首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
Aim In this study, we examine patterns of local and regional ant species richness along three elevational gradients in an arid ecosystem. In addition, we test the hypothesis that changes in ant species richness with elevation are related to elevation‐dependent changes in climate and available area. Location Spring Mountains, Nevada, U.S.A. Methods We used pitfall traps placed at each 100‐m elevational band in three canyons in the Spring Mountains. We compiled climate data from 68 nearby weather stations. We used multiple regression analysis to examine the effects of annual precipitation, average July precipitation, and maximum and minimum July temperature on ant species richness at each elevational band. Results We found that patterns of local ant species richness differed among the three gradients we sampled. Ant species richness increased linearly with elevation along two transects and peaked at mid‐elevation along a third transect. This suggests that patterns of species richness based on data from single transects may not generalize to larger spatial scales. Cluster analysis of community similarity revealed a high‐elevation species assemblage largely distinct from that of lower elevations. Major changes in the identity of ant species present along elevational gradients tended to coincide with changes in the dominant vegetation. Regional species richness, defined here as the total number of unique species within an elevational band in all three gradients combined, tended to increase with increasing elevation. Available area decreased with increasing elevation. Area was therefore correlated negatively with ant species richness and did not explain elevational patterns of ant species richness in the Spring Mountains. Mean July maximum and minimum temperature, July precipitation and annual precipitation combined to explain 80% of the variation in ant species richness. Main conclusions Our results suggest that in arid ecosystems, species richness for some taxa may be highest at high elevations, where lower temperatures and higher precipitation may support higher levels of primary production and cause lower levels of physiological stress.  相似文献   

3.
Aim The value of biodiversity informatics rests upon the capacity to assess data quality. Yet as these methods have developed, investigating the quality of the underlying specimen data has largely been neglected. Using an exceptionally large, densely sampled specimen data set for non‐flying small mammals of Utah, I evaluate measures of uncertainty associated with georeferenced localities and illustrate the implications of uncritical incorporation of data in the analysis of patterns of species richness and species range overlap along elevational gradients. Location Utah, USA, with emphasis on the Uinta Mountains. Methods Employing georeferenced specimen data from the Mammal Networked Information System (MaNIS), I converted estimates of areal uncertainty into elevational uncertainty using a geographic information system (GIS). Examining patterns in both areal and elevational uncertainty measures, I develop criteria for including localities in analyses along elevational gradients. Using the Uinta Mountains as a test case, I then examine patterns in species richness and species range overlap along an elevational gradient, with and without accounting for data quality. Results Using a GIS, I provide a framework for post‐hoc 3‐dimensional georeferencing and demonstrate collector‐recorded elevations as a valuable technique for detecting potential errors in georeferencing. The criteria established for evaluating data quality when analysing patterns of species richness and species range overlap in the Uinta Mountains test case reduced the number of localities by 44% and the number of associated specimens by 22%. Decreasing the sample size in this manner resulted in the subsequent removal of one species from the analysis. With and without accounting for data quality, the pattern of species richness along the elevational gradient was hump‐shaped with a peak in richness at about mid‐elevation, between 2300 and 2600 m. In contrast, the frequencies of different pair‐wise patterns of elevational range overlap among species differed significantly when data quality was and was not accounted for. Main conclusions These results indicate that failing to assess spatial error in data quality did not alter the shape of the observed pattern in species richness along the elevational gradient nor the pattern of species’ first and last elevational occurrences. However, it did yield misleading estimates of species richness and community composition within a given elevational interval, as well as patterns of elevational range overlap among species. Patterns of range overlap among species are often used to infer processes underlying species distributions, suggesting that failure to account for data quality may alter interpretations of process as well as perceived patterns of distribution. These results illustrate that evaluating the quality of the underlying specimen data is a necessary component of analyses incorporating biodiversity informatics.  相似文献   

4.
Aim  The aim of this study was to determine how regional and historical factors influence global patterns in avian species richness.
Location  Global.
Methods  Using a comprehensive data set including 710 World Wildlife Fund terrestrial ecoregions covering nearly all the land surface of the Earth, avian species richness was compared among six biogeographical regions after accounting for sample area, elevational range and climate. Analysis of variance and multiple regressions were used. Spatial autocorrelation in model residuals was accounted for.
Results  Significant effects of region on avian species richness were found in nearly all comparisons between biogeographical regions.
Main conclusions  Regional and historical processes have played a role in regulating large-scale avian species richness patterns across the globe. Avian species richness in different regions of the world cannot be accurately predicted by a single global model. Avian species richness in areas of similar environments may differ substantially between regions, and thus avian species richness in one biogeographical region cannot be predicted using the richness–environment relationship derived from the data of another biogeographical region, even one with similar environments.  相似文献   

5.
Aim A global meta‐analysis was used to elucidate a mechanistic understanding of elevational species richness patterns of bats by examining both regional and local climatic factors, spatial constraints, sampling and interpolation. Based on these results, I propose the first climatic model for elevational gradients in species richness, and test it using preliminary bat data for two previously unexamined mountains. Location Global data set of bat species richness along elevational gradients from Old and New World mountains spanning 12.5° S to 38° N latitude. Methods Bat elevational studies were found through an extensive literature search. Use was made only of studies sampling  70% of the elevational gradient without significant sampling biases or strong anthropogenic disturbance. Undersampling and interpolation were explicitly examined with three levels of error analyses. The influence of spatial constraints was tested with a Monte Carlo simulation program, Mid‐Domain Null. Preliminary bat species richness data sets for two test mountains were compiled from specimen records from 12 US museum collections. Results Equal support was found for decreasing species richness with elevation and mid‐elevation peaks. Patterns were robust to substantial amounts of error, and did not appear to be a consequence of spatial constraints. Bat elevational richness patterns were related to local climatic gradients. Species richness was highest where both temperature and water availability were high, and declined as temperature and water availability decreased. Mid‐elevational peaks occurred on mountains with dry, arid bases, and decreasing species richness occurred on mountains with wet, warm bases. A preliminary analysis of bat richness patterns on elevational gradients in western Peru (dry base) and the Olympic Mountains, WA (wet base), supported the predictions of the climate model. Main conclusions The relationship between species richness and combined temperature and water availability may be due to both direct (thermoregulatory constraints) and indirect (food resources) factors. Abundance was positively correlated with species richness, suggesting that bat species richness may also be related to productivity. The climatic model may be applicable to other taxonomic groups with similar ecological constraints, for instance certain bird, insect and amphibian clades.  相似文献   

6.
Aim To investigate how species richness and similarity of non‐native plants varies along gradients of elevation and human disturbance. Location Eight mountain regions on four continents and two oceanic islands. Methods We compared the distribution of non‐native plant species along roads in eight mountainous regions. Within each region, abundance of plant species was recorded at 41–84 sites along elevational gradients using 100‐m2 plots located 0, 25 and 75 m from roadsides. We used mixed‐effects models to examine how local variation in species richness and similarity were affected by processes at three scales: among regions (global), along elevational gradients (regional) and with distance from the road (local). We used model selection and information criteria to choose best‐fit models of species richness along elevational gradients. We performed a hierarchical clustering of similarity to investigate human‐related factors and environmental filtering as potential drivers at the global scale. Results Species richness and similarity of non‐native plant species along elevational gradients were strongly influenced by factors operating at scales ranging from 100 m to 1000s of km. Non‐native species richness was highest in the New World regions, reflecting the effects of colonization from Europe. Similarity among regions was low and due mainly to certain Eurasian species, mostly native to temperate Europe, occurring in all New World regions. Elevation and distance from the road explained little of the variation in similarity. The elevational distribution of non‐native species richness varied, but was always greatest in the lower third of the range. In all regions, non‐native species richness declined away from roadsides. In three regions, this decline was steeper at higher elevations, and there was an interaction between distance and elevation. Main conclusions Because non‐native plant species are affected by processes operating at global, regional and local scales, a multi‐scale perspective is needed to understand their patterns of distribution. The processes involved include global dispersal, filtering along elevational gradients and differential establishment with distance from roadsides.  相似文献   

7.
8.
Aim Elevational gradients offer an outstanding opportunity to assess factors determining patterns of species richness, but along single transects potential explanatory factors often covary, making it difficult to distinguish between competing hypotheses. Many previous studies on plants have interpreted their results as supporting the mid‐domain effect (MDE) as a major determinant of species richness, even when climatic factors showed similarly high explanatory power. We compared fern species richness along 20 elevational transects to quantify the relative contribution of climate and MDE as drivers of elevational richness patterns. Location Twenty transects world‐wide. Methods Ferns were sampled in 1039 plots of 400–2500 m2 each. Mean annual precipitation and temperature, epiphytic bryophyte cover (as a proxy for air humidity) and MDE predictions were included as independent variables. For each transect, we calculated multiple linear models and partitioned the variance to assess the relative contribution of the independent variables, selecting the most parsimonious models based on Akaike weights and multi‐model inference. Results Along most individual gradients, nearly all variance of fern species richness that could be attributed to either space or MDEs was collinear with climatic factors. Yet, the comparison across transects showed that elevational richness patterns are most parsimoniously accounted for by climatic conditions, especially by low water availability at low elevations and in dry regions in general, and by low temperatures at high elevations and in extra‐tropical regions. Main conclusions Fern species richness is most closely related to climatic factors, and while MDE, surface area and metapopulation processes may somewhat modify the patterns, their importance has been overstated in the past. Future research challenges include determining whether the richness–climate relationship reflects: (1) a direct relationship through the physiological tolerance of the plants, (2) an indirect influence of climate on ecosystem productivity, or (3) an evolutionary legacy of longer or faster diversification processes under certain climatic conditions.  相似文献   

9.
Aim The decrease in species richness with increasing elevation is a widely recognized pattern. However, recent work has shown that there is variation in the shape of the curve, such that both negative monotonic or unimodal patterns occur, influenced by a variety of factors at local and regional scales. Discerning the shape of the curve may provide clues to the underlying causes of the observed pattern. At regional scales, the area of the altitudinal belts and mass effects are important determinants of species richness. This paper explores the relationship between bird species richness, elevation, mass effects and area of altitudinal zones for birds in tropical mountains. Location The three Andean ranges of Colombia and the peripheral mountain ranges of La Macarena and Santa Marta. Methods Lists of bird species were compiled for altitudinal belts in eastern and western slopes of the three Andean Cordilleras and for La Macarena and Santa Marta. The area of the altitudinal belts was computed from digital elevation models. The effect of area was analysed by testing for differences among altitudinal belts in the slopes and intercepts of the species‐area relationships. Mass effects were explored by separately analysing two sets of species: broadly distributed species, i.e. lowland species whose distributions extend into the Andes, and tropical Andean species, i.e., species that evolved in the Andes. Results Plotting total number of species in each altitudinal belt revealed a decline in species richness with elevation. In slopes with a complete elevational gradient from lowlands to mountain peaks, the decrease was monotonic. In internal Andean slopes where the lower elevational belts are truncated, there was a peak at mid elevations. There was a linear relationship between number of species and area of the altitudinal belts. When controlling for area, there were no differences in the number of species among altitudinal belts (500–2600 m), except for the two upper‐elevation zones (2600–3200 and > 3200 m), which had lower species richness. Diversity of widely distributed species declined monotonically with elevation, whereas tropical Andean species exhibited a mid‐elevation peak. Main conclusions A large proportion of the variation in species richness with elevation was explained by area of the altitudinal belts. When controlling for area, species richness remained constant up to 2600 m and then decreased. This pattern contrasts with a previously reported hump‐shaped pattern for Andean birds. Diversity patterns of widely distributed species suggested that immigration of lowland species inflates diversity of lower elevational belts through mass effects. This influence was particularly evident in slopes with complete altitudinal gradients (i.e. connected to the lowlands). Tropical Andean species, in contrast, were more diverse in mid‐elevational belts, where speciation rates are expected to be higher. The influence of these species was more prevalent in internal Andean slopes with no connection to the lowlands. The decline of species richness at high elevations may be related to higher extinction rates and lower resource levels.  相似文献   

10.

Background

Understanding diversity patterns and the mechanisms underlying those patterns along elevational gradients is critically important for conservation efforts in montane ecosystems, especially those that are biodiversity hotspots. Despite recent advances, consensus on the underlying causes, or even the relative influence of a suite of factors on elevational diversity patterns has remained elusive.

Methods and Principal Findings

We examined patterns of species richness, density and range size distribution of birds, and the suite of biotic and abiotic factors (primary productivity, habitat variables, climatic factors and geometric constraints) that governs diversity along a 4500-m elevational gradient in the Eastern Himalayan region, a biodiversity hotspot within the world''s tallest mountains. We used point count methods for sampling birds and quadrats for estimating vegetation at 22 sites along the elevational gradient. We found that species richness increased to approximately 2000 m, then declined. We found no evidence that geometric constraints influenced this pattern, whereas actual evapotranspiration (a surrogate for primary productivity) and various habitat variables (plant species richness, shrub density and basal area of trees) accounted for most of the variation in bird species richness. We also observed that ranges of most bird species were narrow along the elevation gradient. We find little evidence to support Rapoport''s rule for the birds of Sikkim region of the Himalaya.

Conclusions and Significance

This study in the Eastern Himalaya indicates that species richness of birds is highest at intermediate elevations along one of the most extensive elevational gradients ever examined. Additionally, primary productivity and factors associated with habitat accounted for most of the variation in avian species richness. The diversity peak at intermediate elevations and the narrow elevational ranges of most species suggest important conservation implications: not only should mid-elevation areas be conserved, but the entire gradient requires equal conservation attention.  相似文献   

11.
Aim Data and analyses of elevational gradients in diversity have been central to the development and evaluation of a range of general theories of biodiversity. Elevational diversity patterns have, however, been severely understudied for microbes, which often represent decomposer subsystems. Consequently, generalities in the patterns of elevational diversity across different trophic levels remain poorly understood. Our aim was to examine elevational gradients in the diversity of macroinvertebrates, diatoms and bacteria along a stony stream that covered a large elevational gradient. Location Laojun Mountain, Yunnan province, China. Methods The sampling scheme included 26 sites spaced at elevational intervals of 89 m from 1820 to 4050 m elevation along a stony stream. Macroinvertebrate and diatom richness were determined based on the morphology of the specimens. Taxonomic richness for bacteria was quantified using a molecular fingerprinting method. Over 50 environmental variables were measured at each site to quantify environmental variables that could correlate with the patterns of diversity. We used eigenvector‐based spatial filters with multiple regressions to account for spatial autocorrelation. Results The bacterial richness followed an unexpected monotonic increase with elevation. Diatoms decreased monotonically, and macroinvertebrate richness showed a clear unimodal pattern with elevation. The unimodal richness pattern for macroinvertebrates was best explained by the mid‐domain effect (r2 = 0.72). The diatom richness was best explained by the variation in nutrient supply, and the increase in bacterial richness with elevation may be related to an increased carbon supply. Main conclusions We found contrasting patterns in elevational diversity among the three studied multi‐trophic groups comprising unicellular and multicellular aquatic taxa. We also found that there may be fundamental differences in the mechanisms underlying these species diversity patterns.  相似文献   

12.
Aim Epiphytes contribute up to 30% to the number of vascular plant species in certain global biodiversity hotspots, e.g. the Ecuadorian Andes. However, their large scale diversity patterns are still discussed on the base of results from a few, local epiphyte inventories. Consequently, explanatory models on epiphyte diversity concentrate on the impact of local climate on small scale epiphyte species richness. Our aim was to analyse large scale elevational patterns of epiphyte diversity integrating data from different geographic scales. Location Tropical America, with special emphasis on the Ecuadorian Andes. Methods Our study is based on two data sources. First, we analysed the elevational patterns of epiphyte diversity based on the Catalogue of the Vascular Plants of Ecuador and the Libro Rojo de las Plantas Endèmicas del Ecuador. Secondly, the floristic turnover between the epiphyte inventories of seven montane and four lowland study sites in the Neotropics was analysed. Results The floristic turnover between Neotropical montane epiphyte floras is higher than the one between lowland epiphyte floras. Montane study sites located only a few kilometres apart from each other show considerable differences in their epiphyte species inventories. Irrespectively of their similar dispersal mode, the floristic turnover is much higher for orchids than for Pteridophyta. The Orchidaceae are the species richest group in all of the examined 11 Neotropical epiphyte floras. At the larger scale of the Ecuadorian Flora, c. 50% of the species in the elevational zone with maximum epiphyte diversity (between 1000 and 1500 m) are orchids. Elevational patterns of epiphyte diversity strongly reflect patterns of Orchidaceae. Main conclusions Our results support the observation of a ‘mid‐elevation bulge’ of epiphyte diversity by Gentry and Dodson. It has been frequently shown that the high humidity in mid‐elevations is suitable to maintan a high epiphyte species richness. Our findings show that in addition, large scale epiphyte diversity in montane rain forest is increased by the high floristic turnover at local and regional scale. Based on the importance of Orchidaceae for epiphyte diversity, we discuss that speciation processes corresponding to the highly diverse environment are a driving force for endemism, floristic heterogeneity and consequently for large scale epiphyte species richness in montane forests.  相似文献   

13.
We examined the elevational patterns of plant species along two transects on Mt Seorak, South Korea, and calculated four richness indices from field survey data: total number of species per 100 m elevational band; mean number of species per plot in each elevational band; total estimated number of species per elevational band; and beta diversity of each elevational band. We evaluated the effects of area, mean distance between plots, climatic variables (mean annual temperature and precipitation), and productivity on the richness patterns along the two transects. In total, 235 plant species belonging to 72 families and 161 genera were recorded from 130 plots along the two transects. The analyses revealed different patterns including monotonic decline, and unimodal and multimodal shapes for richness indices of total, woody, and herbaceous plants with the change in elevation along the two transects. The proportion of suitable area (as opposed to rocky areas) was the best predictor for total number of species per elevational band, mean number of species per plot, and total estimated number of species per elevational band of total and herbaceous plants along the two transects. Mean distance between plots was the most important variable for beta diversity of all plant groups. Although regional area, climatic variables, and productivity were important variables for predicting woody plant richness patterns, the effects were not consistent between the two transects. Our study suggests that elevational species richness patterns may differ not only among different plant groups, but also between nearby elevational transects, and that these differences are explained by differences in the underlying mechanisms shaping these patterns.  相似文献   

14.
Aim Species richness and endemic richness vary along elevation gradients, but not necessarily in the same way. This study tests if the maxima in gamma diversity for flowering plants and the endemic subset of these plants are coherent or not. Location The study was conducted in Nepal, between 1000 and 5000 m a.s.l. Methods We used published data on distribution and elevational ranges of the Nepalese flora to interpolate presence between maximum and minimum elevations. Correlation, regression and graphical analyses were used to evaluate the diversity pattern between 1000 and 5000 m a.s.l. Results The interval of maximum species endemic to Nepal or the Himalayas (3800–4200 m) is above the interval of maximum richness (1500–2500 m). The exact location of maximum species density is uncertain and its accuracy depends on ecologically sound estimates of area in the elevation zones. There is no positive statistically significant correlation between log‐area and richness (total or endemic). Total richness is positively correlated with log‐area‐adjusted, i.e. estimated area adjusted for the degree of topographic heterogeneity. The proportion of endemic species increases steadily from low to high elevations. The peak in endemism (c. 4000 m) corresponds to the start of a rapid decrease in species richness above 4000 m. This may relate to the last glacial maximum (equilibrium line at c. 4000 m) that penetrated down to 2500–3000 m. This dynamic hard boundary may have caused an increase in the extinction rate above 4000 m, and enhanced the probability of isolation and facilitated speciation of neoendemics, especially among genera with a high proportion of polyploids. Main conclusions The results reject the idea of corresponding maxima in endemic species and species richness in the lowlands tentatively deduced from Stevens’ elevational Rapoport effect. They confirm predictions based on hard boundary theory, but hard‐boundaries should be viewed as dynamic rather than static when broad‐scale biogeographical patterns with a historical component are being interpreted.  相似文献   

15.
We conducted field surveys in 807 quadrats to evaluate the elevational belts, boundary and richness patterns of ferns and lycophytes in the temperate region of central Japan. We analysed fern species assemblages at 100 m elevational steps by cluster analysis and tested the number of upper and lower boundaries for elevational intervals against a null model of random distribution of elevational limits. We compared the pattern of fern species richness along the elevational gradients in central Japan with patterns in several locations to evaluate the fern flora in central Japan in relation to the rest of the world. We recorded 261 ferns species in total, which is one-third of the Japanese ferns. We found clear elevational boundaries of fern assemblages at 900 and 1,800 m and three fern elevational zones, which corresponded well to the elevational limits of forest types in central Japan. The pattern of fern species richness in central Japan was an asymmetric hump-shaped pattern that peaked close to the sea level, with the peak of local richness at lower elevations than that of regional richness. We found that the peak of fern species richness along the elevational gradient in Japan was located at lower elevations than that of fern elevational patterns in several locations around the world.  相似文献   

16.
Although biodiversity gradients have been widely documented, the factors governing broad‐scale patterns in species richness are still a source of intense debate and interest in ecology, evolution, and conservation biology. Here, we tested whether spatial hypotheses (species–area effect, topographic heterogeneity, mid‐domain null model, and latitudinal effect) explain the pattern of diversity observed along the altitudinal gradient of Andean rain frogs of the genus Pristimantis. We compiled a gamma‐diversity database of 378 species of Pristimantis from the tropical Andes, specifically from Colombia to Bolivia, using records collected above 500 m.a.s.l. Analyses were performed at three spatial levels: Tropical Andes as a whole, split in its two main domains (Northern and Central Andes), and split in its 11 main mountain ranges. Species richness, area, and topographic heterogeneity were calculated for each 500‐m‐width elevational band. Spatial hypotheses were tested using linear regression models. We examined the fit of the observed diversity to the mid‐domain hypothesis using randomizations. The species richness of Pristimantis showed a hump‐shaped pattern across most of the altitudinal gradients of the Tropical Andes. There was high variability in the relationship between area and species richness along the Tropical Andes. Correcting for area effects had little impact in the shape of the empirical pattern of biodiversity curves. Mid‐domain models produced similar gradients in species richness relative to empirical gradients, but the fit varied among mountain ranges. The effect of topographic heterogeneity on species richness varied among mountain ranges. There was a significant negative relationship between latitude and species richness. Our findings suggest that spatial processes partially explain the richness patterns of Pristimantis frogs along the Tropical Andes. Explaining the current patterns of biodiversity in this hot spot may require further studies on other possible underlying mechanisms (e.g., historical, biotic, or climatic hypotheses) to elucidate the factors that limit the ranges of species along this elevational gradient.  相似文献   

17.
The distribution of species on mountains has been related to various predictor variables, especially temperature. Thermal specialization—presumed to be more pronounced on tropical mountains than on temperate mountains—accounts for the elevational pattern of species richness and varies between organisms and geographic areas. In this study, the elevational and regional distribution patterns of 331 epiphyte species in Taiwan were explored using 39,084 botanic collections, mostly from herbaria. Species richness showed a peak in elevation at 500–1500 m. This peak could not be explained by a null model, the mid‐domain effect, suggesting that environmental variables accounted mostly for the distribution of species on the mountains. Next, species distributions were modeled to assess epiphyte regional and elevational distribution patterns. The model results not only corroborated the position of the mid‐elevation peak in richness, but also identified two mountain areas on the island with exceptionally high species richness. These areas of high epiphyte diversity coincide with areas of high rainfall in relation to the direction of the prevailing winds. Moreover, a subsequent exploratory ordination analysis showed a varied thermal preference between epiphyte subcategories (hemiepiphytes, dicotyledons, orchids, and ferns). In contrast to predictions by the elevational Rapoport's rule, ordination analysis also showed that the degree of thermal specialization increased with elevation, suggesting that highland species may be especially vulnerable to global warming.  相似文献   

18.
Aim To document the elevational pattern of epiphyte species richness at the local scale in the tropical Andes with a consistent methodology. Location The northern Bolivian Andes at 350–4000 m above sea level. Methods We surveyed epiphytic vascular plant assemblages in humid forests in (a) single trees located in (b) 90 subplots of 400 m2 each located in (c) 14 plots of 1 ha each. The plots were separated by 100–800 m along the elevational gradient. Results We recorded about 800 epiphyte species in total, with up to 83 species found on a single tree. Species richness peaked at c. 1500 m and declined by c. 65% to 350 m and by c. 99% to 4000 m, while forests on mountain ridges had richness values lowered by c. 30% relative to slope forests at the same elevations. The hump‐shaped richness pattern differed from a null‐model of random species distribution within a bounded domain (the mid‐domain effect) as well as from the pattern of mean annual precipitation by a shift of the diversity peak to lower elevations and by a more pronounced decline of species richness at higher elevations. With the exception of Araceae, which declined almost monotonically, all epiphyte taxa showed hump‐shaped curves, albeit with slightly differing shapes. Orchids and pteridophytes were the most species‐rich epiphytic taxa, but their relative contributions shifted with elevation from a predominance of orchids at low elevations to purely fern‐dominated epiphyte assemblages at 4000 m. Within the pteridophytes, the polygrammoid clade was conspicuously overrepresented in dry or cold environments. Orchids, various small groups (Cyclanthaceae, Ericaceae, Melastomataceae, etc.), and Bromeliaceae (below 1000 m) were mostly restricted to the forest canopy, while Araceae and Pteridophyta were well represented in the forest understorey. Main conclusions Our study confirms the hump‐shaped elevational pattern of vascular epiphyte richness, but the causes of this are still poorly understood. We hypothesize that the decline of richness at high elevations is a result of low temperatures, but the mechanism involved is unknown. The taxon‐specific patterns suggest that some taxa have a phylogenetically determined propensity for survival under extreme conditions (low temperatures, low humidity, and low light levels in the forest interior). The three spatial sampling scales show some different patterns, highlighting the influence of the sampling methodology.  相似文献   

19.
Aim  We quantify the elevational patterns of species richness for all vascular plants and some functional and taxonomic groups on a regional scale on a tropical mountain and discuss some possible causes for the observed patterns.
Location  Mount Kinabalu, Sabah, Borneo.
Methods  A data base containing elevational information on more than 28,000 specimens was analysed for vascular plant distribution, taking into account sampling effort. The total species richness pattern was estimated per 300-m elevational interval by rarefaction analyses. The same methods were also applied to quantify species richness patterns of trees, epiphytes, and ferns.
Results  Total species richness has a humped relationship with elevation, and a maximum species richness in the interval between 900 and 1200 m. For ferns and epiphytes the maximum species richness is found at slightly higher elevations, whereas tree species did not have a statistically significant peak in richness above the lowest interval analysed.
Main conclusions  For the first time a rigorous estimate of an elevational pattern in species richness of the whole vascular plant flora of a tropical mountain has been quantified. The pattern observed depends on the group studied. We discuss the differences between the groups and compare the results with previous studies of elevational patterns of species richness from other tropical areas. We also discuss the methods used to quantify the richness pattern and conclude that rarefaction gives an appropriate estimate of the species richness pattern.  相似文献   

20.
Aim The biodiversity of geometrid moths (Lepidoptera) along a complete tropical elevational gradient was studied for the first time. The patterns are described, and the role of geometric constraints and environmental factors is explored. Location The study was carried out along the Barva Transect (10° N, 84° W), a complete elevational gradient ranging from 40 to 2730 m a.s.l. in Braulio Carrillo National Park, Costa Rica, and adjacent areas. Methods Moths were sampled manually in 2003 and 2004 at 12 rain forest sites using light ‘towers’, each with two 15 W ultraviolet fluorescent tubes. We used abundance‐based rarefaction, statistical estimation of true richness (Chao 1), geographically interpolated observed richness and Fisher's alpha as measures of local diversity. Results A total of 13,765 specimens representing 739 species were analysed. All four measures showed a hump‐shaped pattern with maxima between 500 and 2100 m elevation. The two subfamilies showed richness and diversity maxima at either lower (Ennominae) or higher (Larentiinae) elevation than Geometridae as a whole. Among the four environmental factors tested, relative humidity yielded the highest correlation over the transect with the rarefaction‐based richness estimates as well as with estimated true species richness of Geometridae as a whole and of Larentiinae, while rainfall explained the greatest variation of Ennominae richness. The elevational pattern of moth richness was discordant with both temperature and with tree species richness. A combination of all environmental factors in a stepwise multiple regression produced high values of r2 in Geometridae. The potential effects of geometric constraints (mid‐domain effect, MDE) were investigated by comparing them with observed, interpolated richness. Overall, models fitted very well for Geometridae as a whole and for Ennominae, but less well for Larentiinae. Small‐ranged species showed stronger deviations from model predictions than large‐ranged species, and differed strikingly between the two subfamilies, suggesting that environmental factors play a more pronounced role for small‐ranged species. We hypothesize that small‐ranged species (at least of the Ennominae) may tend to be host specialists, whereas large‐ranged species tend to be polyphagous. Based on interpolated ranges, mean elevational range for these moths was larger with increasing elevation, in accordance with Rapoport's elevational rule, although sampling effects may have exaggerated this pattern. The underlying mechanism remains unknown because Rapoport's ‘rescue’ hypothesis could not explain the observed pattern. Conclusions The results clearly show that moth diversity shows a hump‐shaped pattern. However, remarkable variation exists with regard to taxon and range size. Both environmental and geometric factors are likely to contribute to the observed patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号