首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Marine sedimentary ancient DNA (sedaDNA) provides a powerful means to reconstruct marine palaeo‐communities across the food web. However, currently there are few optimized sedaDNA extraction protocols available to maximize the yield of small DNA fragments typical of ancient DNA (aDNA) across a broad diversity of eukaryotes. We compared seven combinations of sedaDNA extraction treatments and sequencing library preparations using marine sediments collected at a water depth of 104 m off Maria Island, Tasmania, in 2018. These seven methods contrasted frozen versus refrigerated sediment, bead‐beating induced cell lysis versus ethylenediaminetetraacetic acid (EDTA) incubation, DNA binding in silica spin columns versus in silica‐solution, diluted versus undiluted DNA in shotgun library preparations to test potential inhibition issues during amplification steps, and size‐selection of low molecular‐weight (LMW) DNA to increase the extraction efficiency of sedaDNA. Maximum efficiency was obtained from frozen sediments subjected to a combination of EDTA incubation and bead‐beating, DNA binding in silica‐solution, and undiluted DNA in shotgun libraries, across 45 marine eukaryotic taxa. We present an optimized extraction protocol integrating these steps, with an optional post‐library LMW size‐selection step to retain DNA fragments of ≤500 base pairs. We also describe a stringent bioinformatic filtering approach for metagenomic data and provide a comprehensive list of contaminants as a reference for future sedaDNA studies. The new extraction and data‐processing protocol should improve quantitative paleo‐monitoring of eukaryotes from marine sediments, as well as other studies relying on the detection of highly fragmented and degraded eukaryote DNA in sediments.  相似文献   

3.
Paleoenvironmental studies are essential to understand biodiversity changes over long timescales and to assess the relative importance of anthropogenic and environmental factors. Sedimentary ancient DNA (sedaDNA) is an emerging tool in the field of paleoecology and has proven to be a complementary approach to the use of pollen and macroremains for investigating past community changes. SedaDNA‐based reconstructions of ancient environments often rely on indicator taxa or expert knowledge, but quantitative ecological analyses might provide more objective information. Here, we analysed sedaDNA to investigate plant community trajectories in the catchment of a high‐elevation lake in the Alps over the last 6400 years. We combined data on past and present plant species assemblages along with sedimentological and geochemical records to assess the relative impact of human activities through pastoralism, and abiotic factors (temperature and soil evolution). Over the last 6400 years, we identified significant variation in plant communities, mostly related to soil evolution and pastoral activities. An abrupt vegetational change corresponding to the establishment of an agropastoral landscape was detected during the Late Holocene, approximately 4500 years ago, with the replacement of mountain forests and tall‐herb communities by heathlands and grazed lands. Our results highlight the importance of anthropogenic activities in mountain areas for the long‐term evolution of local plant assemblages. SedaDNA data, associated with other paleoenvironmental proxies and present plant assemblages, appear to be a relevant tool for reconstruction of plant cover history. Their integration, in conjunction with classical tools, offers interesting perspectives for a better understanding of long‐term ecosystem dynamics under the influence of human‐induced and environmental drivers.  相似文献   

4.
Damage and repair of ancient DNA   总被引:5,自引:0,他引:5  
Under certain conditions small amounts of DNA can survive for long periods of time and can be used as polymerase chain reaction (PCR) substrates for the study of phylogenetic relationships and population genetics of extinct plants and animals, including hominids. Because of extensive DNA degradation, these studies are limited to species that lived within the past 10(4)-10(5) years (Late Pleistocene), although DNA sequences from 10(6) years have been reported. Ancient DNA (aDNA) has been used to study phylogenetic relationships of protists, fungi, algae, plants, and higher eukaryotes such as extinct horses, cave bears, the marsupial wolf, the moa, and Neanderthal. In the past few years, this technology has been extended to the study of infectious disease in ancient Egyptian and South American mummies, the dietary habits of ancient animals, and agricultural practices and population dynamics of early native Americans. Hence, ancient DNA contains information pertinent to numerous fields of study including evolution, population genetics, ecology, climatology, medicine, archeology, and behavior. The major obstacles to the study of aDNA are its extremely low yield, contamination with modern DNA, and extensive degradation. In the course of this review, we will discuss the current aDNA literature describing the importance of aDNA studies as they relate to important biological questions and the difficulties associated with extracting useful information from highly degraded and damaged substrates derived from limited sources. In addition, we will present some of our own preliminary and published data on mechanisms of DNA degradation and some speculative thoughts on strategies for repair and restoration of aDNA.  相似文献   

5.
Recent paleogenetic studies have confirmed that the spread of the Neolithic across Europe was neither genetically nor geographically uniform. To extend existing knowledge of the mitochondrial European Neolithic gene pool, we examined six samples of human skeletal material from a French megalithic long mound (c.4200 cal BC). We retrieved HVR‐I sequences from three individuals and demonstrated that in the Neolithic period the mtDNA haplogroup N1a, previously only known in central Europe, was as widely distributed as western France. Alternative scenarios are discussed in seeking to explain this result, including Mesolithic ancestry, Neolithic demic diffusion, and long‐distance matrimonial exchanges. In light of the limited Neolithic ancient DNA (aDNA) data currently available, we observe that all three scenarios appear equally consistent with paleogenetic and archaeological data. In consequence, we advocate caution in interpreting aDNA in the context of the Neolithic transition in Europe. Nevertheless, our results strengthen conclusions demonstrating genetic discontinuity between modern and ancient Europeans whether through migration, demographic or selection processes, or social practices. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
All crocodilians are under varying degrees of threat due to over exploitation and these species have been listed in Appendix I or II of CITES. The lack of molecular techniques for the identification of confiscated samples makes it difficult to enforce the law. Conclusive forensic identification of species requires a complete gene sequence which is difficult in case of degraded samples. We have developed two novel sets of primers to amplify two partial cytochrome b gene sequences of six crocodile species i.e. Crocodylus palustris, Crocodylus porosus, Crocodylus siamensis, Crocodylus niloticus, Gavialis gangeticus and Caiman crocodilus. These partial sequences were edited to give a complete cyt b gene sequence, which can be used as an effective tool for forensic authentication of crocodile species. A phylogeny of crocodile species was reconstructed using these sequences. The described primers hold great promise in forensic identification of crocodile species, which can aid in the effective enforcement of law and conservation of these ancient species.  相似文献   

7.
A protocol using insect specimens or parts thereof allows for sequencing of sections of nuclear 28S rDNA. In the present note it is demonstrated that this protocol can readily be applied to strongly degraded DNA (ancient, fixed or contaminated). Primers that are specifically designed to discriminate against human DNA but also other non‐arthropod species are tested on a range of species covering all insect groups (59 insect species from all 33 orders). Additionally, the samples represent a selection of various, mostly DNA‐degrading, preservation methods, including the most common fixatives used for morphological investigations and for long‐term storage in collections. Successful amplification was possible for all tested samples including ca. 200 year‐old dried museum specimens as well as for over 4000 year‐old fossil insects embedded in copal. When the NCBI database contained information on the tested species an unambiguous taxonomic discrimination was possible. This approach is based on a standardized protocol that guarantees easy application. This note presents primer pairs for 28S rDNA that can be a useful tool for ancient DNA (aDNA) research.  相似文献   

8.
Recent ancient DNA (aDNA) studies of human pathogens have provided invaluable insights into their evolutionary history and prevalence in space and time. Most of these studies were based on DNA extracted from teeth or postcranial bones. In contrast, no pathogen DNA has been reported from the petrous bone which has become the most desired skeletal element in ancient DNA research due to its high endogenous DNA content. To compare the potential for pathogenic aDNA retrieval from teeth and petrous bones, we sampled these elements from five ancient skeletons, previously shown to be carrying Yersinia pestis. Based on shotgun sequencing data, four of these five plague victims showed clearly detectable levels of Y. pestis DNA in the teeth, whereas all the petrous bones failed to produce Y. pestis DNA above baseline levels. A broader comparative metagenomic analysis of teeth and petrous bones from 10 historical skeletons corroborated these results, showing a much higher microbial diversity in teeth than petrous bones, including pathogenic and oral microbial taxa. Our results imply that although petrous bones are highly valuable for ancient genomic analyses as an excellent source of endogenous DNA, the metagenomic potential of these dense skeletal elements is highly limited. This trade‐off must be considered when designing the sampling strategy for an aDNA project.  相似文献   

9.
《Anthrozo?s》2013,26(4):232-244
ABSTRACT

This article examines the presence of elephants in civilizations of the ancient Nile valley, where they were hunted and distributed to Egypt and to the Classical Greco-Roman world for ivory, amusement, and military purposes. The full study of elephants requires diverse multidisciplinary research on their evolution, taxonomy, extinction, climate change, the history of human—elephant interactions, and modern issues relating to elephant and ivory policy. This regional view of the past illuminates some of the deep roots of these modern issues in human—elephant relations.  相似文献   

10.
Freshwater biodiversity is under ever increasing threat from human activities, and its conservation and management require a sound knowledge of species‐level taxonomy. Cryptic biodiversity is a common feature for aquatic systems, particularly in Australia, where recent genetic assessments suggest that the actual number of freshwater fish species may be considerably higher than currently listed. The freshwater blackfishes (genus Gadopsis) are an iconic group in south‐eastern Australia and, in combination with their broad, naturally divided distribution and biological attributes that might limit dispersal, as well as ongoing taxonomic uncertainty, they comprise an ideal study group for assessing cryptic biodiversity. We used a multigene molecular assessment including both nuclear (51 allozyme loci; two S7 introns) and matrilineal markers (cytb) to assess species boundaries and broad genetic substructure within freshwater blackfishes. Range‐wide examination demonstrates the presence of at least six candidate species across two nominal taxa, Gadopsis marmoratus and Gadopsis bispinosus. Phylogeographical patterns often aligned to purported biogeographical provinces but occasionally reflected more restricted and unexpected relationships. We highlight key issues with taxonomy, conservation, and management for a species group in a highly modified region. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 521–540.  相似文献   

11.
Want a glimpse at past vegetation? Studying pollen and other plant remains, which are preserved for example in lake sediments or mires for thousands of years, allows us to document regional occurrences of plant species over radiocarbon‐dated time series. Such vegetation reconstructions derived from optical analyses of fossil samples are inherently incomplete because they only comprise taxa that contribute sufficient amounts of pollen, spores, macrofossil or other evidences. To complement optical analyses for paleoecological inference, molecular markers applied to ancient DNA (aDNA) may help in disclosing information hitherto inaccessible to biologists. Parducci et al. (2013) targeted aDNA from sediment cores of two lakes in the Scandes Mountains with generic primers in a meta‐barcoding approach. When compared to palynological records from the same cores, respective taxon lists show remarkable differences in their compositions, but also in quantitative representation and in taxonomic resolution similar to a previous study (Jørgensen et al. 2012). While not free of assumptions that need critical and robust testing, notably the question of possible contamination, this study provides thrilling prospects to improve our knowledge about past vegetation composition, but also other organismic groups, stored as a biological treasure in the ground.  相似文献   

12.
The extent of genetic diversity loss and former connectivity between fragmented populations are often unknown factors when studying endangered species. While genetic techniques are commonly applied in extant populations to assess temporal and spatial demographic changes, it is no substitute for directly measuring past diversity using ancient DNA (aDNA). We analysed both mitochondrial DNA (mtDNA) and nuclear microsatellite loci from 64 historical fossil and skin samples of the critically endangered Western Australian woylie (Bettongia penicillata ogilbyi), and compared them with 231 (= 152 for mtDNA) modern samples. In modern woylie populations 15 mitochondrial control region (CR) haplotypes were identified. Interestingly, mtDNA CR data from only 29 historical samples demonstrated 15 previously unknown haplotypes and detected an extinct divergent clade. Through modelling, we estimated the loss of CR mtDNA diversity to be between 46% and 91% and estimated this to have occurred in the past 2000–4000 years in association with a dramatic population decline. In addition, we obtained near‐complete 11‐loci microsatellite profiles from 21 historical samples. In agreement with the mtDNA data, a number of ‘new’ microsatellite alleles was only detected in the historical populations despite extensive modern sampling, indicating a nuclear genetic diversity loss >20%. Calculations of genetic diversity (heterozygosity and allelic rarefaction) showed that these were significantly higher in the past and that there was a high degree of gene flow across the woylie's historical range. These findings have an immediate impact on how the extant populations are managed and we recommend the implementation of an assisted migration programme to prevent further loss of genetic diversity. Our study demonstrates the value of integrating aDNA data into current‐day conservation strategies.  相似文献   

13.
This paper considers the contribution of pollen analysis to conservation strategies aimed at restoring planted ancient woodland. Pollen and charcoal data are presented from organic deposits located adjacent to the Wentwood, a large planted ancient woodland in southeast Wales. Knowledge of the ecosystems preceding conifer planting can assist in restoring ancient woodlands by placing fragmented surviving ancient woodland habitats in a broader ecological, historical and cultural context. These habitats derive largely from secondary woodland that regenerated in the 3rd–5th centuries a.d. following large-scale clearance of Quercus-Corylus woodland during the Romano-British period. Woodland regeneration favoured Fraxinus and Betula. Wood pasture and common land dominated the Wentwood during the medieval period until the enclosures of the 17th century. Surviving ancient woodland habitats contain an important Fagus component that probably reflects an earlier phase of planting preceding conifer planting in the 1880s. It is recommended that restoration measures should not aim to recreate static landscapes or woodland that existed under natural conditions. Very few habitats within the Wentwood can be considered wholly natural because of the long history of human impact. In these circumstances, restoration should focus on restoring those elements of the cultural landscape that are of most benefit to a range of flora and fauna, whilst taking into account factors that present significant issues for future conservation management, such as the adverse effects from projected climate change.  相似文献   

14.
Polyaniline/carbon nanotubes composite (PANI‐CNT) electrochemically deposited onto indium‐tin‐oxide (ITO) coated glass plate has been utilized for Neisseria gonorrhoeae detection by immobilizing 5′‐amino‐labeled Neisseria gonorrhoeae probe (aDNA) using glutaraldehyde as a cross‐linker. PANI‐CNT/ITO and aDNA‐Glu‐PANI‐CNT/ITO electrodes have been characterized using scanning electron microscopy (SEM), Fourier Transform Infrared (FT‐IR) spectroscopy, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). This bioelectrode can be used to detect N. gonorrhoeae using methylene blue (MB) as redox indicator with response time of 60 s and stability of about 75 days when stored under refrigerated conditions. DPV studies reveal that this bioelectrode can detect complementary DNA concentration from 1 × 10?6 M to 1 × 10?17 M with detection limit of 1.2 × 10?17 M. Further, this bioelectrode (aDNA‐Glu‐PANI‐CNT/ITO) exhibits specificity toward N. gonorrhoeae species and shows negative response with non‐Neisseria gonorrhoeae Neisseria species (NgNS) and other gram negative bacteria (GNB). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Identification of units within species worthy of separate management consideration is an important area within conservation. Mitochondrial DNA (mtDNA) surveys can potentially contribute to this by identifying phylogenetic and population structure below the species level. The American crocodile (Crocodylus acutus) is broadly distributed throughout the Neotropics. Its numbers have been reduced severely with the species threatened throughout much of its distribution. In Colombia, the release of individuals from commercial captive populations has emerged as a possible conservation strategy that could contribute to species recovery. However, no studies have addressed levels of genetic differentiation or diversity within C. acutus in Colombia, thus complicating conservation and management decisions. Here, sequence variation was studied in mtDNA cytochrome b and cytochrome oxidase I gene sequences in three Colombian captive populations of C. acutus. Two distinct lineages were identified: C. acutus‐I, corresponding to haplotypes from Colombia and closely related Central American haplotypes; and C. acutus‐II, corresponding to all remaining haplotypes from Colombia. Comparison with findings from other studies indicates the presence of a single “northern” lineage (corresponding to C. acutus‐I) distributed from North America (southern Florida), through Central America and into northern South America. The absence of C. acutus‐II haplotypes from North and Central America indicates that the C. acutus‐II lineage probably represents a separate South American lineage. There appears to be sufficient divergence between lineages to suggest that they could represent two distinct evolutionary units. We suggest that this differentiation needs to be recognized for conservation purposes because it clearly contributes to the overall genetic diversity of the species. All Colombian captive populations included in this study contained a mixture of representatives of both lineages. As such, we recommend against the use of captive‐bred individuals for conservation strategies until further genetic information is available.  相似文献   

16.
Fossil rodent middens are powerful tools in paleoecology. In arid parts of western North America, packrat (Neotoma spp.) middens preserve plant and animal remains for tens of thousands of years. Midden contents are so well preserved that fragments of endogenous ancient DNA (aDNA) can be extracted and analyzed across millennia. Here, we explore the use of shotgun metagenomics to study the aDNA obtained from packrat middens up to 32,000 C14 years old. Eleven Illumina HiSeq 2500 libraries were successfully sequenced, and between 0.11% and 6.7% of reads were classified using Centrifuge against the NCBI “nt” database. Eukaryotic taxa identified belonged primarily to vascular plants with smaller proportions mapping to ascomycete fungi, arthropods, chordates, and nematodes. Plant taxonomic diversity in the middens is shown to change through time and tracks changes in assemblages determined by morphological examination of the plant remains. Amplicon sequencing of ITS2 and rbcL provided minimal data for some middens, but failed at amplifying the highly fragmented DNA present in others. With repeated sampling and deep sequencing, analysis of packrat midden aDNA from well‐preserved midden material can provide highly detailed characterizations of past communities of plants, animals, bacteria, and fungi present as trace DNA fossils. The prospects for gaining more paleoecological insights from aDNA for rodent middens will continue to improve with optimization of laboratory methods, decreasing sequencing costs, and increasing computational power.  相似文献   

17.
Cryptic diversity not only introduces confusion to taxonomic studies, but it also poses major challenges to conservation and environmental legislation. One such troubling group are the Mountain Dragons in the genus Diploderma in Southwest China. Previous studies have suggested that the genus contains considerable cryptic diversity, particularly in the D. flaviceps complex. Owing to taxonomic confusion, micro‐endemic lineages are still neglected by the Chinese wildlife protection laws, despite their urgent conservation needs. Combining multivariate morphological and multi‐locus phylogenetic data, we provide the first integrative systematic revision of the genus Diploderma. Specifically, we confirm that the six examined populations of D. cf. flaviceps from the upper Jinsha and Yalong River Valleys in Sichuan and Yunnan Provinces represent six cryptic, undescribed lineages, and we describe each of them as a new species. With the updated taxonomy and distribution information, we discuss the taxonomy of the D. flaviceps complex in Southwest China, provide an updated diagnostic key along with distributional ranges for all species of the genus, and discuss some of the suspicious records of other congeners in China. Lastly, we evaluate the IUCN status of each of the six new species and highlight the major challenges for Diploderma conservation in China due to delayed environmental legislation and misleading conservation assessments.  相似文献   

18.
Insectivorous bats are integral components of terrestrial ecosystems. Despite this, a growing number of factors causing world‐wide declines in bat populations have been identified. Relatively abundant species are important for bat conservation because of their role in ecosystems and the research opportunities they offer. In addition, species that have been well‐studied present unique opportunities to synthesize information and highlight important areas of focus for conservation and research. This paper focuses on a well‐studied abundant bat, Eptesicus fuscus. I review the relevant literature on habitat use, diet and roost selection by E. fuscus in North America, and highlight important areas of conservation and research for this species, including the effects of roost disturbance, control of economically important insect pests, exposure to pesticides, long‐term monitoring of populations, and the potential consequences of expanding populations. These issues have broad implications for other species and can be used to focus future research and conservation efforts.  相似文献   

19.
Summary Australia’s temperate woodlands are environments of cultural and ecological importance and significant repositories of Australia’s biodiversity. Despite this, they have been heavily cleared, much remaining vegetation is in poor condition and many species of plants and animals are threatened. Here, we provide a brief overview of key issues relating to the ecology, management and policy directions for temperate woodlands, by identifying and discussing ten themes. When addressing issues relating to the conservation and management of temperate woodlands, spatial scale is very important, as are the needs for a temporal perspective and a complementary understanding of pattern and process. The extent of landscape change in many woodland environments means that woodland patches, linear networks and paddock trees are critical elements, and that there can be pervasive effects from ‘problem’ native species such as the Noisy Miner (Manorina melanocephala). These consequences of landscape change highlight the challenge to undertake active management and restoration as well as effective monitoring and long‐term data collection. In developing approaches for conservation and management of temperate woodlands, it is essential to move our thinking beyond reserves to woodland conservation and management on private land, and recognise the criticality of cross‐disciplinary linkages. We conclude by identifying some emerging issues in woodland conservation and management. These include the need to further develop non‐traditional approaches to conservation particularly off‐reserve management; the value of documenting approaches and programmes that demonstrably lead to effective change; new lessons that can be learned from intact examples of temperate woodlands; and the need to recognise how climate change and human population growth will interact with conservation and management of temperate woodlands in future decades.  相似文献   

20.
Many animals and plants that colonize hard surfaces in the sea are sessile and either bore into, or cement themselves permanently to the substrate surface. Because they retain their life positions after fossilization, these sclerobionts offer scope for studying biotic interactions in the fossil record. Encrusting sclerobionts compete actively for living space, with dominant competitors overgrowing the edges of subordinates. In addition to such marginal overgrowths, spatial competition may also occur through fouling in which larvae recruit directly onto the living surfaces of established sclerobionts. Spatial competition has been studied extensively in modern marine communities but there has been little research on competition between encrusters in ancient communities. This reflects poor knowledge of the taxonomy of the sclerobionts involved, as well as problems in distinguishing between overgrowth in vivo and post‐mortem. Nevertheless, if carefully interpreted, the fossil record of sclerobionts can provide an as yet largely unexploited resource for studying the long‐term ecological and evolutionary dynamics of competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号