首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cladistic biogeography of the Mexican transition zone   总被引:6,自引:2,他引:4  
Biogeographic relationships among nine montane areas of endemism across the transition zone between North and South America are analysed cladistically based on phylogenetic hypotheses of thirty‐three resident monophyletic taxa of insects, fish, reptiles, and plants. Areas of endemism include the Arizona mountains (AZ), Sonoran Desert (SD), Sierra Madre Occidental (OCC), southern Sierra Madre Occidental (SOC), Sierra Madre Oriental (ORI), Sierra Transvolcanica (TRAN), Sierra Madre del Sur (SUR), Chiapan‐Guatemalan Highlands (CGH), and Talamancan Cordillera (TC). Area relationships are summarized using Brooks Parsimony Analysis and Assumption 0, with the former resulting in more defensible biogeographic hypotheses. Areas of endemism are dividable into two monophyletic groups; a northern group including AZ, SD, OCC, and ORI, and a southern group consisting of TC, CGH, TRAN, SUR, and the isolated southern regions of the Sierra Madre Occidental (SOC). The northern set of areas are characterized by recent, probably Pleistocene, isolation and prevalent widespread species, whereas the southerly areas probably diverged after Pliocene closure of the Panamanian isthmus. The southern areas are redundantly represented on many of the taxon‐area cladograms by endemic species, indicative of much higher levels of endemism in the Sierra Transvolcanica and further south. Use of a general area cladogram in such a transition zone permits explicit exploration of biogeographic patterns and establishes a predictive framework for taxonomy and conservation prioritization.  相似文献   

2.
The black bear Ursus americanus is an endangered species in Mexico. Its historical distribution has decreased by approximately 80% although its current distribution is not known with precision; it is only reported to be present in the mountains of Northern Mexico. This study proposes two ensemble models: Mexicós black bear (a) potential distribution compared with Natural Protected Areas (NPAs); and, (b) persistence areas for 2024. The current distribution variables are coniferous forest, elevation and dry forest. Suitable habitat for black bear (354,047 km2, 18.07% of the country) was found mainly in the north of the Sonoran biogeographical zone, along the Sierra Madre Occidental, the center and south of the Sierra Madre Oriental and some northern regions of the Altiplano Norte. Comparing these areas with NPAs documented that only 12.41% of potential distribution coincided with current suitable habitat. There are unprotected areas in Sierra Madre Occidental center and central and southern of Sierra Madre Oriental. The model for 2024 indicates a reduction of suitable habitat of 64.5%, mainly in the northern Sonoran zone and the center Sierra Madre Occidental. On the other hand, areas that will persist (125,673 km2) are located along the two main mountain ranges of Mexico. Identification of these sites will allow strengthening of long-term conservation strategies.  相似文献   

3.
The Mexican highlands are areas of high biological complexity where taxa of Nearctic and Neotropical origin and different population histories are found. To gain a more detailed view of the evolution of the biota in these regions, it is necessary to evaluate the effects of historical tectonic and climate events on species. Here, we analyzed the phylogeographic structure, historical demographic processes, and the contemporary period, Last Glacial Maximum (LGM) and Last Interglacial (LIG) ecological niche models of Quercus castanea, to infer the historical population dynamics of this oak distributed in the Mexican highlands. A total of 36 populations of Q. castanea were genotyped with seven chloroplast microsatellite loci in four recognized biogeographic provinces of Mexico: the Sierra Madre Occidental (western mountain range), the Central Plateau, the Trans‐Mexican Volcanic Belt (TMVB, mountain range crossing central Mexico from west to east) and the Sierra Madre del Sur (SMS, southern mountain range). We obtained standard statistics of genetic diversity and structure and tested for signals of historical demographic expansions. A total of 90 haplotypes were identified, and 29 of these haplotypes were restricted to single populations. The within‐population genetic diversity was high (mean hS = 0.72), and among‐population genetic differentiation showed a strong phylogeographic structure (NST = 0.630 > GST = 0.266; p < .001). Signals of demographic expansion were identified in the TMVB and the SMS. The ecological niche models suggested a considerable percentage of stable distribution area for the species during the LGM and connectivity between the TMVB and the SMS. High genetic diversity, strong phylogeographic structure, and ecological niche models suggest in situ permanence of Q. castanea populations with large effective population sizes. The complex geological and climatic histories of the TMVB help to explain the origin and maintenance of a large proportion of the genetic diversity in this oak species.  相似文献   

4.
The Mexican transition zone is the complex and varied area in which the Neotropical and Nearctic biotas overlap. In a series of contributions, Gonzalo Halffter provided a coherent theory that explains how sets of taxa that evolved in different geographical areas assembled in this transition zone. Halffter's theory developed gradually, being refined and clarified in successive contributions from him and other authors. After a review of the historical development of the Mexican transition zone, including the characterization of the dispersal or distributional patterns recognized by Halffter, its relevance for evolutionary biogeography is discussed briefly. The Mexican transition zone in the strict sense includes the highlands of Mexico and Guatemala (Sierra Madre Occidental, Sierra Madre Oriental, Transmexican Volcanic Belt, Sierra Madre del Sur and Chiapas Highlands provinces), whereas northern Mexico and the southern United States are clearly Nearctic, and the lowlands of southern Mexico and Central America are clearly Neotropical. The distributional patterns recognized by Halffter are considered to represent cenocrons (sets of taxa that share the same biogeographical history, constituting identifiable subsets within a biota by their common biotic origin and evolutionary history). The development of the Mexican transition zone is summarized into the following stages: (1) Jurassic–Cretaceous: the four Paleoamerican cenocrons extend in Mexico; (2) Late Cretaceous–Palaeocene: dispersal from South America of the Plateau cenocron; (3) Oligocene–Miocene: dispersal from the Central American Nucleus of the Mountain Mesoamerican cenocron; (4) Miocene–Pliocene: dispersal from North America of the Nearctic cenocron; and (5) Pleistocene: dispersal from South America of the Typical Neotropical cenocron.  相似文献   

5.
Aim We used inferences of phylogeographical structure and estimates of divergence times for three species of gophersnakes (Colubridae: Pituophis) distributed across the Mexican Transition Zone (MTZ) to evaluate the postulated association of three Neogene geological events (marine seaway inundation of the Isthmus of Tehuantepec, formation of the Transvolcanic Belt across central Mexico, and secondary uplifting of the Sierra Madre Occidental) and of Pleistocene climate change with inter‐ and intraspecific diversification. Location Mexico, Guatemala, and the western United States. Methods We combined range‐wide sampling (67 individuals representing three putative species distributed across northern Middle America and western North America) and phylogenetic analyses of 1637 base pairs of mitochondrial DNA to estimate genealogical relationships and divergence times. The hypothesized concordance of inferred gene trees with geological histories was assessed using topology tests. Results We identified three major lineages of Middle American gophersnakes, and strong phylogeographical structure within each lineage. Gene trees were statistically congruent with hypothesized geological histories for two of the three postulated geological events. Estimated divergence dates and the geographical distribution of genetic variation further support mixed responses to these geological events. Considerable phylogeographical structure appears to have been generated during the Pleistocene. Main conclusions Phylogenetic and phylogeographical structure in gophersnakes distributed across northern Middle America and western North America highlights the influence of both Neogene vicariance events and Pleistocene climate change in shaping genetic diversity in this region. Despite the presence of two major geographical barriers in southern Mexico, extreme geological and environmental heterogeneity in this area may have differentially structured genetic diversity in highland taxa. To the north, co‐distributed taxa may display a more predictable pattern of diversification across the warm desert regions. Future studies should incorporate nuclear data to disentangle inferred lineage boundaries and further elucidate patterns of mitochondrial introgression.  相似文献   

6.
Aim  We analysed the distributional patterns of six terrestrial vertebrate taxa from the Oaxacan Highlands (Sierra Mazateca, Nudo de Zempoaltépetl and Sierra de Juárez) through a cladistic biogeographical approach, in order to test their naturalness as a biotic unit.
Location  The Oaxacan Highlands, Mexico.
Methods  The cladistic biogeographical analysis was based on the area cladograms of the Pseudoeurycea bellii species group (Amphibia: Plethodontidae), the genus Chlorospingus (Aves: Thraupidae), the genera Microtus , Reithrodontomys and Habromys , and the Peromyscus aztecus species group (Mammalia: Rodentia). We obtained paralogy-free subtrees, from which the components were coded in a data matrix for parsimony analysis. The data matrix was analysed with N ona through W in C lada .
Results  The parsimony analysis resulted in a single general area cladogram in which areas were fragmented following the sequence Sierra Madre Occidental, Trans-Mexican Volcanic Belt, Chiapas, Sierra Madre Oriental + Sierra Mazateca, Sierra Madre del Sur, Nudo de Zempoaltépetl and Sierra de Juárez.
Main conclusions  The general area cladogram shows that the Oaxacan Highlands do not constitute a natural unit. The Sierra Mazateca is the sister area to the Sierra Madre Oriental, whereas the Nudo de Zempoaltépetl and the Sierra de Juárez are closely related to the Sierra Madre del Sur. The events that might have caused these patterns include cycles of expansion and contraction of mountain pinyon, juniper and oak woodlands during the Pleistocene.  相似文献   

7.
Dendroctonus mexicanus is polyphagous within the Pinus genus and has a wide geographical distribution in Mexico and Guatemala. We examined the pattern of genetic variation across the range of this species to explore its demographic history and its phylogeographic pattern. Analysis of the mtDNA sequences of 173 individuals from 25 Mexican populations allowed to us identify 53 geographically structured haplotypes. High haplotype and low nucleotide diversities and Tajima’s D indicate that D. mexicanus experienced rapid population expansion during its dispersal across mountain systems within its current range. The nested clade phylogeographic analysis indicates that the phylogeographic pattern of D. mexicanus is explained by continuous dispersion among lineages from the Sierra Madre Occidental, the Sierra Madre Oriental and the Trans-Mexican Volcanic Belt. However, we also observed isolation events among haplotypes from the Cofre de Perote/Trans-Mexican Volcanic Belt/Sierra Madre Oriental and the Trans-Mexican Volcanic Belt/Sierra Madre del Sur, which is consistent with the present conformation of mountain systems in Mexico and the emergence of geographical barriers during the Pleistocene.  相似文献   

8.
The Sierra Madre Occidental and neighboring Madrean Sky Islands span a large and biologically diverse region of northwest Mexico and portions of the southwestern United States. Little is known about the abundance and habitat use of breeding birds in this region of Mexico, but such information is important for guiding conservation and management. We assessed densities and habitat relationships of breeding birds across Sky Island mountain ranges in Mexico and adjacent portions of the Sierra Madre from 2009 to 2012. We estimated densities at multiple spatial scales, assessed variation in densities among all major montane vegetation communities, and identified and estimated the effects of important habitat attributes on local densities. Regional density estimates of 65% of 72 focal species varied significantly among eight montane vegetation communities that ranged from oak savannah and woodland at low elevations to pine and mixed‐conifer forest at high elevations. Greater proportions of species occurred at peak densities or were relatively restricted to mixed‐conifer forest and montane riparian vegetation likely because of higher levels of structural or floristic diversity in those communities, but those species were typically rare or uncommon in the Sky Islands. Fewer species had peak densities in oak and pine‐oak woodland, and species associated with those communities were often more abundant across the region. Habitat models often included the effects of broadleaf deciduous vegetation cover (30% of species), which, together with tree density and fire severity, had positive effects on densities and suggest ways for managers to augment and conserve populations. Such patterns combined with greater threats to high‐elevation conifer forest and riparian areas underscore their value for conservation. Significant populations of many breeding bird species, including some that are of concern or were not known to occur regionally or in mountain ranges we surveyed, highlight the importance of conservation efforts in this area of Mexico.  相似文献   

9.
10.
Aim We analysed the geographical distribution of beetle species of the families Buprestidae, Cerambycidae, Dryophthoridae, Melolonthidae, Passalidae and Staphylinidae from the Trans‐mexican Volcanic Belt (TVB) through a track analysis and a parsimony analysis of endemicity (PAE), in order to test its naturalness and determine its affinities. Location The area analysed corresponds to the TVB, which is a biogeographical province of the Mexican Transition Zone. Methods The panbiogeographical analysis was based on the comparison of the individual tracks of 299 species of Buprestidae, Cerambycidae, Dryophthoridae, Melolonthidae, Passalidae and Staphylinidae (Coleoptera). The TVB was divided into 1o × 1o grid cells and we also included in the analysis the remaining Mexican biogeographical provinces. Parsimony analysis of endemicity with progressive character elimination (PAE‐PCE) was applied to classify areas by their shared taxa according to the most parsimonious cladograms. The nested sets of areas were represented as generalized tracks. Results Three generalized tracks were obtained: (1) grid cells 9C, 9D, 10D, 10E, Sierra Madre Oriental, Chiapas, Mexican Gulf and the Sierra Madre del Sur; (2) grid cells 3B, 3C, 4B, 4C, 5C, 6C, 7C, Sierra Madre Occidental, Sierra Madre del Sur, Balsas Basin and the Mexican Pacific Coast, and (3) grid cells 8D, 9C, 9D, 10D, 10E, Yucatán Peninsula, Chiapas, Sierra Madre Oriental and the Mexican Gulf. Main conclusions We conclude that the TVB does not represent a natural biogeographical unit because it shows different relationships with other biogeographical provinces, being clearly transitional between the Nearctic and Neotropical provinces. Some parts of the TVB are related to Neotropical provinces (Chiapas, Mexican Gulf and Mexican Pacific Coast) and others to the remaining provinces of the Mexican Transition Zone (Sierra Madre Oriental, Sierra Madre del Sur, Sierra Madre Occidental and Balsas Basin).  相似文献   

11.
Contemporary distribution of North American species has been shaped by past glaciation events during the Quaternary period. However, their effects were not as severe in the southern Rocky Mountains and Northern Mexico as elsewhere in North America. In this context, we test hypotheses about the historical demography of Dendroctonus pseudotsugae, based on 136 haplotypes of mitochondrial cytochrome oxidase I. The phylogenetic analysis yielded four haplogroups corresponding to northwestern United States and southwestern Canada (NUS), southwestern United States (Arizona, SUS), northwestern Mexico (Sierra Madre Occidental, SMOC), and northeastern Mexico (Sierra Madre Oriental, SMOR). Predictions of demographic expansion were examined through neutrality tests against population growth and mismatch distribution. Results showed that the NUS and SMOC haplogroups have experienced demographic expansion events, whereas the SUS and SMOR haplogroups have not. Divergence times between pairs of haplogroups were estimated from early to middle Pleistocene. The longer divergence time between NUS and all other haplogroups could be the result of refugia within the Pacific Northwest and northern Rocky Mountains and long-term isolation from southernmost populations in Mexico. The results obtained in this study are in agreement with the evolutionary history of the host Douglas-fir, as the warmer climates of interglacial periods pushed conifers northward of Colorado, New Mexico, and Arizona, whereas environmental changes reduced the population size of Douglas-fir and forced fragmentation of distribution range southward into northern Mexico.  相似文献   

12.
Mexico hosts the highest species richness of pines (Pinus, Pinaceae) worldwide; however, the priority areas for their conservation in the country are unknown. In this study, the ecological niche of the 50 native pine species was modeled. Then, through a multi-criteria analysis, the priority areas for the conservation of the genus Pinus were identified according to the spatial patterns of richness, geographic rareness, irreplaceability, the level of vulnerability of their habitat and the status of legal protection. The results revealed that the regions with high species richness differed from those with high endemism. Also, most pine species have undergone processes of habitat degradation, having been the endemic species the most affected. The priority areas covered regions with high species richness, high endemism, and highly degraded forests, located at mountainous portions of the Baja California Peninsula, the Sierra Madre Occidental, the Sierra Madre Oriental, the Trans-Mexican Volcanic Belt, and the Sierra Madre del Sur. A low proportion of priority areas overlapped with protected areas or terrestrial regions considered priorities for biological conservation. These results suggest that conservation efforts for this genus should be focused beyond regions with high species richness and current protected areas. Besides, the priority areas identified in this study can be the basis to create biological corridors and new protected areas, which could contribute significantly to the conservation of this genus in Mexico.  相似文献   

13.
Aim To assess the genealogical relationships of widespread montane rattlesnakes in the Crotalus triseriatus species group and to clarify the role of Late Neogene mountain building and Pleistocene pine–oak forest fragmentation in driving the diversification of Mexican highland taxa. Location Highlands of mainland Mexico and the south‐western United States (Texas, New Mexico, and Arizona). Methods A synthesis of inferences was used to address several associated questions about the biogeography of the Mexican highlands and the evolutionary drivers of phylogeographical diversity in co‐distributed taxa. We combined extensive range‐wide sampling (130 individuals representing five putative species) and mixed‐model phylogenetic analyses of 2408 base pairs of mitochondrial DNA to estimate genealogical relationships and divergence times within the C. triseriatus species group. We then assessed the tempo of diversification using a maximum likelihood framework based on the birth–death process. Estimated times of divergences provided a probabilistic temporal component and questioned whether diversification rates have remained constant or varied over time. Finally, we looked for phylogeographical patterns in other co‐distributed taxa. Results We identified eight major lineages within the C. triseriatus group, and inferred strong correspondence between maternal and geographic history within most lineages. At least one cryptic species was detected. Relationships among lineages were generally congruent with previous molecular studies, with differences largely attributable to our expanded taxonomic and geographic sampling. Estimated divergences between most major lineages occurred in the Late Miocene and Pliocene. Phylogeographical structure within each lineage appeared to have been generated primarily during the Pleistocene. Although the scale of genetic diversity recognized affected estimated rates of diversification, rates appeared to have been constant through time. Main conclusions The biogeographical history of the C. triseriatus group implies a dynamic history for the highlands of Mexico. The Neogene formation of the Transvolcanic Belt appears responsible for structuring geographic diversity among major lineages. Pleistocene glacial–interglacial climatic cycles and resultant expansions and contractions of the Mexican pine–oak forest appear to have driven widespread divergences within lineages. Climatic change, paired with the complex topography of Mexico, probably produced a myriad of species‐specific responses in co‐distributed Mexican highland taxa. The high degree of genetic differentiation recovered in our study and others suggests that the Mexican highlands may contain considerably more diversity than currently recognized.  相似文献   

14.
Eurasia is a large continent characterized by heterogeneous environments. Glacial cycles during the late Pleistocene have had variable impacts on the avifauna across Eurasia. Bird populations from South‐East Asia show stability through the Last Glacial Maximum (LGM), while populations from Europe exhibit evidence of post‐LGM expansion. We investigated the phylogeography of the Long‐tailed Tit (Aegithalos caudatus), which spans the longitudinal breadth of Eurasia to test how climatic history and regional topographical complexity affected populations and diversification within the species complex. Our results show that two lineages from central and southern China (lineages C and D) segregate geographically, while lineages across northern Eurasia (lineage A and B) show substantial sympatry. Bayesian estimates for the timing of diversification suggest that the four lineages diverged during the middle Pleistocene, splitting in parallel and undergoing concurrent demographic histories since divergence. A. caudatus lineages experienced similar and synchronous population size dynamics during glacial cycles before the LGM. We conclude that the difference in geo‐topologic complexity may be an important factor that led to the variation in secondary admixture between northern Eurasian and eastern Asian lineages.  相似文献   

15.
Aim Cloud forests of northern Mesoamerica represent the northern and southern limit of the contact zone between species otherwise characteristic of North or South America. Several phylogeographic studies featuring temperate conifer species have improved our understanding of species responses to environmental changes. In contrast, conifer species that presumably colonized northern Mesoamerica from South America are far less studied. A phylogeographic study of Podocarpus matudae (Podocarpaceae) was conducted to identify any major evolutionary divergences or disjunctions across its range and to determine if its current distribution is associated with pre‐Quaternary climatic and/or long‐distance dispersal events. Location Northern Mesoamerica (Mexico and Guatemala). Methods Sixteen populations (157 individuals) of P. matudae were screened for variation at two plastid DNA markers. The intra‐specific phylogenetic relationships among haplotypes were reconstructed using Bayesian inference. Population genetic analyses were undertaken to gain insight into the evolutionary history of these populations. To test whether genetic divergence among populations occurred at different time‐scales plastid DNA sequence data and fossil‐ and coalescent‐based calibrations were integrated. Results The combination of plastid markers yielded 11 haplotypes. Differentiation among populations based on DNA variation (GST) (0.707, SE 0.0807) indicated a clear population structure in P. matudae. Differentiation for ordered alleles (NST) (0.811, SE 0.0732) was higher than that for GST, indicating phylogeographical structure in P. matudae. Most of the total variation (81.3%, P < 0.0001) was explained by differences among populations. The estimated divergence time between the unique haplotypes from a Guatemalan population and the two most common haplotypes from the Sierra Madre Oriental in Mexico was between 10 and 20 Ma, and further haplotype divergence in the poorly resolved clade of the Sierra Madre Oriental occurred between 3 and 0.5 Ma. Main conclusions Divergence estimations support the hypothesis that extant Podocarpus matudae populations are pre‐Quaternary relicts. This finding is consistent with fossil and pollen data that support a Miocene age for temperate floristic elements in Mesoamerican cloud forests, whereas further haplotype divergence within the Sierra Madre Oriental, Chiapas and Guatemala occurred more recently, coinciding with Pleistocene cloud forest refugia.  相似文献   

16.
The boundary between the Nearctic and Neotropical regions has been delineated using different approaches, methods and taxa. Using a panbiogeographical approach, identification of nodes can help understand the dynamics and evolution of the boundary. We analysed the distribution patterns of 46 Mexican land mammal species belonging to the Nearctic biotic component and delineated generalized tracks and nodes, in order to determine the southernmost boundary of the Nearctic region in Mexico. We found six generalized tracks and nine nodes; the latter located largely in the Sierra Madre Oriental, Transmexican Volcanic Belt, Sierra Madre del Sur and Chiapas biogeographical provinces. The highlands of Chiapas were found to represent the southernmost area inhabited by Nearctic taxa. The other biogeographical provinces, together with the Sierra Madre Occidental and Balsas Basin provinces, represent the Mexican transition zone in the strict sense. Instead of a classic static boundary, this transition zone represents an evolutionarily 'active' zone, where several speciation events have taken place in the past.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 327–339.  相似文献   

17.
Quercus mcvaughii is described as a new species of black oak (subgenus Erythrobalanus) from the Sierra Madre Occidental, in northern Durango and western Chihuahua, Mexico. It is most closely related to the more southern Q. crassifolia. Sessile or subsessile hairs, usually of different sizes, on the abaxial leaf surface distinguish Q. mcvaughii from Q. crassifolia, where hairs are similar in size and conspicuously stipitate. A key is provided for distinguishing similar species in the region. Intergradation of Q. mcvaughii with Q. crassifolia, Q. hypoleucoides, and Q. sideroxyla is reported.  相似文献   

18.
Glacial–interglacial cycles of the Pleistocene are hypothesized as one of the foremost contributors to biological diversification. This is especially true for cold‐adapted montane species, where range shifts have had a pronounced effect on population‐level divergence. Gartersnakes of the Thamnophis rufipunctatus species complex are restricted to cold headwater streams in the highlands of the Sierra Madre Occidental and southwestern USA. We used coalescent and multilocus phylogenetic approaches to test whether genetic diversification of this montane‐restricted species complex is consistent with two prevailing models of range fluctuation for species affected by Pleistocene climate changes. Our concatenated nuDNA and multilocus species analyses recovered evidence for the persistence of multiple lineages that are restricted geographically, despite a mtDNA signature consistent with either more recent connectivity (and introgression) or recent expansion (and incomplete lineage sorting). Divergence times estimated using a relaxed molecular clock and fossil calibrations fall within the Late Pleistocene, and zero gene flow scenarios among current geographically isolated lineages could not be rejected. These results suggest that increased climate shifts in the Late Pleistocene have driven diversification and current range retraction patterns and that the differences between markers reflect the stochasticity of gene lineages (i.e. ancestral polymorphism) rather than gene flow and introgression. These results have important implications for the conservation of T. rufipunctatus (sensu novo), which is restricted to two drainage systems in the southwestern US and has undergone a recent and dramatic decline.  相似文献   

19.
Multiple geological and climatic events have created geographical or ecological barriers associated with speciation events, playing a role in biological diversification in North and Central America. Here, we evaluate the influence of the Neogene and Quaternary geological events, as well as the climatic changes in the diversification of the colubrid snake genus Rhadinaea using molecular dating and ancestral area reconstruction. A multilocus sequence dataset was generated for 37 individuals of Rhadinaea from most of the biogeographical provinces where the genus is distributed, representing 19 of the 21 currently recognized species, and two undescribed species. Our analyses show that the majority of the Rhadinaea species nest in two main clades, herein identified as “Eastern” and “Southern”. These clades probably diverged from each other in the early Miocene, and their divergence was followed by 11 divergences during the middle to late Miocene, three divergences during the Pliocene, and six divergences in the Pleistocene. The ancestral distribution of Rhadinaea was reconstructed across the Sierra Madre del Sur. Our phylogenetic analyses do not support the monophyly of Rhadinaea. The Miocene and Pliocene geomorphology, perhaps in conjunction with climate change, appears to have triggered the diversification of the genus, while the climatic changes during the Miocene probably induced the diversification of Rhadinaea in the Sierra Madre del Sur. Our analysis suggests that the uplifting of the Trans‐Mexican Volcanic Belt and Chiapan–Guatemalan highlands in this same period resulted in northward and southward colonization events. This was followed by more recent, independent colonization events in the Pliocene and Pleistocene involving the Balsas Basin, Chihuahuan Desert, Pacific Coast, Sierra Madre Occidental, Sierra Madre Oriental, Sierra Madre del Sur, Trans‐Mexican Volcanic Belt, and Veracruz provinces, probably driven by the climatic fluctuations of the time.  相似文献   

20.
Fagus mexicana Martínez (Mexican beech) is an endangered Arcto‐Tertiary Geoflora tree species that inhabit isolated and fragmented tropical montane cloud forests in eastern Mexico. Exploring past, present, and future climate change effects on the distribution of Mexican beech involves the study of spatial ecology and temporal patterns to develop conservation plans. These are key to understanding the niche conservatism of other forest communities with similar environmental requirements. For this study, we used species distribution models by combining occurrence records, to assess the distribution patterns and changes of the past (Last Glacial Maximum), present (1981–2010), and future (2040–2070) periods under two climate scenarios (SSP 3‐7.0 & SSP 5‐8.5). Next, we determined the habitat suitability and priority conservation areas of Mexican beech as associated with topography, land cover use, distance to the nearest town, and environmental variables. By considering the distribution of Mexican beech during different periods and under different climate scenarios, our study estimated that high‐impact areas of Mexican beech forests were restricted to specific areas of the Sierra Madre Oriental that constitute refugia from the Last Glacial Maximum. Regrettably, our results exhibited that Mexican beech distribution has decreased 71.3% since the Last Glacial Maximum and this trend will for the next 50 years, migrating to specific refugia at higher altitudes. This suggests that the states of Hidalgo, Veracruz, and Puebla will preserve the habitat suitability features as ecological refugia, related to high moisture and north‐facing slopes. For isolated and difficult‐to‐access areas, the proposed methods are powerful tools for relict‐tree species, which deserve further conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号