activities are causing a rapid loss of biodiversity, which impairs ecosystem functions and services. Therefore, understanding which processes shape how biodiversity is distributed along spatial and environmental gradients is a first step to guide conservation and management efforts. We aimed to determine the relative explanatory importance of biogeographic, environmental, landscape and spatial variables on assemblage dissimilarities and functional diversity of dung beetles along the Atlantic Forest–Pampa (i.e. forest–grassland) transition zone located in Southeast South America. We described each site according to their biogeographic position, environmental conditions, landscape features and spatial patterns. The compositional dissimilarity was partitioned into turnover and nestedness components of β‐diversity. Mantel tests and generalised dissimilarity models were used to relate β‐diversity and its components to biogeographic, environmental, landscape and spatial variables. Variation partitioning analysis was used to estimate the pure and shared variation in species composition and functional diversity explained by the four categories of predictors. Biome domain was the main factor causing dung beetle compositional dissimilarity, with a high species replacement between Atlantic Forest and Pampa. Biogeographic, environmental, landscape and spatial distances also affected the patterns of dung beetle dissimilarity and β‐diversity components. The shared effects of the four sets of predictors explained most of the variation in dung beetle composition. A similar response pattern was found for dung beetle functional diversity, which excluded biogeographic effects. Only the pure effects of environmental and spatial predictors were significant for species composition and functional diversity. Our results indicate that dung beetle species composition and functional diversity are jointly driven by environmental, landscape and spatial predictors with higher pure environmental and spatial effects. The forest–grassland transition zone promotes a strong species and trait replacement highly influenced both by environmental filtering and dispersal limitation.  相似文献   

11.
The dung beetles (Scarabaeinae) include ca. 5000 species and exhibit a diverse array of morphologies and behaviors. This variation presumably reflects the adaptation to a diversity of food types and the different strategies used to avoid competition for vertebrate dung, which is the primary breeding environment for most species. The current classification gives great weight to the major behavioral types, separating the ball rollers and the tunnelers, but existing phylogenetic studies have been based on limited taxonomic or biogeographic sampling and have been contradictory. Here, we present a molecular phylogenetic analysis of 214 species of Scarabaeinae, representing all 12 traditionally recognized tribes and six biogeographical regions, using partial gene sequences from one nuclear (28S) and two mitochondrial (cox1, rrnL) genes. Length variation in 28S (588-621 bp) and rrnL (514-523 bp) was subjected to a thorough evaluation of alternative alignments, gap-coding methods, and tree searches using model-based (Bayesian and likelihood), maximum parsimony, and direct optimization analyses. The small-bodied, non-dung-feeding Sarophorus+Coptorhina were basal in all reconstructions. These were closely related to rolling Odontoloma+Dicranocara, suggesting an early acquisition of rolling behavior. Smaller tribes and most genera were monophyletic, while Canthonini and Dichotomiini each consisted of multiple paraphyletic lineages at hierarchical levels equivalent to the smaller tribes. Plasticity of rolling and tunneling was evidenced by a lack of monophyly (S-H test, p > 0.05) and several reversals within clades. The majority of previously unrecognized clades were geographical, including the well-supported Neotropical Phanaeini+Eucraniini, and a large Australian clade of rollers as well as tunneling Coptodactyla and Demarziella. Only three lineages, Gymnopleurini, Copris+Microcopris and Onthophagus, were widespread and therefore appear to be dispersive at a global scale. A reconstruction of biogeographical characters recovered 38-48 transitions between regions and an African origin for most lineages. Dispersal-vicariance analysis supported an African origin with links to all other regions and little back-migration. Our results provide a new synthesis of global-scale dung beetle evolution, demonstrating the great plasticity of behavioral and morphological traits and the importance of biogeographic distributions as the basis for a new classification.  相似文献   

12.
The western part of the Mediterranean basin is a transitional biogeographical region for the distribution of the representatives of the main guilds of dung beetles; towards the south, Aphodiinae (dung-dwellers) become scarce, whereas northwards Scarabaeinae (soil-diggers) progressively disappear. The number of species in local dung beetle assemblages is enhanced by this double faunistic contribution. Annual dung beetle assemblages were sampled in two sub-Mediterranean sites, which differed by 600 m in elevation, in order to determine the phenological dynamics related to the way of using dung (dung-dwellers/Aphodiinae vs. soil-diggers/Scarabaeinae and Geotrupinae). Aphodiids were active all year round, although they were affected by summer drought and, at high elevation, by the length of the cold season. This reduced activity was related to an impoverishment of Aphodiinae and to reduced temporal segregation between species. In contrast, soil-diggers were not active all year round and showed different species assemblages in the two sites. An extension of the activity period of these beetles was observed due to the occurrence of cold resistant species at high elevation. Our results suggested that the occurrence of soil-diggers seemingly did not affect the seasonality of dung-dwellers; their local abundance showed no negative correlation and, most importantly, phenological differences between dung-dwellers were always significantly higher than the seasonal differences between dwellers and diggers.  相似文献   

13.
Abstract In Maputaland, South Africa vegetative and microclimatic changes on mined dunes drive the composition of the dung beetle fauna toward convergence with that in natural dune forest on unmined dunes. We assessed the pattern of these changes using a 23‐year vegetational chronosequence on mined dunes, which passes from grassland (approximately 1 year) to open Acacia shrubland thicket to Acacia karroo‐dominated woodland (approximately 9 years). Across this sequence, which represents successional stages in the restoration of dune forest, there was a sequential trend toward convergence in dung beetle species composition in both the entire species complement and, particularly, in shade specialist species. However, species abundance patterns showed a trend toward convergence only in early chronosequence Acacia woodland, followed by a decline in similarity between dung beetle assemblages of older Acacia woodland and unmined natural forest. This trend toward divergence was common both to the entire species complement, which includes widespread taxa, and to species endemic to Maputaland or the east coast. These trends in similarity and dissimilarity between dung beetle assemblages closely parallel the greater physiognomic and microclimatic similarity between early Acacia woodland and natural forest and the relative dissimilarity of older Acacia woodland. In conclusion, although percentage similarities between dung beetle assemblages of approximately 12‐year woodland and natural forests were comparable with those between each natural forest stand, decline in similarity in older woodland stands suggests that lasting convergence in dung beetle species abundance will only be attained once the Acacia woodland is replaced by secondary natural forest.  相似文献   

14.
Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution and functional organization of Scarabaeinae beetles. We conclude that functional diversity may be used as a complementary approach to traditional measures, and that community deconstruction allows sufficient disentangling of responses of different trait-based groups.  相似文献   

15.
We used dung beetles to evaluate the impact of urbanization on insect biodiversity in three Atlantic Forest fragments in Londrina, Paraná, Brazil. This study provides the first empirical evidence of the impact of urbanization on richness, abundance, composition and guild structure of dung beetle communities from the Brazilian Atlantic Forest. We evaluated the community aspects (abundance, richness, composition and food guilds) of dung beetles in fragments with different degrees of immersion in the urban matrix using pitfall traps with four alternative baits (rotten meat, rotten fish, pig dung and decaying banana). A total of 1 719 individuals were collected, belonging to 29 species from 11 genera and six Scarabaeinae tribes. The most urban‐immersed fragment showed a higher species dominance and the beetle community captured on dung presented the greatest evenness. The beetle communities were distinct with respect to the fragments and feeding habits. Except for the dung beetle assemblage in the most urbanized forest fragment, all others exhibited contrasting differences in species composition attracted to each bait type. Our results clearly show that the degree of urbanization affects Atlantic Forest dung beetle communities and that the preservation of forest fragments inside the cities, even small ones, can provide refuges for Scarabaeinae.  相似文献   

16.
Abstract 1. The maximum size of ingested particles was determined in 15 species of adult dung beetle (Scarabaeidae: Scarabaeinae) by mixing small latex or glass balls of known diameter into the dung used as food. Twelve species (tribes Coprini, Onitini, Oniticellini, and Onthophagini) were tunnellers (making dung stores for feeding and breeding in the soil below the pat) and three species (tribe Oniticellini) were endocoprids (feeding and breeding in the dung pat itself).
2. The test species, covering a wide range of body size (fresh weights 0.05–7.4 g), ingested minute particles only (maximum diameter 8–50 µm), and there was a statistically significant but numerically small increase in particle size with body weight.
3. When the effect of body size was taken into account, taxon (tribe), ecological group (tunneller/endocoprid), and dung preference (coarse/fine) had no significant effect on the size of ingested particles.
4. Tests using two tunnelling species did not indicate that beetles use their mandibles to grind dung particles prior to ingestion.
5. The results suggest essentially the same feeding mechanism in all adult tunnelling or endocoprid scarabaeines that eat fresh dung. Larger, indigestible plant fragments are avoided by filtration, and ingestion is confined to very small particles of higher nutritional value.  相似文献   

17.
Little quantitative evidence exists regarding how effective protected areas are for preserving species. We compared dung beetle assemblages (Coleoptera: Scarabaeidae: Scarabaeinae) inside and outside of the Kruger National Park, which protects indigenous flora and fauna over a large area of savanna in the northeast lowlands of South Africa. Although it is contiguous with other reserves in South Africa, Zimbabwe and Mozambique, parts of its border abut onto farmland. Some effects of differing land usage either side of this border were studied at the South African Wildlife College (24.541° S 31.335° E) and the nearby farming village of Welverdiend using dung beetle assemblage structure (Coleoptera: Scarabaeidae: Scarabaeinae) as indicators. Samples were taken from gabbro-derived and granite-derived soils in open woody vegetation, both within the reserve and on adjoining farmland, using composite pig, elephant and cattle dung baits in the early rainy season (November 2009) and separate pig and elephant dung baits in the late rainy season (March 2010). Despite much higher large mammal density around Welverdiend, significantly greater species richness, abundance, and biomass of dung beetles were recorded in the reserve where mammal species diversity is greater and elephants produce much larger droppings than any mammal in the farmland. Assemblage structure also differed strongly between dung types, weather conditions on sample days, and season, but weakly between sampled soil types. These differences in assemblage structure were recorded over short distances as the sites in the reserve were only 3?C4?km from those in farmland at Welverdiend.  相似文献   

18.
Bai M  McCullough E  Song KQ  Liu WG  Yang XK 《PloS one》2011,6(6):e21600
This study examines the evolution hindwing shape in Chinese dung beetle species using morphometric and phylogenetic analyses. Previous studies have analyzed the evolution of wing shape within a single or very few species, or by comparing only a few wing traits. No study has analyzed wing shape evolution of a large number of species, or quantitatively compared morphological variation of wings with proposed phylogenetic relationships. This study examines the morphological variation of hindwings based on 19 landmarks, 119 morphological characters, and 81 beetle species. Only one most parsimonious tree (MPT) was found based on 119 wing and body characters. To better understand the possible role of the hindwing in the evolution of Scarabaeinae, additional phylogenetic analyses were proposed based on the only body features (106 characters, wing characters excluded). Two MPT were found based on 106 body characters, and five nodes were collapsed in a strict consensus. There was a strong correlation between the morphometric tree and all phylogenetic trees (r>0.5). Reconstructions of the ancestral wing forms suggest that Scarabaeinae hindwing morphology has not changed substantially over time, but the morphological changes that do occur are focused at the base of the wing. These results suggest that flight has been important since the origin of Scarabaeinae, and that variation in hindwing morphology has been limited by functional constraints. Comparison of metric disparity values and relative evolutionary sequences among Scarabaeinae tribes suggest that the primitive dung beetles had relatively diverse hindwing morphologies, while advanced dung beetles have relatively similar wing morphologies. The strong correlation between the morphometric tree and phylogenetic trees suggest that hindwing features reflect the evolution of whole body morphology and that wing characters are suitable for the phylogenetic analyses. By integrating morphometric and cladistic approaches, this paper sheds new light on the evolution of dung beetle hind wings.  相似文献   

19.
Scarabaeinae are sensitive to structural habitat changes caused by disturbance. We compared copronecrophagous beetle (Scarabaeinae) community structure in three differently managed zones within an agroeco-system of the northern Yucatan Peninsula, Mexico. We placed dung and carrion traps once a month from June 2004 through May 2005. The beetle community included 17 species from the genera Canthon, Canthidium, Deltochilum, Pseudocanthon, Malagoniella, Onthophagus, Phanaeus, Copris, Uroxys, Sisyphus and Ateuchus. The secondary vegetation had a higher beetle diversity than the other two zones. Species richness was highest in the Brosimum alicastrum plantation. The pasture had the lowest species diversity and richness, but exhibited the highest abundance of Scarabaeinae in the dry season. The two zones with extensive tree cover were the most diverse. Roller beetles were dominant over burrower species and small-sized species outnumbered large species. Our data show two important issues: beetle species in the pasture extended their activity to the beginning of the dry season, while abundances dropped in the other, unirrigated zones; and the possibility that the Scarabaeinae living in neotropical forests are opportunistic saprophages and have specialized habits for resources other than dung. The B. alicastrum plantation is beneficial to the entire ranch production system because it functions as a dispersion and development area for stenotopic species limited to tree cover.  相似文献   

20.
Aim Using dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in a tropical land‐bridge island system, we test for the small island effect (SIE) in the species–area relationship and evaluate its effects on species richness and community composition. We also examine the determinants of species richness across island size and investigate the traits of dung beetle species in relation to their local extinction vulnerability following forest fragmentation. Location Lake Kenyir, a hydroelectric reservoir in north‐eastern Peninsular Malaysia. Methods We sampled dung beetles using human dung baited pitfall traps on 24 land‐bridge islands and three mainland sites. We used regression tree analyses to test for the SIE, as well as species traits related to local rarity, as an indication of extinction vulnerability. We employed generalized linear models (GLMs) to examine determinants for species richness at different scales and compared the results with those from conventional linear and breakpoint regressions. Community analyses included non‐metric multidimensional scaling, partial Mantel tests, nestedness analysis and abundance spectra. Results Regression tree analysis revealed an area threshold at 35.8 ha indicating an SIE. Tree basal area was the most important predictor of species richness on small islands (<35.8 ha). Results from GLMs supported these findings, with isolation and edge index also being important for small islands. The SIE also manifested in patterns of dung beetle community composition where communities on small islands (<35.8 ha) departed from those on the mainland and larger islands, and were highly variable with no significant nestedness, probably as a result of unexpected species occurrences on several small islands. The communities exhibited a low degree of spatial autocorrelation, suggesting that dispersal limitation plays a part in structuring dung beetle assemblages. Species with lower baseline density and an inability to forage on the forest edge were found to be rarer among sites and hence more prone to local extinction. Main conclusions We highlight the stochastic nature of dung beetle community composition on small islands and argue that this results in reduced ecosystem functionality. A better understanding of the minimum fragment size required for retaining functional ecological communities will be important for effective conservation management and the maintenance of tropical forest ecosystem stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号