首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mantophasmatodea and phylogeny of the lower neopterous insects   总被引:6,自引:0,他引:6  
Polyneoptera is a name sometimes applied to an assemblage of 11 insect orders comprising the lower neopterous or “orthopteroid” insects. These orders include familiar insects such as Orthoptera (grasshoppers), Blattodea (roaches), Isoptera (termites) (Mantodea) praying mantises, Dermaptera (earwigs), Phasmatodea (stick insects), Plecoptera (stoneflies), as well as the more obscure, Embiidina (web‐spinners), Zoraptera (angel insects) and Grylloblattodea (ice‐crawlers). Many of these insect orders exhibit a high degree of morphological specialization, a condition that has led to multiple phylogenetic hypotheses and little consensus among investigators. We present a phylogenetic analysis of the polyneopteran orders representing a broad range of their phylogenetic diversity and including the recently described Mantophasmatodea. These analyses are based on complete 18S rDNA, 28S rDNA, Histone 3 DNA sequences, and a previously published morphology matrix coded at the ordinal level. Extensive analyses utilizing different alignment methodologies and parameter values across a majority of possible ranges were employed to test for sensitivity of the results to ribosomal alignment and to explore patterns across the theoretical alignment landscape. Multiple methodologies support the paraphyly of Polyneoptera, the monophyly of Dictyoptera, Orthopteroidea (sensu Kukalova‐Peck; i.e. Orthoptera + Phasmatodea + Embiidina), and a group composed of Plecoptera + Dermaptera + Zoraptera. Sister taxon relationships between Embiidina + Phasmatodea in a group called “Eukinolabia”, and Dermaptera + Zoraptera (“Haplocercata”) are also supported by multiple analyses. This analysis also supports a sister taxon relationship between the newly described Mantophasmatodea, which are endemic to arid portions of southern Africa, and Grylloblattodea, a small order of cryophilic insects confined to the north‐western Americas and north‐eastern Asia, in a group termed “Xenonomia”. This placement, coupled with the morphological disparity of the two groups, validates the ordinal status of Mantophasmatodea. © The Willi Hennig Society 2005.  相似文献   

2.
3.
Abstract. Dermaptera (earwigs) is a cosmopolitan order of insects, the phylogenetic relationships of which are poorly understood. The phylogeny of Dermaptera was inferred from large subunit ribosomal (28S), small subunit ribosomal (18S), histone-3 (H3) nuclear DNA sequences, and forty-three morphological characters. Sequence data were collected for thirty-two earwig exemplar taxa representing eight families in two suborders: Hemimeridae (suborder Hemimerina); Pygidicranidae, Anisolabididae, Labiduridae, Apachyidae, Spongiphoridae, Chelisochidae and Forficulidae (suborder Forficulina). Eighteen taxa from ten additional orders were also included, representing Ephemeroptera, Odonata, Orthoptera, Phasmida, Embiidina, Mantodea, Isoptera, Blattaria, Grylloblattodea and Zoraptera. These data were analysed via direct optimization in poy under a range of gap and substitution values to test the sensitivity of the data to variations in parameter values. These results indicate that the epizoic Hemimerus is not sister to the remaining Dermaptera, but rather nested as sister to Forficulidae + Chelisochidae. These analyses support the paraphyly of Pygidicranidae and Spongiphoridae and the monophyly of Chelisochidae, Forficulidae, Anisolabididae and Labiduridae.  相似文献   

4.
Many attempts to resolve the phylogenetic relationships of higher groups of insects have been made based on both morphological and molecular evidence; nonetheless, most of the interordinal relationships of insects remain unclear or are controversial. As a new approach, in this study we sequenced three nuclear genes encoding the catalytic subunit of DNA polymerase delta and the two largest subunits of RNA polymerase II from all insect orders. The predicted amino acid sequences (In total, approx. 3500 amino acid sites) of these proteins were subjected to phylogenetic analyses based on the maximum likelihood and Bayesian analysis methods with various models. The resulting trees strongly support the monophyly of Palaeoptera, Neoptera, Polyneoptera, and Holometabola, while within Polyneoptera, the groupings of Isoptera/"Blattaria"/Mantodea (Superorder Dictyoptera), Dictyoptera/Zoraptera, Dermaptera/Plecoptera, Mantophasmatodea/Grylloblattodea, and Embioptera/Phasmatodea are supported. Although Paraneoptera is not supported as a monophyletic group, the grouping of Phthiraptera/Psocoptera is robustly supported. The interordinal relationships within Holometabola are well resolved and strongly supported that the order Hymenoptera is the sister lineage to all other holometabolous insects. The other orders of Holometabola are separated into two large groups, and the interordinal relationships of each group are (((Siphonaptera, Mecoptera), Diptera), (Trichoptera, Lepidoptera)) and ((Coleoptera, Strepsiptera), (Neuroptera, Raphidioptera, Megaloptera)). The sister relationship between Strepsiptera and Diptera are significantly rejected by all the statistical tests (AU, KH and wSH), while the affinity between Hymenoptera and Mecopterida are significantly rejected only by AU and KH tests. Our results show that the use of amino acid sequences of these three nuclear genes is an effective approach for resolving the relationships of higher groups of insects.  相似文献   

5.
The position of the Zoraptera remains one of the most challenging and uncertain concerns in ordinal-level phylogenies of the insects. Zoraptera have been viewed as having a close relationship with five different groups of Polyneoptera, or as being allied to the Paraneoptera or even Holometabola. Although rDNAs have been widely used in phylogenetic studies of insects, the application of the complete 28S rDNA are still scattered in only a few orders. In this study, a secondary structure model of the complete 28S rRNAs of insects was reconstructed based on all orders of Insecta. It was found that one length-variable region, D3-4, is particularly distinctive. The length and/or sequence of D3-4 is conservative within each order of Polyneoptera, but it can be divided into two types between the different orders of the supercohort, of which the enigmatic order Zoraptera and Dictyoptera share one type, while the remaining orders of Polyneoptera share the other. Additionally, independent evidence from phylogenetic results support the clade (Zoraptera+Dictyoptera) as well. Thus, the similarity of D3-4 between Zoraptera and Dictyoptera can serve as potentially valuable autapomorphy or synapomorphy in phylogeny reconstruction. The clades of (Plecoptera+Dermaptera) and ((Grylloblattodea+Mantophasmatodea)+(Embiodea+Phasmatodea)) were also recovered in the phylogenetic study. In addition, considering the other studies based on rDNAs, this study reached the highest congruence with previous phylogenetic studies of Holometabola based on nuclear protein coding genes or morphology characters. Future comparative studies of secondary structures across deep divergences and additional taxa are likely to reveal conserved patterns, structures and motifs that can provide support for major phylogenetic lineages.  相似文献   

6.
Abstract Dictyoptera, comprising Blattaria, Isoptera, and Mantodea, are diverse in appearance and life history, and are strongly supported as monophyletic. We downloaded COII, 16S, 18S, and 28S sequences of 39 dictyopteran species from GenBank. Ribosomal RNA sequences were aligned manually with reference to secondary structure. We included morphological data (maximum of 175 characters) for 12 of these taxa and for an additional 15 dictyopteran taxa (for which we had only morphological data). We had two datasets, a 59‐taxon dataset with five outgroup taxa, from Phasmatodea (2 taxa), Mantophasmatodea (1 taxon), Embioptera (1 taxon), and Grylloblattodea (1 taxon), and a 62‐taxon dataset with three additional outgroup taxa from Plecoptera (1 taxon), Dermaptera (1 taxon) and Orthoptera (1 taxon). We analysed the combined molecular?morphological dataset using the doublet and MK models in Mr Bayes , and using a parsimony heuristic search in paup . Within the monophyletic Mantodea, Mantoida is recovered as sister to the rest of Mantodea, followed by Chaeteessa; the monophyly of most of the more derived families as defined currently is not supported. We recovered novel phylogenetic hypotheses about the taxa within Blattodea (following Hennig, containing Isoptera). Unique to our study, one Bayesian analysis places Polyphagoidea as sister to all other Dictyoptera; other analyses and/or the addition of certain orthopteran sequences, however, place Polyphagoidea more deeply within Dictyoptera. Isoptera falls within the cockroaches, sister to the genus Cryptocercus. Separate parsimony analyses of independent gene fragments suggest that gene selection is an important factor in tree reconstruction. When we varied the ingroup taxa and/or outgroup taxa, the internal dictyopteran relationships differed in the position of several taxa of interest, including Cryptocercus, Polyphaga, Periplaneta and Supella. This provides further evidence that the choice of both outgroup and ingroup taxa greatly affects tree topology.  相似文献   

7.
Abstract. The order Zoraptera has traditionally been thought to contain only one family (Zorotypidae) and one genus ( Zorotypus Silvestri). An analysis of known zorapteran wings shows that the wing venation contains character sets indicative of the existence of seven genera: Zorotypus, Brazilozoros gen.n., Centrozoros gen.n., Floridazoros gen.n., Latinozoros gen.n., Meridozoros gen.n. and Usazoros gen.n. The wing venation of Meridozoros leleupi (Weidner) from the Galapagos Islands, Ecuador and Venezuela is described here for the first time.
The major wing structures show that Zoraptera belong to the blattoid lineage. Head and abdomen characters indicate that Zoraptera probably diverged from the Blattoneoptera stock early, almost certainly before the (Protelytroptera + Dermaptera) line, and much before the (Isoptera + (Blattodea + Mantodea)) line. A homologized wing vein system is proposed for the Isoptera.
The homologized wing vein system is based on the hypothesis that the Pterygota originated with the development of protowings, which then diverged through separate but characteristic adaptations for flapping flight. Therefore the basic wing venation pattern is monophyletic, but the changes in wing musculature, articulation and basic braces between main veins are different in the major (super-ordinal) pterygote lineages (Pleconeoptera, Orthoneoptera, Blattoneoptera, Hemineoptera and Endoneoptera). Thus, these characters provide an extremely useful, almost untapped, source of data for higher-level systematics. Both higher-level and lower-level wing characters have been applied here to the phylogeny of Zoraptera and are discussed.  相似文献   

8.
The Phylogeny of the Extant Hexapod Orders   总被引:33,自引:2,他引:31  
Morphological and molecular data are marshalled to address the question of hexapod ordinal relationships. The combination of 275 morphological variables, 1000 bases of the small subunit nuclear rDNA (18S), and 350 bases of the large subunit nuclear rDNA (28S) are subjected to a variety of analysis parameters (indel and transversion costs). Representatives of each hexapod order are included with most orders represented multiply. Those parameters that minimize character incongruence (ILD of Mickevich and Farris, 1981, Syst. Zool. 30, 351–370), among the morphological and molecular data sets are chosen to generate the best supported cladogram. A well-resolved and robust cladogram of ordinal relationships is produced with the topology (Crustacea ((Chilopoda Diplopoda) ((Collembola Protura) ((Japygina Campodeina) (Archaeognatha (Zygentoma (Ephemerida (Odonata ((((Mantodea Blattaria) Isoptera) Zoraptera) ((Plecoptera Embiidina) (((Orthoptera Phasmida) (Grylloblattaria Dermaptera)) ((((Psocoptera Phthiraptera) Thysanoptera) Hemiptera) ((Neuropteroidea Coleoptera) (((((Strepsiptera Diptera) Mecoptera) Siphonaptera) (Trichoptera Lepidoptera)) Hymenoptera)))))))))))))).  相似文献   

9.
The tentorium, the anterior sulci of the head capsule (epistomal, subgenal, subantennal, circumantennal, and circumocular sulci), and the extension of the anterior tentorial pit were studied in 26 species of Blattaria (representing most principal lineages), 4 species of Mantodea (including the basal Mantoida schraderi), and 1 species each of Isoptera (the basal Mastotermes darwiniensis) and Mantophasmatodea (Austrophasma caledonense). The morphology of these head structures is compared with literature data on other insect orders, mainly Phasmatodea, Orthoptera, Dermaptera, Embioptera, and Plecoptera, and partly Odonata and Zygentoma. Characters are defined, presented in a matrix, and evaluated with regard to phylogenetic implications and homoplastic evolution. The structural relationships of the subantennal sulcus to the subgenal, circumocular, and circumantennal sulci, which are highly variable and strongly homoplastic (depending much on the size of the compound eyes) are a focal issue; several types of subantennal sulci are defined. The presence of an anterior transverse bridge in the tentorium (“perforated tentorium”) of all Dictyoptera here studied confirms the monophyly of this group. Mantophasmatodea lacks this element.  相似文献   

10.
Phylogeny of the Dictyoptera   总被引:4,自引:0,他引:4  
Abstract. Relationships among six key dictyopteran taxa (Mantodea; Blattodea (excluding Cryptocercidae); Cryptocercidae; Mastotermes darwiniensis , Termopsidae and Kalotermitidae [Isoptera]) are analysed based on seventy morphological, developmental and behavioural characters. The fossil record and the 'living fossil' genera Cryptocercus, Mastotermes and Archotermopsis are discussed in detail. Exact analysis of the character state matrix by implicit enumeration (Hennig86) resulted in one cladogram, strongly supporting Blattodea + Cryptocercidae as a sister group to Mantodea, with the Isoptera as a sister group to that complex. Arrangements within the termites are equivocal, with Termopsidae and Mastotermes darwiniensis possible as the relatively most primitive element of Isoptera.  相似文献   

11.
The phylogenetic status and the monophyly of the holometabolous insect order Megaloptera has been an often disputed and long unresolved problem. The present study attempts to infer phylogenetic relationships among three orders, Megaloptera, Neuroptera, and Raphidioptera, within the superorder Neuropterida, based on wing base structure. Cladistic analyses were carried out based on morphological data from both the fore- and hindwing base. A sister relationship between Megaloptera and Neuroptera was recovered, and the monophyly of Megaloptera was corroborated. The division of the order Megaloptera, the traditional higher classification, into Corydalidae (Corydalinae + Chauliodinae) and Sialidae, was also supported by our wing base data analyses.  相似文献   

12.
Abstract.  The order Zoraptera is one of the most enigmatic insect groups. Its phylogenetic position is far from settled, and more than ten different placements have been discussed since the insects were first discovered. This problem is also difficult to resolve with molecular studies because of the unusual characteristics of zorapteran 18S rDNA sequences, which are the most widely used genetic markers for the estimation of the deep phylogeny of insects. In this study, the wing base structures of Zoraptera and various potential sister taxa were examined. Numbers of unique modifications were detected in the wing base structure of Zoraptera, and six were also observed in the wing base of Embiodea (Embioptera, Embiidina; webspinners). No possible synapomorphies supporting the other relationships were detected. This is the second unambiguous morphological synapomorphy providing strong evidence for the phylogenetic position of Zoraptera.  相似文献   

13.
Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of congruence. Phylogenetic trees were generated by parsimony analysis, and clade robustness was evaluated by branch length, Bremer support, percentage of extra steps required to force paraphyly, and sensitivity analysis using the following parameters: gap weights, morphological character weights, methods of data set combination, removal of key taxa, and alignment region. The following are monophyletic under most or all combinations of parameter values: Holometabola, Polyphaga, Megaloptera + Raphidioptera, Neuroptera, Hymenoptera, Trichoptera, Lepidoptera, Amphiesmenoptera (Trichoptera + Lepidoptera), Siphonaptera, Siphonaptera + Mecoptera, Strepsiptera, Diptera, and Strepsiptera + Diptera (Halteria). Antliophora (Mecoptera + Diptera + Siphonaptera + Strepsiptera), Mecopterida (Antliophora + Amphiesmenoptera), and Hymenoptera + Mecopterida are supported in the majority of total evidence analyses. Mecoptera may be paraphyletic because Boreus is often placed as sister group to the fleas; hence, Siphonaptera may be subordinate within Mecoptera. The 18S sequences for Priacma (Coleoptera: Archostemata), Colpocaccus (Coleoptera: Adephaga), Agulla (Raphidioptera), and Corydalus (Megaloptera) are nearly identical, and Neuropterida are monophyletic only when those two beetle sequences are removed from the analysis. Coleoptera are therefore paraphyletic under almost all combinations of parameter values. Halteria and Amphiesmenoptera have high Bremer support values and long branch lengths. The data do not support placement of Strepsiptera outside of Holometabola nor as sister group to Coleoptera. We reject the notion that the monophyly of Halteria is due to long branch attraction because Strepsiptera and Diptera do not have the longest branches and there is phylogenetic congruence between molecules, across the entire parameter space, and between morphological and molecular data.  相似文献   

14.
15.
《Journal of morphology》2017,278(11):1469-1489
As the first step in the comparative embryological study of Blattodea, with the aim of reconstructing the groundplan and phylogeny of Dictyoptera and Polyneoptera, the embryonic development of a corydiid was examined and described in detail using Eucorydia yasumatsui . Ten to fifteen micropyles are localized on the ventral side of the egg, and aggregated symbiont bacterial “mycetomes” are found in the egg. The embryo is formed by the fusion of paired blastodermal regions, with higher cellular density on the ventral side of the egg. This type of embryo formation, regarded as one of the embryological autapomorphies of Polyneoptera, was first demonstrated for “Blattaria” in the present study. The embryo undergoes embryogenesis of the short germ band type, and elongates to its full length on the ventral side of the egg. The embryo undergoes katatrepsis and dorsal closure, and then finally, it acquires its definitive form, keeping its original position on the ventral side of the egg, with its anteroposterior axis never reversed throughout development. The information obtained was compared with that of previous studies on other insects. “Micropyles grouped on the ventral side of the egg” is thought to be a part of the groundplan of Dictyoptera, and “possession of bacteria in the form of mycetomes” to be an apomorphic groundplan of Blattodea. Corydiid embryos were revealed to perform blastokinesis of the “non‐reversion type (N)”, as reported in blaberoid cockroaches other than Corydiidae (“Ectobiidae,” Blaberidae, etc.) and in Mantodea; the embryos of blattoid cockroaches (Blattidae and Cryptocercidae) and Isoptera undergo blastokinesis of the “reversion type (R),” in which the anteroposterior axis of the embryo is reversed during blastokinesis. Dictyopteran blastokinesis types can be summarized as “Mantodea (N) + Blattodea [= Blaberoidea (N) + Blattoidea (R) + Isoptera (R)]”.  相似文献   

16.
The Order Phasmatodea (stick and leaf insects) includes many well-known species of cryptic phytophagous insects. In this work, we sequenced the almost complete mitochondrial genomes of two stick insect species of the genus Bacillus. Phasmatodea pertain to the Polyneoptera, and represent one of the major clades of heterometabolous insects. Orthopteroid insect lineages arose through rapid evolutionary radiation events, which likely blurred the phylogenetic reconstructions obtained so far; we therefore performed a phylogenetic analysis to resolve and date all major splits of orthopteroid phylogeny, including the relationships between Phasmatodea and other polyneopterans. We explored several molecular models, with special reference to data partitioning, to correctly detect any phylogenetic signal lying in rough data. Phylogenetic Informativeness analysis showed that the maximum resolving power on the orthopteroid mtDNA dataset is expected for the Upper Cretaceous, about 80millionyears ago (Mya), but at least 70% of the maximum informativeness is also expected for the 150-200 Mya timespan, which makes mtDNA a suitable marker to study orthopteroid splits. A complete chronological calibration has also been computed following a Penalized Likelihood method. In summary, our analysis confirmed the monophyly of Phasmatodea, Dictyoptera and Orthoptera, and retrieved Mantophasmatodea as sister group of Phasmatodea. The origin of orthopteroid insects was also estimated to be in the Middle Triassic, while the order Phasmatodea seems to appear in the Upper Jurassic. The obtained results evidenced that mtDNA is a suitable marker to unravel the ancient splits leading to the orthopteroid orders, given a proper methodological approach.  相似文献   

17.
报道广东南岭国家级自然保护区大东山管理站所辖林区蜻蜓目、蜚蠊目、螳螂目、等翅目、竹节虫目、直翅目和革翅目等7目昆虫名录,计有53科169属253种,其中蜻蜓目1种、竹节虫目8种、直翅目1种为本研究发现的新种。  相似文献   

18.
We addressed the phylogeny of cockroaches using DNA sequence data from a broad taxon sample of Dictyoptera and other non‐endopterygotan insect orders. We paid special attention to several taxa in which relationships are controversial, or where no molecular evidence has been used previously: Nocticolidae, a family of small, often cave‐dwelling cockroaches, has been suggested to be the sister group of the predaceous Mantodea or of the cockroach family Polyphagidae; Lamproblatta, traditionally placed in Blattidae, has recently been given family status and placed as sister to Polyphagidae; and Saltoblattella montistabularis Bohn, Picker, Klass & Colville, a jumping cockroach, which has not yet been included in any phylogenetic studies. We used mitochondrial (COI + COII and 16S) and nuclear (18S and 28S) genes, and analysed the data using Bayesian inference (BI) and maximum likelihood (ML). Nocticolidae was recovered as sister to Polyphagidae. Lamproblatta was recovered as sister to Blattidae, consistent with the traditional placement (not based on phylogenetic analysis). However, because of the limited support for this relationship and conflict with earlier morphology‐based phylogenetic hypotheses, we retain Lamproblattidae. S. montistabularis was consistently placed as sister to Ectobius sylvestris Poda (Blaberoidea: Ectobinae), indicating that the saltatorial hindlegs of this genus are a relatively recent adaptation. Isoptera was placed within Blattodea as sister to Cryptocercidae. Nocticolidae + Polyphagidae was sister to Isoptera + Cryptocercidae, and Blaberoidea was sister to the remaining Blattodea.  相似文献   

19.
The oldest webspinners, Sinembia rossi gen. et sp. nov. and Juraembia ningchengensis gen. et sp. nov. , are described in the new family Sinembiidae fam. nov. from the Middle Jurassic of Inner Mongolia, China. They differ from the Cretaceous and more recent Embiodea in several plesiomorphic characters, namely they have a long ovipositor, three‐segmented cerci, eyes situated on the posterolateral angles of the head, and the prothoracic prescutum is absent: these characters suggest habits that strongly differ from those of the recent taxa. The loss of the ovipositor and the reduction in the number of cerci can no longer be considered as synapomorphies of the ((Embiodea + Zoraptera) + Plecoptera) and (Embiodea + Zoraptera) clades, respectively.  相似文献   

20.
The recently described Gallophasma longipalpis from Earliest Eocene French amber is considered to be a key fossil taxon that phylogenetically links ‘Mesozoic Phasmatodea’ with extant stick and leaf insects. However, our re‐evaluation of the evidence provided for this placement reveals that Gallophasma does not possess any unambiguous synapomorphies with extant forms, e.g. neither with Euphasmatodea nor with the more inclusive Phasmatodea. The fusion of abdominal segment 1 with the metathoracic segment, a derived character state present in both Gallophasma and Euphasmatodea, shows fundamental structural differences, and cannot be homologized between both taxa. We argue that the presence of a well‐developed, externally visible ovipositor and four‐segmented cerci in Gallophasma can be interpreted only as plesiomorphic with regards to all extant Phasmatodea, or even to Phasmatodea plus its putative sister groups Embioptera or Orthoptera. Gallophasma does not belong to the stem lineage of recent Phasmatodea, and is referred to best as ‘lower Neoptera’ or Polyneoptera incertae sedis. Therefore, this fossil may be central to reconstructing the ground pattern of the aforementioned orthopteroid lineages, and to determining wing character polarity within Polyneoptera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号