首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temporal mismatch hypothesis suggests that fitness is related to the degree of temporal synchrony between the energetic needs of the offspring and their food supply. The hypothesis has been a basis in studying the influence of climate warming on nature. This study enhances the knowledge on prevalence of temporal mismatches and their consequences in boreal populations, and questions the role of the temporal mismatch hypothesis as the principal explanation for the evolution of timing of breeding. To test this, we examined if synchrony with caterpillar prey or timing of breeding per se better explains reproductive output in North European parid populations. We compared responses of temperate-origin species, the great tit (Parus major) and the blue tit (Cyanistes caeruleus), and a boreal species, the willow tit (Poecile montanus). We found that phenologies of caterpillars and great tits, but not of blue tits, have advanced during the past decades. Phenologies correlated with spring temperatures that may function as cues about the timing of the food peak for great and blue tits. The breeding of great and blue tits and their caterpillar food remained synchronous. Synchrony explained breeding success better than timing of breeding alone. However, the synchrony effect arose only in certain conditions, such as with high caterpillar abundances or high breeding densities. Breeding before good synchrony seems advantageous at high latitudes, especially in the willow tit. Thus, the temporal mismatch hypothesis appears insufficient in explaining the evolution of timing of breeding.  相似文献   

2.
Phenological shifts and associated changes in the temporal match between trophic levels have been a major focus of the study of ecological consequences of climate change. Previously, the food peak has been thought to respond as an entity to warming temperatures. However, food peak architecture, that is, timings and abundances of prey species and the level of synchrony between them, determines the timing and shape of the food peak. We demonstrate this with a case example of three passerine prey species and their predator. We explored temporal trends in the timing, height, width, and peakedness of prey availabilities and explained their variation with food peak architecture and ambient temperatures of prebreeding and breeding seasons. We found a temporal match between the predator's breeding schedule and food availability. Temporal trends in the timing of the food peak or in the synchrony between the prey species were not found. However, the food peak has become wider and more peaked over time. With more peaked food availabilities, predator's breeding success will depend more on the temporal match between its breeding schedule and the food peak, ultimately affecting the timing of breeding in the predator population. The height and width of the food peak depended on the abundances and breeding season lengths of individual prey species and their reciprocal synchronies. Peakednesses of separate prey species' availability distributions alone explained the peakedness of the food peak. Timing and quantity of food production were associated with temperatures of various time periods with variable relevance in different prey species. Alternating abundances of early and late breeding prey species caused high annual fluctuation in the timing of the food peak. Interestingly, the food peak may become later even when prey species' schedules are advanced. Climate warming can thus produce unexpected changes in the food availabilities, intervening in trophic interactions.  相似文献   

3.
Climate warming is pronounced in the Arctic and migratory birds are expected to be among the most affected species. We examined the effects of local and regional climatic variations on the breeding phenology and reproductive success of greater snow geese ( Chen caerulescens atlantica ), a migratory species nesting in the Canadian Arctic. We used a long-term dataset based on the monitoring of 5447 nests and the measurements of 19 234 goslings over 16 years (1989–2004) on Bylot Island. About 50% of variation in the reproductive phenology of individuals was explained by spring climatic factors. High mean temperatures and, to a lesser extent, low snow cover in spring were associated with an increase in nest density and early egg-laying and hatching dates. High temperature in spring and high early summer rainfall were positively related to nesting success. These effects may result from a reduction in egg predation rate when the density of nesting geese is high and when increased water availability allows females to stay close to their nest during incubation recesses. Summer brood loss and production of young at the end of the summer increased when values of the summer Arctic Oscillation (AO) index were either very positive (low temperatures) or very negative (high temperatures), indicating that these components of the breeding success were most influenced by the regional summer climate. Gosling mass and size near fledging were reduced in years with high spring temperatures. This effect is likely due to a reduced availability of high quality food in years with early spring, either due to food depletion resulting from high brood density or a mismatch between hatching date of goslings and the timing of the peak of plant quality. Our analysis suggests that climate warming should advance the reproductive phenology of geese, but that high spring temperatures and extreme values of the summer AO index may decrease their reproductive success up to fledging.  相似文献   

4.
Paula C. Dias  Jacques Blondel 《Ibis》1996,138(4):644-649
We analysed the relationship between the timing of food availability and within-season variation of both reproductive success and nestling body size of Blue Tits Parus caeruleus in Mediterranean habitats. Synchronization between food supply and reproduction was expected to be positively related to fitness components. We measured deviation from maximum food supply using a parameter that we called “time-lag”, which quantifies the degree of synchronization between the date of maximum food requirements by the nestlings and the date of maximum caterpillar supply in the habitat. This parameter was expected to be related to reproductive success as measured by the number and body-condition of fledglings. The predictions were that time-lag should be negatively correlated with the proportion of nestlings raised to fledging and the size of the fledglings. These predictions have been tested in different types of habitat. The results demonstrate that caterpillar supply during a critical nestling period can have a strong influence on fitness components. As predicted, synchronization with caterpillar supply is positively related to the number and body size of fledglings. Since there is large between-habitat variation in the timing of food supply, the key issue seems to be the adjustment to local patterns of food availability.  相似文献   

5.
1.?Climate warming has led to shifts in the seasonal timing of species. These shifts can differ across trophic levels, and as a result, predator phenology can get out of synchrony with prey phenology. This can have major consequences for predators such as population declines owing to low reproductive success. However, such trophic interactions are likely to differ between habitats, resulting in differential susceptibility of populations to increases in spring temperatures. A mismatch between breeding phenology and food abundance might be mitigated by dietary changes, but few studies have investigated this phenomenon. Here, we present data on nestling diets of nine different populations of pied flycatchers Ficedula hypoleuca, across their breeding range. This species has been shown to adjust its breeding phenology to local climate change, but sometimes insufficiently relative to the phenology of their presumed major prey: Lepidoptera larvae. In spring, such larvae have a pronounced peak in oak habitats, but to a much lesser extent in coniferous and other deciduous habitats. 2.?We found strong seasonal declines in the proportions of caterpillars in the diet only for oak habitats, and not for the other forest types. The seasonal decline in oak habitats was most strongly observed in warmer years, indicating that potential mismatches were stronger in warmer years. However, in coniferous and other habitats, no such effect of spring temperature was found. 3.?Chicks reached somewhat higher weights in broods provided with higher proportions of caterpillars, supporting the notion that caterpillars are an important food source and that the temporal match with the caterpillar peak may represent an important component of reproductive success. 4.?We suggest that pied flycatchers breeding in oak habitats have greater need to adjust timing of breeding to rising spring temperatures, because of the strong seasonality in their food. Such between-habitat differences can have important consequences for population dynamics and should be taken into account in studies on phenotypic plasticity and adaptation to climate change.  相似文献   

6.
García-Navas V  Sanz JJ 《Oecologia》2011,165(3):639-649
Insectivorous birds rely on a short period of food abundance to feed their young; they must time their reproduction to match the timing of Lepidoptera larvae, their main prey. Apart from the net result (i.e. birds are timed or mistimed with respect to the food's peak), an important aspect is the possible influence of other factors, such as the seasonality of the environment or the abundance and diversity of species contributing to the caterpillar peak, on birds' phenology and their ability to cope well with unpredictable food supplies. In a 2-year study, we explored the seasonal variation of nestling diet in Mediterranean blue tits Cyanistes caeruleus and how reproductive parameters (nestling condition, provisioning rates) are affected by the phenology and composition of food. We also examined the influence of the synchrony between offspring needs and caterpillar peak in shaping the composition of the nestlings' diet. We found that the effect of synchrony on nestling condition varied between years which may be partially due to differences in food peak attributes. The adequacy of birds' timing in relation to prey phenology affected foraging decisions; those birds that were not able to correctly adjust their timing were forced to rely on less preferred prey (tortricids). In this sense, we found that relative contribution of tortricids (smaller caterpillars but easier to get) and noctuids (preferred prey but more difficult to find) to the diet influenced nestling condition and parental provisioning effort; parents performed fewer feeding events and reared heavier nestlings as the contribution of noctuids to the diet increased. The relationship between the proportion of caterpillars and nestling mass was curvilinear, whereas that parameter was negatively affected by the percentage of pupae. Our results show how changes in diet composition may contribute to explain the effect of mismatching on birds' breeding performance.  相似文献   

7.
Variation in climatic conditions is an important driving force of ecological processes. Populations are under selection to respond to climatic changes with respect to phenology of the annual cycle (e.g. breeding, migration) and life‐history. As teleconnections can reflect climate on a global scale, the responses of terrestrial animals are often investigated in relation to the El Niño‐Southern Oscillation and North Atlantic Oscillation. However, investigation of other teleconnections and local climate is often neglected. In this study, we examined over a 33‐year period the relationships between four teleconnections (El Niño‐Southern Oscillation, North Atlantic Oscillation, Arctic Oscillation, East Atlantic Pattern), local weather parameters (temperature and precipitation) and reproduction in great tits Parus major and blue tits Cyanistes caeruleus in the Carpathian Basin, Hungary. Furthermore, we explored how annual variations in the timing of food availability were correlated with breeding performance. In both species, annual laying date was negatively associated with the Arctic Oscillation. The date of peak abundance of caterpillars was negatively associated with local temperatures in December–January, while laying date was negatively related to January–March temperature. We found that date of peak abundance of caterpillars and laying date of great tits advanced, while in blue tits clutch size decreased over the decades but laying date did not advance. The results suggest that weather conditions during the months that preceded the breeding season, as well as temporally more distant winter conditions, were connected to breeding date. Our results highlight that phenological synchronization to food availability was different between the two tit species, namely it was disrupted in blue tits only. Additionally, the results suggest that in order to find the climatic drivers of the phenological changes of organisms, we should analyze a broader range of global meteorological parameters.  相似文献   

8.
In many forest passerine bird species, rapid climate warming has led to a phenological mismatch between the period of maximum nestlings' food requirements and the period of maximum food availability (seasonal caterpillar biomass peak) due to an insufficient advancement of the birds' laying dates. The initiation of laying is preceded by the development of the gonads, which in birds are regressed outside the breeding season. Increasing day length in late winter and early spring triggers a cascade of hormones which induces gonadal development. Since day length is not altered by climate change, one potential restriction to advancing laying date is the seasonal timing of gonadal development. To assess the importance of gonadal growth for timing of reproduction we experimentally manipulated the timing of gonadal development. We show that the growth of the largest follicle of captive female great tits (Parus major) increased after being exposed to just a single long day in winter (20 hours of light followed by 4 hours darkness). We then photostimulated wild female great tits from two study areas in a field experiment in spring for a single day and determined their laying date. These populations differed in the availability of food allowing us to test if food availability in combination with photostimulation affected egg laying dates. Despite an expected difference in the onset of gonadal growth, laying dates of photostimulated females did not differ from control females in both populations. These results suggest that wild great tits are not restricted in the advancement of their laying date by limited gonadal development.  相似文献   

9.
Complex changes in phenological events appear as temperatures are increasing: In deciduous forests bud burst, hatching of herbivorous caterpillars, egg laying and nestling time of birds when feeding chicks on caterpillars, may differentially shift into early season and alter synchronization. If timing of bird reproduction has to match with short periods of food availability, phenological mismatch could negatively affect reproductive success. Using a unique empirical approach along an altitudinal temperature gradient, we firstly asked whether besides temperature, also precipitation and leaf phenology interplay and affect caterpillar biomass, since impacts of rainfall on caterpillars have been largely neglected so far. Secondly, we asked whether abundance of caterpillars and thereby body mass of great tit nestlings, which are mainly fed with caterpillars, vary along the altitudinal temperature gradient. We demonstrated that next to temperature also precipitation and leaf phenology affected caterpillar biomass. In our beech forest, even along altitudes, caterpillars were available throughout the great tit breeding season but in highly variable amounts. Our findings revealed that although timing of leaf phenology and great tit breeding season were delayed with decreasing temperature, caterpillars occurred synchronously and were not delayed according to altitude. However, altitude negatively affected caterpillar biomass, but body mass of fledglings at high altitude sites was not affected by lower amounts of caterpillar biomass. This might be partially outweighed by larger territory sizes in great tits.  相似文献   

10.
Great tits Parus major have generally much poorer breeding success in northern Finland than in mid- and western Europe. The aim of this study is to find out whether the poor success is linked to foraging behaviour. This was studied by monitoring great tits' foraging behaviour and food abundance in different substrates during the breeding cycle in two populations, N Finland (65°N) and Latvia (56°N). It was shown that breeding success, from eggs to fledglings, was significantly poorer (56% vs. 93%) and caterpillar abundance considerably lower in the northern population. The general patterns in foraging behaviour were the same in N Finland and Latvia (especially the preference of birches Betula spp.) indicating that great tits used basically the same species-typical foraging strategy in both populations. However, thin branches of birch were preferred in the north but avoided in Latvia, which may suggest that northern great tits have changed their foraging niche towards the outer parts of canopy, a niche typically occupied by the blue tit. This shift is theoretically advantageous, since the outer parts of the canopy are the richest caterpillar source. In practice, however, the poorer success of great tits indicates that this is not a beneficial strategy. Primarily, great tits in the northern population seem to be food limited since they lay too large clutches in relation to accessible food resources. This may be because great tits are not adapted to lower caterpillar production in the northern margins of their distribution and cannot change their narrow diet (3/4 caterpillars), like e.g. willow tits can. In search for caterpillars, food accessibility is further limited because the great tits' normal foraging behaviour, with wide search radius, may not function properly in the denser, outer parts of the canopy. Great tits may also be too heavy to forage efficiently on leafed twigs.  相似文献   

11.
The effects of caterpillar food supply on the breeding performance of a population of the Japanese great tit Parus major minor were investigated. Since more than 90% of the food items in our study site were caterpillars living on trees, we estimated the food availability using 20 frass traps per hectare. The sampling error of this method was about 10% on average, which was accurate enough to detect differences between territories. Food abundance at laying in each territory affected the timing of egg laying. However, food amount after hatching was correlated with clutch size. No relationship was found between fledgling quality and food availability, probably because the effects of local variation in food abundance could be canceled out by parental effort such as extending the foraging area. There was a significant negative correlation between the length of the nestling period and food availability. We suggest that parent tits decide the timing of fledging at the point where two factors, predation risk before fledging and additional improvement of nestling quality, are balanced. Food availability just after fledging affected the length of post-fledging parental care; it seems that fledglings in “poor” territories would have had difficulty in finding food and hence needed to depend on their parents longer than those in “rich” territories. Received: 10 June 1997 / Accepted: 29 December 1997  相似文献   

12.
Diets play a key role in understanding trophic interactions. Knowing the actual structure of food webs contributes greatly to our understanding of biodiversity and ecosystem functioning. The research of prey preferences of different predators requires knowledge not only of the prey consumed, but also of what is available. In this study, we applied DNA metabarcoding to analyze the diet of 4 bird species (willow tits Poecile montanus, Siberian tits Poecile cinctus, great tits Parus major and blue tits Cyanistes caeruleus) by using the feces of nestlings. The availability of their assumed prey (Lepidoptera) was determined from feces of larvae (frass) collected from the main foraging habitat, birch (Betula spp.) canopy. We identified 53 prey species from the nestling feces, of which 11 (21%) were also detected from the frass samples (eight lepidopterans). Approximately 80% of identified prey species in the nestling feces represented lepidopterans, which is in line with the earlier studies on the parids' diet. A subsequent laboratory experiment showed a threshold for fecal sample size and the barcoding success, suggesting that the smallest frass samples do not contain enough larval DNA to be detected by high‐throughput sequencing. To summarize, we apply metabarcoding for the first time in a combined approach to identify available prey (through frass) and consumed prey (via nestling feces), expanding the scope and precision for future dietary studies on insectivorous birds.  相似文献   

13.
For organisms living in seasonal environments, synchronizing the peak energetic demands of reproduction with peak food availability is a key challenge. Understanding the extent to which animals can adjust behavior to optimize reproductive timing, and the cues they use to do this, is essential for predicting how they will respond to future climate change. In birds, the timing of peak energetic demand is largely determined by the timing of clutch initiation; however, considerable alterations can still occur once egg laying has begun. Here, we use a wild population of great tits (Parus major) to quantify individual variation in different aspects of incubation behavior (onset, duration, and daily intensity) and conduct a comprehensive assessment of the causes and consequences of this variation. Using a 54‐year dataset, we demonstrate that timing of hatching relative to peak prey abundance (synchrony) is a better predictor of reproductive success than clutch initiation or clutch completion timing, suggesting adjustments to reproductive timing via incubation are adaptive in this species. Using detailed in‐nest temperature recordings, we found that postlaying, birds improved their synchrony with the food peak primarily by varying the onset of incubation, with duration changes playing a lesser role. We then used a sliding time window approach to explore which spring temperature cues best predict variance in each aspect of incubation behavior. Variation in the onset of incubation correlated with mean temperatures just prior to laying; however, incubation duration could not be explained by any of our temperature variables. Daily incubation intensity varied in response to daily maximum temperatures throughout incubation, suggesting female great tits respond to temperature cues even in late stages of incubation. Our results suggest that multiple aspects of the breeding cycle influence the final timing of peak energetic demand. Such adjustments could compensate, in part, for poor initial timing, which has significant fitness impacts.  相似文献   

14.
Timing of reproduction can influence individual fitness whereby early breeders tend to have higher reproductive success than late breeders. However, the fitness consequences of timing of breeding may also be influenced by environmental conditions after the commencement of breeding. We tested whether ambient temperatures during the incubation and early nestling periods modulated the effect of laying date on brood size and dominant juvenile survival in gray jays (Perisoreus canadensis), a sedentary boreal species whose late winter nesting depends, in part, on caches of perishable food. Previous evidence has suggested that warmer temperatures degrade the quality of these food hoards, and we asked whether warmer ambient temperatures during the incubation and early nestling periods would be associated with smaller brood sizes and lower summer survival of dominant juveniles. We used 38 years of data from a range‐edge population of gray jays in Algonquin Provincial Park, Ontario, where the population has declined over 50% since the study began. Consistent with the “hoard‐rot” hypothesis, we found that cold temperatures during incubation were associated with larger brood sizes in later breeding attempts, but temperatures had little effect on brood size for females breeding early in the season. This is the first evidence that laying date and temperature during incubation interactively influence brood size in any bird species. We did not find evidence that ambient temperatures during the incubation period or early part of the nestling period influenced summer survival of dominant juveniles. Our findings provide evidence that warming temperatures are associated with some aspects of reduced reproductive performance in a species that is reliant on cold temperatures to store perishable food caches, some of which are later consumed during the reproductive period.  相似文献   

15.
Capsule Folivorous caterpillars constituted the majority of nestlings’ food in a primeval forest. Blue Tit broods only partially matched the caterpillar peak, and the mismatch did not affect food composition or nesting success.

Aims To describe factors influencing the timing of reproduction in Blue Tits under primeval conditions (Bia?owie?a National Park, Poland) and to check whether they schedule breeding so as to synchronize broods with a seasonal caterpillar peak.

Methods We gathered information on phenology of leaf development, seasonal availability of folivorous caterpillars (frass collection), timing of Blue Tit breeding, composition of its nestling food, and nest fate over a three-year period.

Results Caterpillars constituted c. 74% of nestling diet, but only 17–65% of broods matched the caterpillar peak in any season. Neither total nest loss, nor frequency of brood reduction depended on the level of mismatch. Caterpillar availability was probably adequate every year, regardless of the amount of mismatch, and no selective advantage of precise matching was detectable. Phenological events at all trophic levels occurred earlier in warmer springs. Egg-laying coincided with tree bud burst and appearance of caterpillars, but was not critically dependent on their timing.

Conclusion The observations are consistent with the view that Blue Tits under primeval conditions in Bia?owie?a National Park, Poland, breed as early as possible, rather than synchronizing their breeding with the caterpillar peak later in the season.  相似文献   

16.
The increase in spring temperatures in temperate regions over the last two decades has led to an advancing spring phenology, and most resident birds have responded to it by advancing their onset of breeding. The pied flycatcher (Ficedula hypoleuca) is a long‐distance migrant bird with a relatively late onset of breeding with respect to both resident birds and spring phenology in Europe. In the present correlational study, we show that some fitness components of pied flycatchers are suffering from climate change in two of the southernmost European breeding populations. In both montane study areas, temperature during May increased between 1980 and 2000 and an advancement of oak leafing was detected by using the normalized difference vegetation index (NDVI) to assess tree phenology. This might result in an advancement of the peak in availability of caterpillars, the main prey during the nestling stage. Over the past 18 yr, the time of egg laying and clutch size of pied flycatchers were not affected by the increase in spring temperatures in these Mediterranean populations. However, this increase seems to have an adverse effect on the reproductive output of pied flycatchers over the same period. Our data suggest that the mismatch between the timing of peak food supply and nestling demand caused by recent climate change might result in a reduction of parental energy expenditure that is reflected in a reduction of nestling growth and survival of fledged young in our study populations. The data seem to indicate that the breeding season has not shifted and it is the environment that has shifted away from the timing of the pied flycatcher breeding season. Mediterranean pied flycatchers were not able to advance their onset of breeding, probably, because they are constrained by their late arrival date and their restricted high altitude breeding habitat selection near the southern border of their range.  相似文献   

17.
Phenological advances and trophic mismatches are frequently reported ecological consequences of climate warming. Trophic mismatches occur when phenological responses to environmental conditions differ among trophic levels such that the timing of resource demand by consumers becomes decoupled from supply. We used 25 years of demographic measurements of a migratory songbird (the black‐throated blue warbler Setophaga caerulescens) to compare its breeding phenology to the phenology of both its caterpillar prey and the foliage on which caterpillars feed. Caterpillar biomass in this forest did not show a predictable seasonal pulse. Nest initiation by warblers in this northern hardwood forest was therefore not timed to coincide with a peak in food availability for nestlings. Nonetheless, timing of first clutches was strongly associated with spring leaf expansion (slope ± SE = 0.56 ± 0.08 days per day of change in leaf phenology, R2 = 0.66). Warblers adjusted the timing of breeding to early springs mainly by shortening the interval between arrival and clutch initiation, but this likely has limits because recent early springs are approaching the relatively inflexible dates when birds arrive on the breeding grounds. Although the timing of first nests did not match 1:1 with leaf‐out phenology, the adjustments in breeding time maximized mean annual reproductive success. Nest predation had the greatest effect on annual reproductive success, but the ability of nesting warblers to appropriately track leaf phenology accounted for effects on annual reproductive success comparable to the influence of variation in caterpillar abundance and conspecific density. Nesting phenology in black‐throated blue warblers was generally well matched to the timing of leaf‐out, even though the match was not 1:1. Without measurements of reproductive success, these unequal phenological shifts might otherwise have been interpreted as having negative ecological consequences.  相似文献   

18.
19.
Certain populations of long‐distance migratory birds are suffering declines, which may be attributed to effects of climate change. In this article, we have analysed a long‐term (1991–2015) data set on a pied flycatcher Ficedula hypoleuca population breeding in nest‐boxes in a Mediterranean montane oak forest, exploring the trends in population size due to changes in nestling recruitment, female survival and female immigration. We have related these changes in population parameters to local climate, winter NAO index and to breeding density. During the last 25 yr the population has declined by half, mainly in association with a decrease in nestling mass and structural size which had repercussions on the probability of nestling recruitment to the population. Lower local nestling recruitment in certain years was linked to lower female immigration rate in the same years. On the other hand, the local survival of females remained stable throughout the study period. Laying date and breeding success were negatively affected by local temperatures while breeding, recruitment rate likewise by minimum temperature prior to breeding in April. As minimum April temperatures have increased across the study period, this may have affected recruitment and immigration rates negatively. On the other hand, tarsus length and body mass of nestlings were positively associated with winter NAO index, pointing to more global climatic links. Moreover, there was also a negative temporal trend in body mass of adults, implying increasingly difficult conditions for breeding. Declining recruit production in the study area could be attributed to a mismatch between the timing of arrival and breeding in the population, and the peak of food availability in this area.  相似文献   

20.
The amount of food resources available to upper‐level consumers can show marked variations in time and space, potentially resulting in food limitation. The availability of food resources during reproduction is a key factor modulating variation in reproductive success and life‐history tradeoffs, including patterns of resource allocation to reproduction versus self‐maintenance, ultimately impacting on population dynamics. Food provisioning experiments constitute a popular approach to assess the importance of food limitation for vertebrate reproduction. In this study of a mesopredatory avian species, the lesser kestrel Falco naumanni, we provided extra food to breeding individuals from egg laying to early nestling rearing. Extra food did not significantly affect adult body condition or oxidative status. However, it increased the allocation of resources to flight feathers moult and induced females to lay heavier eggs. Concomitantly, it alleviated the costs of laying heavier eggs for females in poor body condition, and reduced their chances of nest desertion (implying complete reproductive failure). Extra food provisioning improved early nestling growth (body mass and feather development). Moreover, extra food significantly reduced the negative effects of ectoparasites on nestling body mass, while fostering forearm (a flight apparatus trait) growth among highly parasitized nestlings. Our results indicate that lesser kestrels invested the extra food mainly to improve current reproduction, suggesting that population growth in this species can be limited by food availability during the breeding season. In addition, extra food provisioning reduced the costs of the moult–breeding overlap and affected early growth tradeoffs by mitigating detrimental ectoparasite effects on growth and enhancing development of the flight apparatus with high levels of parasitism. Importantly, our findings suggest that maternal condition is a major trait modulating the benefits of extra food to reproduction, whereby such benefits mostly accrue to low‐quality females with poor body condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号