首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha-1. As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm2 yr-1. Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha-1 yr-1, a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important.  相似文献   

2.
Globally, carbon‐rich mangrove forests are deforested and degraded due to land‐use and land‐cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25‐years LULCC chronosequence. Field‐based assessments were conducted across 255 plots covering undisturbed and LULCC‐affected mangroves (0‐, 5‐, 10‐, 15‐ and 25‐year‐old post‐harvest or regenerating forests as well as 15‐year‐old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182–2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha?1 year?1. This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long‐term land‐use changes affect carbon loss and gain to a substantial degree. Therefore, current land‐based climate policies must incorporate landscape and land‐use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.  相似文献   

3.
Carbon emissions from tropical land‐use change are a major uncertainty in the global carbon cycle. In African woodlands, small‐scale farming and the need for fuel are thought to be reducing vegetation carbon stocks, but quantification of these processes is hindered by the limitations of optical remote sensing and a lack of ground data. Here, we present a method for mapping vegetation carbon stocks and their changes over a 3‐year period in a > 1000 km2 region in central Mozambique at 0.06 ha resolution. L‐band synthetic aperture radar imagery and an inventory of 96 plots are combined using regression and bootstrapping to generate biomass maps with known uncertainties. The resultant maps have sufficient accuracy to be capable of detecting changes in forest carbon stocks of as little as 12 MgC ha?1 over 3 years with 95% confidence. This allows characterization of biomass loss from deforestation and forest degradation at a new level of detail. Total aboveground biomass in the study area was reduced by 6.9 ± 4.6% over 3 years: from 2.13 ± 0.12 TgC in 2007 to 1.98 ± 0.11 TgC in 2010, a loss of 0.15 ± 0.10 TgC. Degradation probably contributed 67% (96.9 ± 91.0 GgC) of the net loss of biomass, but is associated with high uncertainty. The detailed mapping of carbon stock changes quantifies the nature of small‐scale farming. New clearances were on average small (median 0.2 ha) and were often additions to already cleared land. Deforestation events reduced biomass from 33.5 to 11.9 MgC ha?1 on average. Contrary to expectations, we did not find evidence that clearances were targeted towards areas of high biomass. Our method is scalable and suitable for monitoring land cover change and vegetation carbon stocks in woodland ecosystems, and can support policy approaches towards reducing emissions from deforestation and degradation (REDD).  相似文献   

4.
Distribution of aboveground live biomass in the Amazon basin   总被引:7,自引:0,他引:7  
The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land‐cover and land‐use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site‐specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old‐growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300 Mg ha−1 here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300 Mg ha−1. Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200 Mg ha−1. The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and belowground biomass, is 86 Pg C with ±20% uncertainty.  相似文献   

5.
We estimated carbon and nitrogen stocks in aboveground biomass (AGB) and belowground biomass (BGB) along an elevation range in forest sites located on the steep slopes of the Serra do Mar on the north coast of the State of São Paulo, southeast Brazil. In elevations of 100 m (lowland), 400 m (submontane), and 1000 m (montane) four 1-ha plots were established, and above- (live and dead) and belowground (live and dead) biomass were determined. Carbon and nitrogen concentrations in each compartment were determined and used to convert biomass into carbon and nitrogen stocks. The carbon aboveground stock (CAGB) varied along the elevation range from approximately 110 to 150 Mg·ha−1, and nitrogen aboveground stock (NAGB), varied from approximately 1.0 to 1.9 Mg·ha−1. The carbon belowground stock (CBGB) and the nitrogen belowground stock (NBGB) were significantly higher than the AGB and varied along the elevation range from approximately 200–300 Mg·ha−1, and from 14 to 20 Mg·ha−1, respectively. Finally, the total carbon stock (CTOTAL) varied from approximately 320 to 460 Mg·ha−1, and the nitrogen total stock (NTOTAL) from approximately 15 to 22 Mg·ha−1. Most of the carbon and nitrogen stocks were found belowground and not aboveground as normally found in lowland tropical forests. The above- and belowground stocks, and consequently, the total stocks of carbon and nitrogen increased significantly with elevation. As the soil and air temperature also decreased significantly with elevation, we found a significantly inverse relationship between carbon and nitrogen stocks and temperature. Using this inverse relationship, we made a first approach estimate that an increase of 1°C in soil temperature would decrease the carbon and nitrogen stocks in approximately 17 Mg·ha−1 and 1 Mg·ha−1 of carbon and nitrogen, respectively.  相似文献   

6.
Deadwood is a major component of aboveground biomass (AGB) in tropical forests and is important as habitat and for nutrient cycling and carbon storage. With deforestation and degradation taking place throughout the tropics, improved understanding of the magnitude and spatial variation in deadwood is vital for the development of regional and global carbon budgets. However, this potentially important carbon pool is poorly quantified in Afrotropical forests and the regional drivers of deadwood stocks are unknown. In the first large‐scale study of deadwood in Central Africa, we quantified stocks in 47 forest sites across Gabon and evaluated the effects of disturbance (logging), forest structure variables (live AGB, wood density, abundance of large trees), and abiotic variables (temperature, precipitation, seasonality). Average deadwood stocks (measured as necromass, the biomass of deadwood) were 65 Mg ha?1 or 23% of live AGB. Deadwood stocks varied spatially with disturbance and forest structure, but not abiotic variables. Deadwood stocks increased significantly with logging (+38 Mg ha?1) and the abundance of large trees (+2.4 Mg ha?1 for every tree >60 cm dbh). Gabon holds 0.74 Pg C, or 21% of total aboveground carbon in deadwood, a threefold increase over previous estimates. Importantly, deadwood densities in Gabon are comparable to those in the Neotropics and respond similarly to logging, but represent a lower proportion of live AGB (median of 18% in Gabon compared to 26% in the Neotropics). In forest carbon accounting, necromass is often assumed to be a constant proportion (9%) of biomass, but in humid tropical forests this ratio varies from 2% in undisturbed forest to 300% in logged forest. Because logging significantly increases the deadwood carbon pool, estimates of tropical forest carbon should at a minimum use different ratios for logged (mean of 30%) and unlogged forests (mean of 18%).  相似文献   

7.
An estimate of live tree carbon stored in New Zealand forests at 1990 was made to partially satisfy New Zealand's international obligations under the Framework Convention for Climate Change. A national database was compiled of 4956 forest inventory plots measured as recently as possible to 1990. Plot biomass estimates were obtained by applying species allometric relationships derived from harvested stands. Forest areas and classes were taken from a 1987 national map of vegetation cover. Regularly spaced grids, based on an initial 1 km × 1 km grid, were overlaid on the total forest area and plots were tested for bias against site characteristics at the grid points. As grid point density and sample size increased, bias was minimal in regional sampling intensity and in total annual precipitation. Differences in mean elevation and annual temperature remained stable as grid point density increased, and showed little correlation with stem biomass. This sampling method gave a measure of precision not available from previous estimates. An efficient sample size to estimate the mean within a 5% level of precision (at 95% probability) required a sample of 574 plots selected from a 4‐km grid. This strategy generated a mean estimate for the 1990 New Zealand forest carbon biomass of 179.3 ± 4.9 Mg ha?1 (± SE), totalling 919.1 ± 25.1 Mt for the 5.1 million ha mapped forest area. The mean was 6–10% lower than previous estimates, and was within the range reported for other countries. Within forest classes, mean carbon biomass ranged from 105 Mg ha?1 in pure podocarp forest to 215 Mg ha?1 in mixed lowland podocarp–broadleaved–beech forest. Of the major taxa groups throughout the forest estate, beech (Nothofagus) contributed 60% of the national forest carbon biomass reservoir, 26.7% was in other hardwoods, 13.2% in conifers, and 0.1% in other taxa (e.g. tree ferns).  相似文献   

8.
We estimated the amount of carbon (C) stored in terrestrial ecosystems of the Chilean Patagonia and the proportion within protected areas. We used existing public databases that provide information on C stocks in biomass and soils. Data were analysed by ecosystem and forest type in the case of native forests. Our results show that some ecosystems have been more extensively studied both for their stocks in biomass and soils (e.g. forests) compared with others (e.g. shrublands). Forests and peatlands store the largest amount of C because of their large stocks per hectare and the large area they cover. The total amount of C stored per unit area varies from 261.7 to 432.8 Mg C ha−1, depending on the published value used for soil organic C stocks in peatlands, highlighting the need to have more precise estimates of the C stored in this and other ecosystems. The mean stock in national parks (508 Mg C ha−1) is almost twice the amount stored in undisturbed forests in the Amazon. State and private protected areas contain 58.9% and 2.1% of the C stock, respectively, playing a key role in protecting ecosystems in this once pristine area.  相似文献   

9.
Fire and overgrazing reduce aboveground biomass, leading to land degradation and potential impacts on soil organic carbon (SOC) and total nitrogen (TN) dynamics. However, empirical data are lacking on how prescribed burning and livestock exclusion impact SOC in the long-term. Here we analyse the effects of 19 years of prescribed annual burning and livestock exclusion on tree density, SOC and TN concentrations in the Sudanian savanna ecoregion at two sites (Tiogo and Laba) in Burkina Faso. Results revealed that neither livestock exclusion nor prescribed burning had significant impact on SOC and TN concentrations. The results at both sites indicate that 19 years of livestock and fire exclusion did not result in a significant increase in tree density compared to grazing and annual prescribed burning. The overall mean (± SEM) of SOC stocks in the 0–50 cm depth increment in the unburnt (53.5 ± 4.7 Mg C ha−1) and annually burnt (56.4 ± 4.3 Mg C ha−1) plots at Tiogo were not statistically different. Similarly, at Laba there was no significant difference between the corresponding figures in the unburnt (37.9 ± 2.6 Mg ha−1) and in the annually burnt plots (38.6 ± 1.9 Mg ha−1). Increases in belowground inputs from root turnover may have countered changes in aboveground biomass, resulting in no net change in SOC and TN. We conclude that, contrary to our expectation and current policy recommendations, restricting burning or grazing did not result in increase in SOC stocks in this dry savanna ecosystem.  相似文献   

10.
ABSTRACT

Background: Quantitative effects of large-scale oil palm expansion in the Neotropics on biodiversity and carbon stocks are still poorly documented.

Aims: We evaluated differences in tree species composition and richness, and above-ground carbon stocks among dominant land cover types in Pará state, Brazil.

Methods: We quantified tree species composition and richness and above-ground carbon stock in stands in remnant primary rain forest, young secondary forest, oil palm plantation and pastures.

Results: We sampled 5,696 trees with a DBH ≥ 2 cm, of 413 species in 68 families, of which 381 species were recorded in primary forest fragments. We found significant differences in species richness and carbon stock among the four land cover classes. Carbon stocks in remnant primary forest were typically over 190 Mg ha?1, while those in other land cover types were typically less than 60 Mg ha?1.

Conclusion: Oil palm plantations have a species-poor tree community given active management; old plantations have a standing carbon stock which is comparable to that of secondary forest and far greater than that of pastures. Private forest reserves within oil palm company holdings play an important role in preserving primary forest tree diversity in human-modified landscapes in Amazonia.  相似文献   

11.
Approximately half of the tropical biome is in some stage of recovery from past human disturbance, most of which is in secondary forests growing on abandoned agricultural lands and pastures. Reforestation of these abandoned lands, both natural and managed, has been proposed as a means to help offset increasing carbon emissions to the atmosphere. In this paper we discuss the potential of these forests to serve as sinks for atmospheric carbon dioxide in aboveground biomass and soils. A review of literature data shows that aboveground biomass increases at a rate of 6.2 Mg ha? 1 yr? 1 during the first 20 years of succession, and at a rate of 2.9 Mg ha? 1 yr? 1 over the first 80 years of regrowth. During the first 20 years of regrowth, forests in wet life zones have the fastest rate of aboveground carbon accumulation with reforestation, followed by dry and moist forests. Soil carbon accumulated at a rate of 0.41 Mg ha? 1 yr? 1 over a 100‐year period, and at faster rates during the first 20 years (1.30 Mg carbon ha? 1 yr? 1 ). Past land use affects the rate of both above‐ and belowground carbon sequestration. Forests growing on abandoned agricultural land accumulate biomass faster than other past land uses, while soil carbon accumulates faster on sites that were cleared but not developed, and on pasture sites. Our results indicate that tropical reforestation has the potential to serve as a carbon offset mechanism both above‐ and belowground for at least 40 to 80 years, and possibly much longer. More research is needed to determine the potential for longer‐term carbon sequestration for mitigation of atmospheric CO2 emissions.  相似文献   

12.
Shifts in ecosystem structure have been observed over recent decades as woody plants encroach upon grasslands and wetlands globally. The migration of mangrove forests into salt marsh ecosystems is one such shift which could have important implications for global ‘blue carbon’ stocks. To date, attempts to quantify changes in ecosystem function are essentially constrained to climate‐mediated pulses (30 years or less) of encroachment occurring at the thermal limits of mangroves. In this study, we track the continuous, lateral encroachment of mangroves into two south‐eastern Australian salt marshes over a period of 70 years and quantify corresponding changes in biomass and belowground C stores. Substantial increases in biomass and belowground C stores have resulted as mangroves replaced salt marsh at both marine and estuarine sites. After 30 years, aboveground biomass was significantly higher than salt marsh, with biomass continuing to increase with mangrove age. Biomass increased at the mesohaline river site by 130 ± 18 Mg biomass km?2 yr?1 (mean ± SE), a 2.5 times higher rate than the marine embayment site (52 ± 10 Mg biomass km?2 yr?1), suggesting local constraints on biomass production. At both sites, and across all vegetation categories, belowground C considerably outweighed aboveground biomass stocks, with belowground C stocks increasing at up to 230 ± 62 Mg C km?2 yr?1 (± SE) as mangrove forests developed. Over the past 70 years, we estimate mangrove encroachment may have already enhanced intertidal biomass by up to 283 097 Mg and belowground C stocks by over 500 000 Mg in the state of New South Wales alone. Under changing climatic conditions and rising sea levels, global blue carbon storage may be enhanced as mangrove encroachment becomes more widespread, thereby countering global warming.  相似文献   

13.
Wood density (WD) is believed to be a key trait in driving growth strategies of tropical forest species, and as it entails the amount of mass per volume of wood, it also tends to correlate with forest carbon stocks. Yet there is relatively little information on how interspecific variation in WD correlates with biomass dynamics at the species and population level. We determined changes in biomass in permanent plots in a logged forest in Vietnam from 2004 to 2012, a period representing the last 8 years of a 30 years logging cycle. We measured diameter at breast height (DBH) and estimated aboveground biomass (AGB) growth, mortality, and net AGB increment (the difference between AGB gains and losses through growth and mortality) per species at the individual and population (i.e. corrected for species abundance) level, and correlated these with WD. At the population level, mean net AGB increment rates were 6.47 Mg ha?1 year?1 resulting from a mean AGB growth of 8.30 Mg ha?1 year?1, AGB recruitment of 0.67 Mg ha?1 year?1 and AGB losses through mortality of 2.50 Mg ha?1 year?1. Across species there was a negative relationship between WD and mortality rate, WD and DBH growth rate, and a positive relationship between WD and tree standing biomass. Standing biomass in turn was positively related to AGB growth, and net AGB increment both at the individual and population level. Our findings support the view that high wood density species contribute more to total biomass and indirectly to biomass increment than low wood density species in tropical forests. Maintaining high wood density species thus has potential to increase biomass recovery and carbon sequestration after logging.  相似文献   

14.
Low stocks of coarse woody debris in a southwest Amazonian forest   总被引:1,自引:0,他引:1  
The stocks and dynamics of coarse woody debris (CWD) are significant components of the carbon cycle within tropical forests. However, to date, there have been no reports of CWD stocks and fluxes from the approximately 1.3 million km2 of lowland western Amazonian forests. Here, we present estimates of CWD stocks and annual CWD inputs from forests in southern Peru. Total stocks were low compared to other tropical forest sites, whether estimated by line-intercept sampling (24.4 ± 5.3 Mg ha−1) or by complete inventories within 11 permanent plots (17.7 ± 2.4 Mg ha−1). However, annual inputs, estimated from long-term data on tree mortality rates in the same plots, were similar to other studies (3.8 ± 0.2 or 2.9 ± 0.2 Mg ha−1 year−1, depending on the equation used to estimate biomass). Assuming the CWD pool is at steady state, the turnover time of coarse woody debris is low (4.7 ± 2.6 or 6.1 ± 2.6 years). These results indicate that these sites have not experienced a recent, large-scale disturbance event and emphasise the distinctive, rapid nature of carbon cycling in these western Amazonian forests.  相似文献   

15.
Data from 57 permanent monitoring sites are used to document the growth in woody vegetation and estimate the carbon sink in 27 M ha of eucalypt woodlands (savannas), contained within c. 60 M ha of grazed woodlands in Queensland (northeast Australia). The study sites are shown to be representative of the environment and structure of the eucalypt woodlands in the defined study area. Mean basal area increment for all live woody plants in 30 long‐term sites, with an average initial basal area of 11.86 ± 1.38 (SE) m2 ha?1, was 1.06 m2 ha?1 over a mean 14 years timeframe. The majority of the measurement period, commencing between 1982 and 1988, was characterized by below‐average rainfall. The increase in live tree basal area was due primarily to growth of existing trees (3.12 m2 ha?1) rather than establishment of new plants (0.25 m2 ha?1) and was partly offset by death (2.31 m2 ha?1). A simple but robust relationship between stand basal area and stand biomass of all woody species was developed for the eucalypt dominant woodlands. Analysis of above‐ground carbon stocks in live and standing dead woody plants gave a mean net above‐ground annual carbon increment for all 57 sites of 0.53 t C ha?1 y?1, similar to values estimated elsewhere in world savannas. Published root : shoot ratios were used to infer C flux in woody root systems on these sites. This results in an estimated sink in above‐ and below‐ground biomass of 18 Mt C y?1 over the eucalypt woodlands studied, and potentially up to 35 Mt C y?1 if extended to all grazed woodlands in Queensland. It is suggested that introduction of livestock grazing and altered fire regimes have triggered the change in tree‐grass dominance in these woodlands. Thus, change in carbon stocks in the grazed woodlands of Queensland is identified as an important component of human‐induced greenhouse gas flux in Australia, equivalent in magnitude to c. 25% of the most recently published (1999) total estimated national net emissions. The latter inventory takes into account emissions from land clearing, but does not include the sink identified in the present study. This sequestration also represents a small but significant contribution to the global terrestrial carbon sink.  相似文献   

16.
The net primary productivity, carbon (C) stocks and turnover rates (i.e. C dynamics) of tropical forests are an important aspect of the global C cycle. These variables have been investigated in lowland tropical forests, but they have rarely been studied in tropical montane forests (TMFs). This study examines spatial patterns of above‐ and belowground C dynamics along a transect ranging from lowland Amazonia to the high Andes in SE Peru. Fine root biomass values increased from 1.50 Mg C ha?1 at 194 m to 4.95 ± 0.62 Mg C ha?1 at 3020 m, reaching a maximum of 6.83 ± 1.13 Mg C ha?1 at the 2020 m elevation site. Aboveground biomass values decreased from 123.50 Mg C ha?1 at 194 m to 47.03 Mg C ha?1 at 3020 m. Mean annual belowground productivity was highest in the most fertile lowland plots (7.40 ± 1.00 Mg C ha?1 yr?1) and ranged between 3.43 ± 0.73 and 1.48 ± 0.40 Mg C ha?1 yr?1 in the premontane and montane plots. Mean annual aboveground productivity was estimated to vary between 9.50 ± 1.08 Mg C ha?1 yr?1 (210 m) and 2.59 ± 0.40 Mg C ha?1 yr?1 (2020 m), with consistently lower values observed in the cloud immersion zone of the montane forest. Fine root C residence time increased from 0.31 years in lowland Amazonia to 3.78 ± 0.81 years at 3020 m and stem C residence time remained constant along the elevational transect, with a mean of 54 ± 4 years. The ratio of fine root biomass to stem biomass increased significantly with increasing elevation, whereas the allocation of net primary productivity above‐ and belowground remained approximately constant at all elevations. Although net primary productivity declined in the TMF, the partitioning of productivity between the ecosystem subcomponents remained the same in lowland, premontane and montane forests.  相似文献   

17.
The biomass of tropical forests plays an important role in the global carbon cycle, both as a dynamic reservoir of carbon, and as a source of carbon dioxide to the atmosphere in areas undergoing deforestation. However, the absolute magnitude and environmental determinants of tropical forest biomass are still poorly understood. Here, we present a new synthesis and interpolation of the basal area and aboveground live biomass of old‐growth lowland tropical forests across South America, based on data from 227 forest plots, many previously unpublished. Forest biomass was analyzed in terms of two uncorrelated factors: basal area and mean wood density. Basal area is strongly affected by local landscape factors, but is relatively invariant at regional scale in moist tropical forests, and declines significantly at the dry periphery of the forest zone. Mean wood density is inversely correlated with forest dynamics, being lower in the dynamic forests of western Amazonia and high in the slow‐growing forests of eastern Amazonia. The combination of these two factors results in biomass being highest in the moderately seasonal, slow growing forests of central Amazonia and the Guyanas (up to 350 Mg dry weight ha?1) and declining to 200–250 Mg dry weight ha?1 at the western, southern and eastern margins. Overall, we estimate the total aboveground live biomass of intact Amazonian rainforests (area 5.76 × 106 km2 in 2000) to be 93±23 Pg C, taking into account lianas and small trees. Including dead biomass and belowground biomass would increase this value by approximately 10% and 21%, respectively, but the spatial variation of these additional terms still needs to be quantified.  相似文献   

18.
Forests provide climate change mitigation benefit by sequestering carbon during growth. This benefit can be reversed by both human and natural disturbances. While some disturbances such as hurricanes are beyond the control of humans, extensive research in dry, temperate forests indicates that wildfire severity can be altered as a function of forest fuels and stand structural manipulations. The purpose of this study was to determine if current aboveground forest carbon stocks in fire‐excluded southwestern ponderosa pine forest are higher than prefire exclusion carbon stocks reconstructed from 1876, quantify the carbon costs of thinning treatments to reduce high‐severity wildfire risk, and compare posttreatment (thinning and burning) carbon stocks with reconstructed 1876 carbon stocks. Our findings indicate that prefire exclusion forest carbon stocks ranged from 27.9 to 36.6 Mg C ha?1 and that the current fire‐excluded forest structure contained on average 2.3 times as much live tree carbon. Posttreatment carbon stocks ranged from 37.9 to 50.6 Mg C ha?1 as a function of thinning intensity. Previous work found that these thinning and burning treatments substantially increased the 6.1 m wind speed necessary for fire to move from the forest floor to the canopy (torching index) and the wind speed necessary for sustained crown fire (crowning index), thereby reducing potential fire severity. Given the projected drying and increase in fire prevalence in this region as a function of changing climatic conditions, the higher carbon stock in the fire‐excluded forest is unlikely to be sustainable. Treatments to reduce high‐severity wildfire risk require trade‐offs between carbon stock size and carbon stock stability.  相似文献   

19.

Coastal wetlands are key in regulating coastal carbon and nitrogen dynamics and contribute significantly to climate change mitigation and anthropogenic nutrient reduction. We investigated organic carbon (OC) and total nitrogen (TN) stocks and burial rates at four adjacent vegetated coastal habitats across the seascape elevation gradient of Cádiz Bay (South Spain), including one species of salt marsh, two of seagrasses, and a macroalgae. OC and TN stocks in the upper 1 m sediment layer were higher at the subtidal seagrass Cymodocea nodosa (72.3 Mg OC ha−1, 8.6 Mg TN ha−1) followed by the upper intertidal salt marsh Sporobolus maritimus (66.5 Mg OC ha−1, 5.9 Mg TN ha−1), the subtidal rhizophytic macroalgae Caulerpa prolifera (62.2 Mg OC ha−1, 7.2 Mg TN ha−1), and the lower intertidal seagrass Zostera noltei (52.8 Mg OC ha−1, 5.2 Mg TN ha−1). The sedimentation rates increased from lower to higher elevation, from the intertidal salt marsh (0.24 g cm−2 y−1) to the subtidal macroalgae (0.12 g cm−2 y−1). The organic carbon burial rate was highest at the intertidal salt marsh (91 ± 31 g OC m−2 y−1), followed by the intertidal seagrass, (44 ± 15 g OC m−2 y−1), the subtidal seagrass (39 ± 6 g OC m−2 y−1), and the subtidal macroalgae (28 ± 4 g OC m−2 y−1). Total nitrogen burial rates were similar among the three lower vegetation types, ranging from 5 ± 2 to 3 ± 1 g TN m−2 y−1, and peaked at S. maritimus salt marsh with 7 ± 1 g TN m−2 y−1. The contribution of allochthonous sources to the sedimentary organic matter decreased with elevation, from 72% in C. prolifera to 33% at S. maritimus. Our results highlight the need of using habitat-specific OC and TN stocks and burial rates to improve our ability to predict OC and TN sequestration capacity of vegetated coastal habitats at the seascape level. We also demonstrated that the stocks and burial rates in C. prolifera habitats were within the range of well-accepted blue carbon ecosystems such as seagrass meadows and salt marshes.

  相似文献   

20.
《Global Change Biology》2018,24(6):2325-2338
The role of mangroves in the blue carbon stock is critical and requires special focus. Mangroves are carbon‐rich forests that are not in steady‐state equilibrium at the decadal time scale. Over the last decades, the structure and zonation of mangroves have been largely disturbed by coastal changes and land use conversions. The amount of time since the last disturbance is a key parameter determining forest structure, but it has so far been overlooked in mangrove carbon stock projections. In particular, the carbon sequestration rates among mangrove successional ages after (re)establishment are poorly quantified and not used in large‐scale estimations of the blue carbon stock. Here, it is hypothesized that ecosystem age structure significantly modulates mangrove carbon stocks. We analysed a 66‐year chronosequence of the aboveground and belowground biomass and soil carbon stock of mangroves in French Guiana, and we found that in the year after forest establishment on newly formed mud banks, the aboveground, belowground and soil carbon stocks averaged 23.56 ± 7.71, 13.04 ± 3.37 and 84.26 ± 64.14 (to a depth of 1 m) Mg C/ha, respectively. The mean annual increment (MAI) in the aboveground and belowground reservoirs was 23.56 × Age−0.52 and 13.20 × Age−0.64 Mg C ha−1 year−1, respectively, and the MAI in the soil carbon reservoir was 3.00 ± 1.80 Mg C ha−1 year−1. Our results show that the plant carbon sink capacity declines with ecosystem age, while the soil carbon sequestration rate remains constant over many years. We suggest that global projections of the above‐ and belowground reservoirs of the carbon stock need to account for mangrove age structures, which result from historical changes in coastal morphology. Our work anticipates joint international efforts to globally quantify the multidecadal mangrove carbon balance based on the combined use of age‐based parametric equations and time series of mangrove age maps at regional scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号