首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Development of new energetic salts is the key factor in replacing low performance compounds in conventional formulations of high explosives as well as propellants. Ten salts based on the nitroformate anion and various nitrogen-rich cations were designed and their geometric optimizations carried out using the density functional method. With reasonable oxygen balance (from ?36 % to 0 %), heats of formation (47–624 kJ mol?1) and high densities (1.81–1.89 g cm?3), the detonation velocity (D) and pressure (P) values of salts were calculated as 8.62–9.36 km s?1 and 33.10–40.01 GPa, respectively. Lastly, the nitroformate salts studied in this work are of prospective interest as high performance explosives.
Graphical Abstract Formation of nitroformate salt from nitroformate anion and a nitrogen-rich cation
  相似文献   

2.
Ionic liquids (ILs) constitute a fast growing class of compounds finding multiple applications in science and technology. Morpholinium-based ILs (MBILs) and their mixtures with polar molecular co-solvents are interesting as sustainable electrolyte systems for electrochemistry. We investigate local structures of protic and apropic morpholinium cations in acetonitrile (ACN) using semi-empirical molecular dynamics (MD) simulations. An impact of an anion (acetate) on the cation solvation regularities is discussed. Unlike oxygen, nitrogen of the morpholine ring is a strong electrophilic binding center. This site is responsible for the interactions of the cation with the solvent and with the anion. In protic MBILs, the role of nitrogen is delegated to the proton, which is linked to nitrogen. The acetate anion weakens solvation of the cation due to occupation of space near nitrogen or proton. The analysis reveals a favorable solvation of MBILs in ACN, which is a prerequisite for a new high-performance electrolyte system. The reported structural data were validated through point-to-point comparison with the MP2 post-Hartree-Fock theory and density functional theory.
Graphical Abstract Solvation of the morpholinium cation in acetonitrile?
  相似文献   

3.
The density functional theory method using the B3LYP/6-31G(d,p) level of theory was used to perform isoenergetic maps in order to determine the lower energy conformers of four disaccharides constituting alginic acids, which are based on β-D-mannuronic (M) and α-L-guluronic acid (G), called MM, GG, MG, and GM. The preferred structures are combined to monovalent (Li+, Na+, and K+) cations and further fully optimized, and an isoenergetic map corresponding to the complex (MG2?, 2Na+) was performed. Then, the reactivity of MG complexes with mono- and bivalent cations was studied using the global nucleophilic index. The position selectivity was also predicted using the local nucleophilic indices. It was demonstrated that experimental trends of relative reactivity and regioselectivity of the complexes are correctly predicted using these empirical indices of reactivity.
Graphical abstract MM, GG, MG, and GM alginic acid disaccharides and reactivity of the MG metallic complexes
  相似文献   

4.
A perfectly planar Al13+ cluster (CI) and a quasi-planar Al13+ cluster (CII) have been found for the first time. Both clusters have a triangular core surrounded by a set of ten Al atoms in the form of a ring. These cationic clusters have substantial aromatic character. The planar CI cluster has local antiaromatic patches within global aromatic sea. It is doubly aromatic having both σ and π aromatic character. The quasi-planar CII cluster is also aromatic but it has more σ-delocalization.
Graphical abstract Planar and quasi-planar Al13+ clusters with triangular core surrounded by a ring of ten atoms.
  相似文献   

5.
In this article, we explore the capacity of formed Schiff base complexes to trap metal atoms or ions, using their aromatic ends. The intrinsic geometry of each complex defines the process of substitution. Two cases were studied; one involving a trans Schiff base complex and the other considering how a salen ligand, with nickel systems traps chromium. We also assessed the nature of the new bonds and the frontier molecular orbitals.
Graphical abstract Two salen nickel compounds are joint by a Cr(0) atom forming an organometallic interaction.
  相似文献   

6.
Protonation in the two-electron/two-proton reduction processes of 2,6-dichlorophenolindophenolate (DCIP) is investigated combining density functional theory (DFT) and molecular dynamics (MD) methods. DCIP (anion), DCIP?– (radical anion), and DCIP2? (dianion) are considered, including the electronic structure analysis from the prospective of quantum theory of atoms and molecules (QTAIM). It is shown that oxygen on the indophenolate moiety and nitrogen are the first and/or the second proton acceptor sites and their energetic order depends on the total charge of the system. MD simulations of differently charged species interacting with the solvent molecules have been performed for methanol, water, and oxonium cation (H3O+). Methanol and water molecules are found to form only hydrogen bonds with the solute irrespective of its charge. The calculated pKa values show that the imino group of DCIPH? is a weaker acid than water. While in the case of DCIP (and DCIP?–) plus oxonium cation, proton transfer from the solvent to the solute was evidenced for both aforementioned acceptor sites. In addition, MD simulations of bulks containing 15 and 43 molecules of water around the DCIP molecule have been performed, revealing the formation of 2–4 hydrogen bonds.
Graphical Abstract 2,6-Dichlorophenolindophenolate interacts with solvent molecules (water, oxonium cation and methanol). Hydrogen transfer and electronic structure are studied by DFT and molecular dynamics methods
  相似文献   

7.
Bond critical points (BCPs) in the quantum theory of atoms in molecules (QTAIM) are shown to be a consequence of the molecular topology, symmetry, and the Poincaré-Hopf relationship, which defines the numbers of critical points of different types in a scalar field. BCPs can be induced by a polarizing field or by addition of a single non-bonded atom to a molecule. BCPs and their associated bond paths are therefore suggested not to be a suitable means of identifying chemical bonds, or even attractive intermolecular interactions.
Graphical abstract Bond-critical points in QTAIM and weak interactions?
  相似文献   

8.
Theoretical calculations for the first tri-iron-based extended metal atom chain (EMAC) molecule are reported. The studied triple-high-spin (S?=?6) complex exhibits ferromagnetic ordering (according to Ising and spin-projection approximations), which renders it unique among all previously prepared and theoretically calculated EMAC compounds. This ordering originates from the prevailing ferromagnetic nearest-neighbor interactions, while the magnetic superexchange between terminal Fe2+ sites is weaker and antiferromagnetic. Calculations indicate that this linear chain system based on a tri-iron core shows potential for the development of spin-frustrated behavior, which could be achieved through rational modification of the equatorial and axial ligands.
Graphical abstract Effect of d(z2) orbital occupancy on central Fe(II) on spin orientations on termianal Fe(II) ions in extended metal atom chain
  相似文献   

9.
In this article, we explore, both theoretically and experimentally, the general reactivity of alkyl hydrogeno-phenylphosphinates with alcohols. We show that alcohol molecules act exclusively as nucleophilic species, and add to alkyl hydrogeno-phenylphosphinates, leading to pentacoordinated intermediates. These intermediates are shown to subsequently competitively undergo alcohol eliminations and/or Berry pseudorotations. This offers several possible routes for racemizations and/or alcohol exchange reactions. Transition standard Gibbs free energies predicted from DFT calculations for the overall alcohol exchange mechanism are shown to be compatible with those experimentally measured in case ethanol reacts with ethyl hydrogeno-phenylphosphinate (134.5~136.0 kJ mol?1 at 78 °C).
Graphical abstract ?
  相似文献   

10.
The methylxanthines have attracted interest due to the changes on their biological activities and physicochemical properties in terms of the number and position of the methyl groups present in the xanthine moiety. We report a theoretical study of the influence of the methyl substituent in the basicity and reactivity of xanthine and its methylated derivatives. Our results provide that when the xanthine increases the number of methyl substituents, the gas phase basicity increases (reactivity to proton increases), and the global hardness decreases. The result is in agreement with the maximum hardness principle (MHP) that states, “at equilibrium, chemical systems are as hard as possible” (Pearson, R.G., J. Chem. Educ., 1987, 64, 561–567, and Parr R.G., Chattaraj P.K., J. Am. Chem. Soc. 1991, 113, 1854–1855).
Graphical abstract Xanthine and its methyl derivatives
  相似文献   

11.
Unknown force-field parameters for metal organic beryllium complexes used in emitting and electron transporting layers of OLED structures are determined. These parameters can be used for the predictive atomistic simulations of the structure and properties of amorphous organic layers containing beryllium complexes. The parameters are found for the AMBER force field using a relaxed scan procedure and quantum-mechanical DFT calculations of potential energy curves for specific internal (angular) coordinates in a series of three Be complexes (Bebq2; Be(4-mpp)2; Bepp2). The obtained parameters are verified in calculations of some molecular and crystal structures available from either quantum-mechanical DFT calculations or experimental data.
Graphical Abstract Beryllium complexes in amorphous layers?
  相似文献   

12.
Coarse-grained force field (CGFF) methods were applied to study the self-assembly of sodium dodecyl sulfate with fragrance additives. The CGFF parameters were parameterized and validated using experimental and all-atom simulation data. Direct molecular dynamics simulations were carried out to characterize the initial aggregation, partitioning of fragrances, and chemical potentials of the surfactant and fragrance molecules in aggregates of different sizes. The equilibrium critical micelle concentrations (CMCs) and micelle size distributions, which could not be obtained by direct simulation, were predicted using the calculated chemical potentials in combination with a thermodynamic model. The predicted partitioning of fragrances, CMCs, micelle sizes, and micelle structures agree well with previously reported experimental data.
Graphical abstract Enhancement of micelle size distribution using thermodynamic model
  相似文献   

13.
Complexes of the dipeptide phenylalanine–phenylalanine (Phe–Phe) with divalent metal cations (Cu2+, Zn2+, Ca2+ and Ba2+) were studied at the B3LYP and MP2 levels of theory with the basis sets 6-311++G(d,p) and 6-31 + G(d) in the gas phase. The relative energies of these complexes indicated that cation–π bidentate/tridentate conformations are more favourable than other conformations with uncoordinated rings. These findings were confirmed by the calculated values of thermodynamic parameters such as the Gibbs free energy. Natural bond orbital (NBO) analysis was carried out to explore the metal–ligand coordination in Phe–Phe–Cu2+/Zn2+ complexes. Possible orbital transitions, types of orbitals and their occupancies were determined for a range of Phe–Phe–Cu2+/Zn2+ complexes. The charge transfer involved in various orbital transitions was explored by considering the second-order perturbation energy. NBO analysis revealed that the change transfer is stronger when the metal cation uses both the 4s + 4p subshells rather than just its 4p subshell. We also performed molecular dynamics (MD) simulations to check the stability and consistency of the most favourable binding motifs of Cu2+, Zn2+, Ca2+ and Ba2+ with Phe–Phe over time. The structures of the Phe–Phe–Cu2+/Zn2+/Ca2+/Ba2+ complexes obtained using MD simulation were found to be in good agreement with those obtained in the DFT-based calculations.
Graphical Abstract Conformational search on encapsulation of divalent metal cations (Ca2+, Zn2+, Ca2+, Ba2+) by the Phe-Phe dipeptide
  相似文献   

14.
The structures of the 4,4′,4″-tris(N,N-phenyl-3-methylphenylamino)triphenylamine (m-MTDATA) molecule and its dimer in their neutral and positively charged forms were studied by performing quantum-chemical calculations at the Hartree?Fock (HF) and density functional theory (DFT) levels of theory using several exchange-correlation functionals (PBE, PBE0, BHANDHLYP, and M06-HF) with different percentages of HF exchange. It was found that there are at least four possible isomeric structures of m-MTDATA with different (planar or perpendicular) arrangements of the peripheral diphenylamino groups. The charge localization in the monomeric and dimeric cationic species was also determined. The results indicated that the charge on the dimeric cation is localized on the central region or on the side fragment of the cationic part of the dimer, depending on the dimer structure. DFT calculations showed a tendency to overestimate the charge delocalization over the molecule, irrespective of the percentage of HF exchange applied.
Graphical abstract Structure of an m-MTDATA dimer cation.
  相似文献   

15.
MP2/aug-cc-pVTZ calculations were performed for complexes linked by hydrogen bonds. Three types of proton donating species were taken into account: H2O, CCl3H, and H3O+. These calculations are supported by the natural bond orbital (NBO) method and the quantum theory of atoms in molecules (QTAIM) approach. Numerous correlations between parameters of H-bonded systems were found. The most important are those which show the response of the system on the H-bond formation; for example, the increase of polarization of the A-H bond correlates with the strength of the hydrogen bond. Similar relationships were found for the σ-hole bonds while the π-hole bonds do not follow the trends known for the hydrogen bonds.
Graphical abstract Hydrogen bonds and other interactions as a response to protect doublet/octet electron structure?
  相似文献   

16.
17.
New ionic liquids (ILs) involving increasing numbers of organic and inorganic ions are continuously being reported. We recently developed a new force field; in the present work, we applied that force field to investigate the structural properties of a few novel imidazolium-based ILs in aqueous mixtures via molecular dynamics (MD) simulations. Using cluster analysis, radial distribution functions, and spatial distribution functions, we argue that organic ions (imidazolium, deprotonated alanine, deprotonated methionine, deprotonated tryptophan) are well dispersed in aqueous media, irrespective of the IL content. Aqueous dispersions exhibit desirable properties for chemical engineering. The ILs exist as ion pairs in relatively dilute aqueous mixtures (10 mol%), while more concentrated mixtures feature a certain amount of larger ionic aggregates.
Graphical abstract Hydration of amino acid based cations
  相似文献   

18.
The local and condensed Fukui functions as well as the principle of hard and soft acids and bases were used to study the addition of free radicals to the exocyclic and endocyclic double bonds of seven monocyclic monoterpenes of formula C10H16. The results obtained showed that, in general, the most reactive double bond was the one with the most substituents on the double-bonded carbon atoms, and that the reaction of a double bond with an electrophile is a soft–soft interaction. The effects of substituents on the double-bonded carbon atoms and the stabilization of the monoterpenes were interpreted by invoking hyperconjugated structures, which led us to propose a simple rule: the larger the value of the Fukui function for the double bond, the greater the hyperconjugative stabilization and the susceptibility of the double bond to electrophilic attack. In general, our results are in good accordance with relevant experimental and theoretical results published in the literature.
Graphical abstract The specific electrophilic addition to monocyclic monoterpenes.
  相似文献   

19.
20.
A post-calculation correction is established for PM7 band gaps of transition-metal oxides. The correction is based on the charge on the metal cation of interest, as obtained from MOPAC PM7 calculations. Application of the correction reduces the average error in the PM7 band gap from ~3 eV to ~1 eV. The residual error after correction is shown to be uncorrelated to the Hartree–Fock method upon which PM7 is based.
Graphical Abstract Comparison between calculated band gaps and experimental band gaps for binary oxides. The orange crosses are for corrected PM7 band gaps. Blue squares are uncorrected values. The orange crosses fall closer to the diagonal dashed line, showing an overall improvement of the accuracy of calculated values
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号