首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns in the size distribution and taxonomic composition of phytoplankton and zooplankton communities for 1974 in Georgian Bay and the North Channel are described. The Diatomeae predominate the phytoplankton in both areas. Copepods, particularly Calanoida, comprise the greatest fraction of the zooplankton biomass. Normalized plankton biomass spectra for both ecosystems are typical of those found in Lake Superior and offshore Lake Huron. The plankton communities of Georgian Bay and the North Channel are thus similar to the most oligotrophic of the Laurentian Great Lakes.  相似文献   

2.
Jerome J. Weis  David M. Post 《Oikos》2013,122(9):1343-1349
Predation has important cascading impacts on primary producer biomass and community composition in many ecosystems. While most studies have focused on the consequences of interspecific or density differences in predators, it is recognized that phenotypic variation within species can have strong and cascading community and ecosystem consequences at lower trophic levels. In coastal New England lakes, both the presence and life history form of the zooplanktivorous fish alewife, Alosa pseudoharengus, have strong influence on the biomass, size structure and community composition of crustacean zooplankton communities. Here we test the hypothesis that alewife presence and life history will have cascading impacts on phytoplankton biomass and community composition in a mesocosm experiment that previously reported strong biomass and compositional differences of crustacean zooplankton communities among alewife treatments. We show that alewife life history led to small but statistically significant differences in phytoplankton community composition among treatments. This compositional difference was driven primarily by an increase in the density of two edible phytoplankton genera associated with lower zooplankton biomass in the anadromous alewife treatment. Our results show that intraspecific variation in a predator can have cascading effects on primary producer communities. However we did not observe significant differences in total algal biomass.  相似文献   

3.
Phytoplankton are key components of aquatic ecosystems, fixing CO2 from the atmosphere through photosynthesis and supporting secondary production, yet relatively little is known about how future global warming might alter their biodiversity and associated ecosystem functioning. Here, we explore how the structure, function, and biodiversity of a planktonic metacommunity was altered after five years of experimental warming. Our outdoor mesocosm experiment was open to natural dispersal from the regional species pool, allowing us to explore the effects of experimental warming in the context of metacommunity dynamics. Warming of 4°C led to a 67% increase in the species richness of the phytoplankton, more evenly-distributed abundance, and higher rates of gross primary productivity. Warming elevated productivity indirectly, by increasing the biodiversity and biomass of the local phytoplankton communities. Warming also systematically shifted the taxonomic and functional trait composition of the phytoplankton, favoring large, colonial, inedible phytoplankton taxa, suggesting stronger top-down control, mediated by zooplankton grazing played an important role. Overall, our findings suggest that temperature can modulate species coexistence, and through such mechanisms, global warming could, in some cases, increase the species richness and productivity of phytoplankton communities.  相似文献   

4.
1. Variations in the light regime can affect the availability and quality of food for zooplankton grazers as well as their exposure to fish predation. In northern lakes light is particularly low in winter and, with increasing warming, the northern limit of some present-day plankton communities may move further north and the plankton will thus receive less winter light.
2. We followed the changes in the biomass and community structure of zooplankton and phytoplankton in a clear and a turbid shallow lake during winter (November–March) in enclosures both with and without fish and with four different light treatments (100%, 55%, 7% and <1% of incoming light).
3. In both lakes total zooplankton biomass and chlorophyll- a were influenced by light availability and the presence of fish. Presence of fish irrespective of the light level led to low crustacean biomass, high rotifer biomass and changes in the life history of copepods. The strength of the fish effect on zooplankton biomass diminished with declining light and the effect of light was strongest in the presence of fish.
4. When fish were present, reduced light led to a shift from rotifers to calanoid copepods in the clear lake and from rotifers to cyclopoid copepods in the turbid lake. Light affected the phytoplankton biomass and, to a lesser extent, the phytoplankton community composition and size. However, the fish effect on phytoplankton was overall weak.
5. Our results from typical Danish shallow eutrophic lakes suggest that major changes in winter light conditions are needed in order to have a significant effect on the plankton community. The change in light occurring when such plankton communities move northwards in response to global warming will mostly be of modest importance for this lake type, at least for the rest of this century in an IPCC A2 scenario, while stronger effects may be observed in deep lakes.  相似文献   

5.
Global warming is a major threat to the natural environment worldwide with potential adverse impact on plankton community. This will ultimately lead to a change in the dynamics of aquatic food webs. In this study we used seasonally forced multi-species version of the classic Rosenzweig–MacArthur predator–prey model to understand the role and stochastic influence of increasing temperature on marine plankton. First, stable coexistence of four phytoplankton and three zooplankton species was created in a system and then the level of temperature changed to achieve our research goal. We found that the stable coexistence of phytoplankton and zooplankton was related to periodic shifts in species biomass, variation in inter-specific competition and niche configuration. Warming significantly reduced total plankton biomass and changed turnover time of a species, with gradual warming breaking the stable coexistence of phytoplankton and zooplankton. In addition, we found that warming make specialist species more vulnerable than generalist species. After adding noise, a significant variation was observed in plankton biomass and amplification of noise was higher for phytoplankton compared to zooplankton. These results suggest that stochastic or unpredictable nature of temperature fluctuations may create a window of opportunity for the emergence of new species. Overall, warming would induce a shift in plankton dynamics and thereby exert pressure on plankton dependent communities such as fish in the long run.  相似文献   

6.
Can a community of small-bodied grazers control phytoplankton in rivers?   总被引:4,自引:0,他引:4  
1. Phytoplankton, zooplankton and grazing were monitored throughout the growing season for three years (1994–96) in the Belgian section of the River Meuse.
2. A size structure analysis of the algal community shows that there was a summer shift toward larger algal units, following a decline in phytoplankton biomass. These changes occurred after an increase in zooplankton biomass and diversity.
3. Daily filtration rates of grazers ranged from 1 to 113% day–1 and maxima were observed during the summer period. Higher rates tended to correspond with peaks of rotifer biomass. A decline in total phytoplankton biomass within two weeks followed the increase in zooplankton biomass and filtration rate. A rapid biomass recovery was then observed, along with a shift of the algal community toward larger units. When grazing activity was not sustained, due to zooplankton fluctuations, the change in phytoplankton size structure was less marked.
4. We suggest that the composition of the phytoplankton community of large rivers may at times be controlled by grazers. However, such biotic interactions can take place only when physical constraints are reduced, i.e. when discharge is low, and when increased transfer time, high temperature and availability of grazeable algae allow high zooplankton biomass.  相似文献   

7.
Spatial and seasonal patterns in phytoplankton and zooplankton communities of Lake St. Clair from June through September, 1984 are described. Phytoplankton biomass averages 586 µg l-1 with the Diatomae and Chrysophyceae predominating. Zooplankton biomass averages 663 µg l- with small bosminid Cladocera being the most abundant organisms. Lake St. Clair zooplankton biomass is second only to that of Lake Erie amongst the St. Lawrence Great Lakes. Biomass size spectra are typical in structure for mesotrophic lakes but low explained variance in the annual normalized spectrum is indicative of a perturbed system. Since 1972/1973 there appears to have been a slight decrease in zooplankton abundance in the lake accompanied by a shift from dominance of rotifers to dominance of cladocerans. We hypothesize that high flushing rate and seasonal variability coupled with contaminant loadings have resulted in a plankton community reduced in taxonomic diversity and dominated by small-bodied species.  相似文献   

8.
Quantifying variation in ecosystem metabolism is critical to predicting the impacts of environmental change on the carbon cycle. We used a metabolic scaling framework to investigate how body size and temperature influence phytoplankton community metabolism. We tested this framework using phytoplankton sampled from an outdoor mesocosm experiment, where communities had been either experimentally warmed (+ 4 °C) for 10 years or left at ambient temperature. Warmed and ambient phytoplankton communities differed substantially in their taxonomic composition and size structure. Despite this, the response of primary production and community respiration to long‐ and short‐term warming could be estimated using a model that accounted for the size‐ and temperature dependence of individual metabolism, and the community abundance‐body size distribution. This work demonstrates that the key metabolic fluxes that determine the carbon balance of planktonic ecosystems can be approximated using metabolic scaling theory, with knowledge of the individual size distribution and environmental temperature.  相似文献   

9.
Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic composition of benthic communities in aquatic mesocosms, and the rates of detrital decomposition they mediated. Warming had no effect on biodiversity, but altered community size structure in two ways. In spring, warmer systems exhibited steeper size spectra driven by declines in total community biomass and the proportion of large organisms. By contrast, in autumn, warmer systems had shallower size spectra driven by elevated total community biomass and a greater proportion of large organisms. Community-level shifts were mirrored by changes in decomposition rates. Temperature-corrected microbial and macrofaunal decomposition rates reflected the shifts in community structure and were strongly correlated with biomass across mesocosms. Our study demonstrates that the 4°C rise in temperature expected by the end of the century has the potential to alter the structure and functioning of aquatic ecosystems profoundly, as well as the intimate linkages between these levels of ecological organization.  相似文献   

10.
Freshwater biodiversity loss potentially disrupts ecosystem services related to water quality and may negatively impact ecosystem functioning and temporal community turnover. We analysed a data set containing phytoplankton and zooplankton community data from 131 lakes through 9 years in an agricultural region to test predictions that plankton communities with low biodiversity are less efficient in their use of limiting resources and display greater community turnover (measured as community dissimilarity). Phytoplankton resource use efficiency (RUE = biomass per unit resource) was negatively related to phytoplankton evenness (measured as Pielou's evenness), whereas zooplankton RUE was positively related to phytoplankton evenness. Phytoplankton and zooplankton RUE were high and low, respectively, when Cyanobacteria, especially Microcystis sp., dominated. Phytoplankton communities displayed slower community turnover rates when dominated by few genera. Our findings, which counter findings of many terrestrial studies, suggest that Cyanobacteria dominance may play important roles in ecosystem functioning and community turnover in nutrient‐enriched lakes.  相似文献   

11.
1. Decades of introductions of exotic sportfish to mountain lakes around the world have impoverished them biologically, and this may be exacerbated by global warming. We assessed the current status of invasive salmonids and native zooplankton communities in 34 naturally fishless lakes along an elevational gradient, which served as an environmental proxy for the expected effects of climate change. 2. Our main goal was to explore how climate‐related variables influence the effects of stocked salmonids on the total biomass, species richness and taxonomic composition of zooplankton. We predicted that warmer conditions would dampen the negative predatory effects of exotic brook trout (Salvelinus fontinalis) on zooplankton communities because more temperate lakes contain a greater diversity of potentially tolerant species. 3. Instead, we discovered that the persistence of stocked brook trout in the warmer lakes significantly amplified total zooplankton biomass and species richness. In colder and deeper lakes, zooplankton were relatively unaffected by S. fontinalis, which however persisted better in alpine lakes than at lower elevations after stocking practices were halted over two decades ago. Warmer lake conditions and higher concentrations of dissolved organic carbon (DOC) were significant primary drivers of zooplankton species turnover, both favouring greater species diversity. 4. Our findings of an ecological surprise involving potential synergistic positive effects of climate warming and exotic trout on native zooplankton communities presents a conundrum for managers of certain national mountain parks. Present mandates to eradicate non‐native trout and return the mountain lakes to their naturally fishless state may conflict with efforts to conserve biodiversity under a rapidly changing climate.  相似文献   

12.
1. Air temperature will probably have pronounced effects on the composition of plankton communities in northern lake ecosystems, either via indirect effects on the export of essential elements from catchments or through direct effects of water temperature and the ice‐free period on the behaviour of planktonic organisms. 2. We assessed the role of temperature by comparing planktonic communities in 15 lakes along a 6 °C air temperature gradient in subarctic Sweden. 3. We found that the biomass of phytoplankton, bacterioplankton and the total planktonic biomass were positively related to air temperature, probably as a result of climatic controls on the export of nitrogen from the catchment (which affects phytoplankton biomass) and dissolved organic carbon (affecting bacterioplankton biomass). 4. The structure of the zooplankton community, and top down effects on phytoplankton, were apparently not related to temperature but mainly to trophic interactions ultimately dependent on the presence of fish in the lakes. 5. Our results suggest that air temperature regimes and long‐term warming can have strong effects on the planktonic biomass in high latitude lakes. Effects of temperature on the structure of the planktonic community might be less evident unless warming permits the invasion of fish into previous fishless lakes.  相似文献   

13.
I examined the effect of temperature and light on ecosystem composition was examined in a two factorial design using microcosms set up from natural rockpool communities. Furthermore I tested if the effect of temperature on different ecosystem components was dependent on the initial community composition by using communities from seven different rockpools that differed considerably in standing stocks of phytoplankton, zooplankton, zooplankton species composition, sediment mass and nutrient concentrations. Increased light caused phytoplankton biomass to decrease while zooplankton biomass and sediment dry weight was positively correlated to increased light levels. The effect of temperature on phytoplankon was largely determined by community type. Zooplankton biomass decreased with increasing temperature between 10°C and 25°C and this trend was not significantly different between different community types. A negative effect on zooplankton biomass was found at 7°C in one community. I propose, that the stronger temperature sensitivity of metabolical cost for herbivorous organisms compared to algae productivity might explain the decrease in zooplankton biomass at high temperatures. I discuss how edibility of algae and grazer characteristics may influence the response of ecosystem composition to temperature.  相似文献   

14.
Pomati  Francesco  Matthews  Blake  Seehausen  Ole  Ibelings  Bas W. 《Hydrobiologia》2017,787(1):375-385

The composition and dynamics of plankton communities are critically affected by human-induced environmental changes. We analysed 33 years of phytoplankton monthly data collected in Lake Zurich (Switzerland), assigning organisms (genus level) to taxonomic groups (class, family), Reynolds associations and size categories. The aim was to understand how eutrophication and climate change have influenced taxa co-occurrence patterns within and between groups over the lake water column (14 depths, 0–135 m), using null-models to test for non-random spatial (depth) assembly. We found that the whole community showed high taxa co-occurrence levels, significantly deviating over time from random assembly concurrently with lake warming and reduced nutrient loading. This pattern was driven mostly by the depth structure of metalimnetic assemblages during summer and autumn. The prevalence of non-random spatial patterns changed for different taxonomic and functional groups, with only few significant deviations from null-model expectations. Within taxonomic and functional groups (particularly Classes and size categories), the frequency of spatial overdispersion of taxa decreased over time while the frequency of clustering increased. Our data suggest that the relative importance of mechanisms determining phytoplankton metacommunity dynamics have changed along with environmental gradients shaping water column structure.

  相似文献   

15.
Aim We investigated the biogeographical patterns of phytoplankton, zooplankton and fish in freshwater ecosystems. We tested whether spatial distance or environmental heterogeneity act as potential factors controlling community composition. Location Northern and central Greece, eastern Mediterranean. Method Data on 310 phytoplankton, 72 zooplankton and 37 fish species were collected from seven freshwater systems. Species occurrence data were used to generate similarity matrices describing community composition. We performed Mantel tests to compare spatial patterns in community composition of phytoplankton, zooplankton and fish. Next, we examined the correlation between geographical distance and the degree of similarity in community composition. The analysis was repeated for different taxonomic, trophic and size‐based groups of the microorganisms studied. We assessed different environmental variables (topographic and limnological) as predictors of community composition. Results Phytoplankton community composition showed a strong positive correlation with environmental heterogeneity but was not correlated with the geographical distance between systems. Zooplankton community composition was unrelated to geographical distance and was only weakly correlated with environmental variables. In contrast, fish community similarity decayed significantly with distance. We found no relationship along all pairwise comparisons of the compositional matrices of the three groups. The pairwise comparisons of the different taxonomic, trophic and size‐based groups of the microorganism communities studied were in accordance with the results for the entire microorganism community. Main conclusions Our results support the proposition that the biogeography of microorganisms does not demonstrate a distance–decay pattern and further suggest that, in reality, the drivers of distribution depend on the specific community examined. In contrast, the biogeography of macroorganisms was affected by geographical distance. These differences reflect the dispersal abilities of the different organisms. The microorganisms exhibit passive dispersal through the air, with local environmental conditions structuring their community composition. On the other hand, for macroorganisms such as fish, the terrestrial environment could pose barriers to their dispersal; with fish structuring distinctive communities over greater distances. Overall, we suggest that the biogeography of freshwater phytoplankton and zooplankton reflects contemporary environmental conditions, while the biogeographical patterns for fish inhabiting the same systems are related to factors affecting their dispersal ability.  相似文献   

16.
1. In situ enclosure experiments were performed in the mesotrophic Bermejales reservoir to evaluate the algal response to changes in the nutrient supply and in the zooplankton size structure and density in a 2 × 2 factorial design. The experiments were conducted during the spring bloom of nanoplanktonic diatoms in 1989. 2. Nutrient enrichment promoted a great increase of phytoplankton biomass indicating a strong nutrient limitation on phytoplankton growth. Total phytoplankton biomass was significantly lower in the Daphina-added enclosures at a given nutrient level and strong direct an indirect effect of zooplankton on phytoplankton community structure and nutrient availability were observed. 3. Most of the nanoplanktonic species were effectively grazed but species with protective coverings and large size colonies were favoured by grazers and small chlorococcales were unaffected probably because of their compensatory high growth rates. The decrease in total biomass imposed by grazers is attributable mainly to the decrease of Cyclotella ocellata, the most abundant species. This taxon suffers two net effects of zooplankton: direct grazing and the indirect decrease of Si availability caused by the growth of C. ocellata which was promoted by P excretion by zooplankton. Indirect effects of grazers on Si availability should, therefore, be taken into account in explaining phytoplankton succession and community structure. 4. In this experiment grazers affected considerably the nanoplanktonic community in Bermejales reservoir. The extent which they were affected, however, depended not only on the algal size as a determinant of edibility but also greatly on the specific nutrient requirements and taxonomic features of the algal species.  相似文献   

17.
Indoor mesocosms were used to study the combined effect of warming and of different densities of overwintering mesozooplankton (mainly copepods) on the spring development of phytoplankton in shallow, coastal waters. Similar to previous studies, warming accelerated the spring phytoplankton peak by ca. 1 day °C?1 whereas zooplankton did not significantly influence timing. Phytoplankton biomass during the experimental period decreased with warming and with higher densities of overwintering zooplankton. Similarly, average cell size and average effective particle size (here: colony size) decreased both with zooplankton density and warming. A decrease in phytoplankton particle size is generally considered at typical footprint of copepod grazing. We conclude that warming induced changes in the magnitude and structure of the phytoplankton spring bloom cannot be understood without considering grazing by overwintering zooplankton.  相似文献   

18.
Herbivores can both consume and facilitate primary producers with important consequences for community structure. How differences in herbivore foraging ecology alter the relative importance of such effects is not well understood, especially in tropical lentic systems. To address this issue, we manipulated the density of two herbivores with different foraging strategies to evaluate their effects on primary producers and other consumers. Specifically, we examined the effects of the tadpoles of two common Neotropical hylid frogs at two densities on conspecific growth, periphyton and phytoplankton, and zooplankton. We found that the tadpoles of the pantless treefrog, Dendropsophus ebraccatus, reduced periphyton and increased phytoplankton abundances, whereas they had no affect on zooplankton. The red‐eyed treefrog, Agalychnis callidryas, also reduced periphyton and increased phytoplankton, but to a greater extent, and they also had strong impacts on zooplankton by altering the composition, size structure, and total abundances of the zooplankton community. Differences between both species' impacts on these food webs were independent of tadpole biomass, as size‐selective filter feeding and nutrient cycling seems to drive the impacts of A. callidryas on phytoplankton and zooplankton, while the role of D. ebraccatus is more limited. Species level differences in the strength and direction of top‐down and bottom‐up effects on food webs suggest that the ecological roles of tadpoles may be diverse and important to aquatic communities.  相似文献   

19.
Bergström  A.-K.  Deininger  A.  Jonsson  A.  Karlsson  J.  Vrede  T. 《Hydrobiologia》2021,848(21):4991-5010

We used data from whole-lake studies to assess how changes in food quantity (phytoplankton biomass) and quality (phytoplankton community composition, seston C:P and N:P) with N fertilization affect zooplankton biomass, community composition and C:N:P stoichiometry, and their N:P recycling ratio along a gradient in lake DOC concentrations. We found that despite major differences in phytoplankton biomass with DOC (unimodal distributions, especially with N fertilization), no major differences in zooplankton biomass were detectable. Instead, phytoplankton to zooplankton biomass ratios were high, especially at intermediate DOC and after N fertilization, implying low trophic transfer efficiencies. An explanation for the observed low phytoplankton resource use, and biomass responses in zooplankton, was dominance of colony forming chlorophytes of reduced edibility at intermediate lake DOC, combined with reduced phytoplankton mineral quality (enhanced seston N:P) with N fertilization. N fertilization, however, increased zooplankton N:P recycling ratios, with largest impact at low DOC where phytoplankton benefitted from light sufficiently to cause enhanced seston N:P. Our results suggest that although N enrichment and increased phytoplankton biomass do not necessarily increase zooplankton biomass, bottom-up effects may still impact zooplankton and their N:P recycling ratio through promotion of phytoplankton species of low edibility and altered mineral quality.

  相似文献   

20.
Williams  Adrian E.  Moss  Brian 《Hydrobiologia》2003,491(1-3):331-346
Thirty-six enclosures, surface area 4 m2, were placed in Little Mere, a shallow fertile lake in Cheshire, U.K. The effects of different fish species (common carp, common bream, tench and roach) of zooplanktivorous size, and their biomass (0, 200 and 700 kg ha–1) on water chemistry, zooplankton and phytoplankton communities were investigated. Fish biomass had a strong effect on mean zooplankton size and abundance. When fish biomass rose, larger zooplankters were replaced by more numerous smaller zooplankters. Consequently phytoplankton abundance rose in the presence of higher densities of zooplanktivorous fish, as zooplankton grazing was reduced. Fish species were also significant in determining zooplankton community size structure. In enclosures with bream there were significantly greater densities of small zooplankters than in enclosures stocked with either carp, tench and, in part, roach. When carp or roach were present, the phytoplankton had a greater abundance of Cyanophyta than when bream or tench were present. Whilst top-down effects of fish predation controlled the size partitioning of the zooplankton community, this, in turn apparently controlled the bottom-up regeneration of nutrients for the phytoplankton community. At the zooplankton–phytoplankton interface, both top-down and bottom-up processes were entwined in a reciprocal feedback mechanism with the extent and direction of that relationship altered by changes in fish species. This has consequences for the way that top-down and bottom-up processes are generalised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号