首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We collected gravid Chinese cobras (Naja atra) from one island (Dinghai) and three mainland (Yiwu, Lishui and Quanzhou) populations in south‐eastern China to study geographical variation in female reproductive traits and the trade‐off between the size and number of eggs. We then conducted an common experiment on cobras from two of the four populations to further identify factors contributing to the observed trade‐offs. The mean size (snout–vent length) of the smallest five reproductive females increased with increasing latitude. Oviposition occurred between late June and early August, with females from the warmer localities laying eggs earlier than those from the colder localities. Maternal size was a major determinant of the reproductive investment in all populations, with larger females producing not only more but also larger eggs. Clutch size was more variable than egg size within and among populations. The observed geographical variation in clutch size, egg size, clutch mass and post‐oviposition body condition was not a simple consequence of variation in maternal size among populations, because interpopulation differences in these traits were still evident when the influence of maternal size was removed. The upper limit to reproductive investment was more likely to be set by the space availability in the island population, but by the resource availability in the three mainland populations. Trade‐offs between size and number of eggs were detected in all populations, with females that had larger clutches for their size having smaller eggs. Egg size at any given level of relative fecundity differed among populations, primarily because of interpopulation differences in the resource availability rather than the space availability. Except for the timing date of oviposition and the mean size of the smallest five reproductive females, all other examined traits did not vary in a geographically continuous trend. The common garden experiment, which standardized environmental factors, synchronized the timing date of oviposition, but it did not modify the conclusion drawn from the gravid females collected from the field. The observed geographical variation in the female reproductive traits could be attributed to the consequence of the effects of either proximate or ultimate factors. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85 , 27–40.  相似文献   

2.
Bet‐hedging theory makes the counter‐intuitive prediction that, if juvenile survival is low and unpredictable, organisms should consistently reduce short‐term reproductive output to minimize the risk of reproductive failure in the long‐term. We investigated the long‐term reproductive output of an Agassiz's desert tortoise (Gopherus agassizii) population and conformance to a bet‐hedging strategy of reproduction in an unpredictable but comparatively productive environment. Most females reproduced every year, even during periods of low precipitation and poor germination of food plants, and the mean percentage of reproducing females did not differ significantly on an annual basis. Although mean annual egg production (clutch size × clutch frequency) differed significantly among years, mean clutch size and mean clutch frequency remained relatively constant. During an El Niño year, mean annual egg production and mean annual clutch frequency were the highest ever reported for this species. Annual egg production was positively influenced by maternal body size but clutch size and clutch frequency were not. Our long‐term results confirm earlier conclusions based on short‐term research that desert tortoises have a bet‐hedging strategy of producing small clutches almost every year. The risk of long‐term reproductive failure is minimized in unpredictable environments, both through time by annually producing multiple small clutches over a long reproductive lifespan, even in years of low resource availability, and through space by depositing multiple annual clutches in different locations. The extraordinary annual reproductive output of this population appears to be the result of a typically high but unpredictable biomass of annual food plants at the site relative to tortoise habitat in dryer regions. Under the comparatively productive but unpredictable conditions, tortoises conform to predictions of a bet‐hedging strategy of reproduction with relatively small but consistent clutch sizes. Published 2015. This article is a U.S. Government work and is in the public domain in the USA, Biological Journal of the Linnean Society, 2015, 115 , 399–410.  相似文献   

3.
We collected gravid king ratsnakes (Elaphe carinata) from three geographically separated populations in Chenzhou (CZ), Lishui (LS) and Dinghai (DH) of China to study the geographical variation in female reproductive traits and trade‐offs between the size and number of eggs. Not all reproductive traits varied among the three populations. Of the traits examined, five (egg‐laying date, post‐oviposition body mass, clutch size, egg mass and egg width) differed among the three populations. The egg‐laying date, ranging from late June to early August, varied among populations in a geographically continuous trend, with females at the most northern latitude (DH) laying eggs latest, and females at the most southern latitude (CZ) laying eggs earliest. Such a trend was less evident or even absent in the other traits that differed among the three populations. CZ and DH females, although separated by a distance of approximately 1100 km as the crow flies, were similar to each other in most traits examined. LS females were distinguished from CZ and DH females by the fact that they laid a greater number of eggs, but these were smaller. The egg size–number trade‐off was evident in each of the three populations and, at a given level of relative fecundity, egg mass was significantly greater in the DH population than in the LS population. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 701–709.  相似文献   

4.
Egg production is a costly component of reproduction for female birds in terms of energy expenditure and maternal investment. Because resources are typically limited, clutch size and egg mass are expected to be constrained, and this putative trade‐off between offspring number and size is at the core of life history theory. Nevertheless, empirical evidence for this trade‐off is equivocal at best, as individual heterogeneity in resource acquisition and allocation may hamper the detection of the negative correlation between egg number and mass within populations. Here, we investigated how female body mass and landscape composition influences clutch size, egg mass, and the relationship between these two traits. To do so, we fitted linear mixed models using data from tree swallows Tachycineta bicolor breeding in a network of 400 nestboxes located along a gradient of agricultural intensity between 2004 and 2011. Our dataset comprised 1463 broods for clutch size analyses and 4371 eggs (from 847 broods laid between 2005–2008) for egg mass analyses. Our results showed that agricultural intensity negatively impacted clutch size, but not egg mass nor the relationship between these two traits. Female mass, on the other hand, modulated the trade‐off between clutch size and egg mass. For heavier females, both traits increased jointly, without evidence of a trade‐off. However, for lighter females, there was a clear negative relationship between clutch size and egg mass. This work shows that accounting for individual heterogeneity in body mass allows the detection of a clutch size/egg mass trade‐off that would have remained undetected otherwise. Identifying habitat and individual effects on resource allocation towards reproductive traits may help bridging the gap between predictions from theory and empirical evidence on life history trade‐offs.  相似文献   

5.
Causal explanations for host reproductive phenotypes influenced by parasitism fit into three broad evolutionary models: (1) non‐adaptive side effect; (2) adaptive parasitic manipulation; and (3) adaptive host defence. This study demonstrates fecundity compensation, an adaptive non‐immunological host defence, in the three‐spined stickleback fish (Gasterosteus aculeatus) infected by the diphyllobothriidean cestode Schistocephalus solidus. Both infected and uninfected female sticklebacks produced egg clutches at the same age and size. The reproductive capacity of infected females decreased rapidly with increased parasite : host body mass ratio. Body condition was lower in infected females than uninfected females and decreased with increasing parasite : host mass ratio. Females with clutches had greater body condition than those without clutches. A point biserial correlation showed that there was a body condition threshold necessary for clutch production to occur. Host females apparently had the capacity to produce egg clutches until the prolonged effects of nutrient theft by the parasite and the drain on resources from reproduction precluded clutch formation. Clutch mass, adjusted for female body mass, did not differ significantly between infected and uninfected females. Infected females apparently maintained the same level of reproductive allotment (egg mass as proportion of body mass) as uninfected females. Infected females produced larger clutches of smaller eggs than uninfected females, revealing a trade‐off between egg mass and egg number, consistent with the fecundity compensation hypothesis. The rapid loss of reproductive capacity with severity of infection probably reflects the influence of the parasite combined with a trade‐off between current and future reproduction in the host. Inter‐annual differences in reproductive performance may have reflected ecological influences on host pathology and/or intra‐annual seasonal changes. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

6.
Parental care typically consists of distinct behavioral components that are balanced to address the multiple needs of offspring. Female pythons exhibit post‐oviposition parental care in which they coil around their parchment‐shelled eggs throughout incubation (40–80 d). Subtle postural shifts during egg‐brooding facilitate embryonic gas exchange but may entail hydric costs to the clutch. This study used a simple behavioral model to (1) further quantify the costs and benefits of specific parental behaviors to developing offspring and (2) determine the influence that developmental stage and relative clutch mass have on parental behavior. Although previous research has demonstrated that egg‐brooding as a whole reduces clutch water loss, we hypothesized that egg‐brooding female pythons specifically adopt a tightly coiled posture to conserve embryonic water, but must make postural adjustments to enhance gas exchange between the clutch and nest environments at the cost of increased clutch water loss. We measured rates of water loss in brooding Children’s pythons (Antaresia childreni) and their respective clutches (i.e., brooding units) and monitored changes in brooding posture. We conducted serial trials to elucidate the effect of developmental stage on postural adjustments and water loss. Results demonstrated that the proportion of time females spent in a tightly coiled posture was inversely related to mean water loss from the brooding unit. Analyses indicated that slight adjustments in posture led to bursts in brooding unit water loss. Indeed, brooding unit water loss during postural adjustments was significantly higher than during tight coiling. These findings imply that python egg‐brooding provides an adjustable diffusive barrier that leads to discontinuous gas exchange, which minimizes clutch water loss. Because females with larger relative clutch masses spent more time tightly coiled, egg‐brooding female pythons may use a ‘water first’ strategy in which they intentionally conserve clutch water at the cost of reduced embryonic respiratory gas exchange.  相似文献   

7.
The availability of molecular phylogenies has greatly accelerated our understanding of evolutionary innovations in the context of their origin and rate of evolution. Here, we assess the evolution of reproductive mode, developmental rate and body size in a group of squamate reptiles: the chameleons. Oviparity is ancestral and viviparity has evolved at least twice: Bradypodion and members of the Trioceros bitaeniatus clade are viviparous. Viviparous species are medium‐sized as a result of convergence from either small‐sized ancestors or large‐sized ancestors, respectively, but do not differ from oviparous species in clutch size, hatchling size or the trade‐off between clutch and hatchling size. Basal chameleons (Brookesia, Rhampholeon and Rieppeleon) are small‐sized and have developmental rates comparable with those of other lizards. Derived chameleons (Calumma, Chamaeleo, Trioceros and Furcifer) are mostly large‐sized and all have relatively slow developmental rates. Several clades of derived chameleons also exhibit developmental arrest (embryonic diapause or embryonic diapause plus cold torpor) and incubation periods extend to 6–10 months or more. Developmental arrest is associated with dry, highly seasonal climates in which the period favourable for oviposition and hatching is short. Long incubation periods thus ensure that hatching occurs during the favourable season following egg laying. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 656–668.  相似文献   

8.
Intraspecific variation in egg size and hatching size, and the genetic and environmental trade‐offs that contribute to variation, are the basis of the evolution of life histories. The present study examined both univariate and multivariate temperature‐mediated plasticity of life‐history traits, as well as temperature‐mediated trade‐offs in egg size and clutch size, in two planktotrophic species of marine slipper limpets, Crepidula. Previous work with two species of Crepidula with large eggs and lecithotrophic development has shown a significant effect of temperature on egg size and hatching size. To further examine the effect of temperature on egg size in Crepidula, the effects of temperature on egg size and hatching size, as well as the possible trade‐offs with other the life‐history features, were examined for two planktotrophic species: Crepidula incurva and Crepidula cf. marginalis. Field‐collected juveniles were raised at 23 or 28 °C and egg size, hatching size, capsules/brood, eggs/capsule, time to hatch, interbrood interval, and final body weight were recorded. Consistent with results for the lecithotrophic Crepidula, egg size and hatching size decreased with temperature in the planktotrophic species. The affects of maternal identity and individual brood account for more than half of the intraspecific variation in egg size and hatching size. Temperature also showed a significant effect on reproductive rate, with time to hatch and interbrood interval both decreasing with increasing temperature. However, temperature had contrasting effects on the number of offspring. Crepidula cf. marginalis has significantly more eggs/capsule and therefore more eggs per brood at 28 °C compared to 23 °C, although capsules/brood did not vary with temperature. Crepidula incurva, on the other hand, produced significantly more capsules/brood and more eggs per brood at the lower temperature, whereas the number of eggs/capsule did not vary with temperature. The phenotypic variance–covariance matrix of life‐history variables showed a greater response to temperature in C. incurva than in C. cf. marginalis, and temperature induced trade‐offs between offspring size and number differ between the species. These differences suggest that temperature changes as a result of seasonal upwelling along the coast of Panama will effect the reproduction and evolution of life histories of these two co‐occurring species differently. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

9.
We measured the reproductive output of Takydromus septentrionalis collected over 5 years between 1997 and 2005 to test the hypothesis that reproductive females should allocate an optimal fraction of accessible resources in a particular clutch and to individual eggs. Females laid 1–7 clutches per breeding season, with large females producing more, as well as larger clutches, than did small females. Clutch size, clutch mass, annual fecundity, and annual reproductive output were all positively related to female size (snout–vent length). Females switched from producing more, but smaller eggs in the first clutch to fewer, but larger eggs in the subsequent clutches. The mass-specific clutch mass was greater in the first clutch than in the subsequent clutches, but it did not differ among the subsequent clutches. Post-oviposition body mass, clutch size, and egg size showed differing degrees of annual variation, but clutch mass of either the first or the second clutch remained unchanged across the sampling years. The regression line describing the size–number trade-off was higher in the subsequent clutch than in the first clutch, but neither the line for first clutch, nor the line for the second clutch varied among years. Reproduction retarded growth more markedly in small females than in large ones. Our data show that: (1) trade-offs between size and number of eggs and between reproduction and growth (and thus, future reproduction) are evident in T. septentrionalis ; (2) females allocate an optimal fraction of accessible resources in current reproduction and to individual eggs; and (3) seasonal shifts in reproductive output and egg size are determined ultimately by natural selection.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 315–324.  相似文献   

10.
Maternal and environmental factors are important sources of phenotypic variation because both factors influence offspring traits in ways that impact offspring and maternal fitness. The present study explored the effects of maternal factors (maternal body size, egg size, yolk‐steroid allocation, and oviposition‐site choice) and seasonally‐variable environmental factors on offspring phenotypes and sex ratios in a multi‐clutching lizard with environmental sex determination (Amphibolurus muricatus). Maternal identity had strong effects on offspring morphology, but the nature of maternal effects differed among successive clutches produced by females throughout the reproductive season (i.e. maternal identity by environment interactions). The among‐female and among‐clutch variation in offspring traits (including sex ratios) was not mediated through maternal body size, egg size, or variation in yolk steroid hormones. This lack of nongenetic maternal effects suggests that phenotypic variation may be generated by gene by environment interactions. These results demonstrate a significant genetic component to variation in offspring phenotypes, including sex ratios, even in species with environmental sex determination. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 256–266.  相似文献   

11.
In iteroparous animals, investment in growth is compromised by investment in reproduction, especially in species with indeterminate growth. Life‐history theory predicts that growth should be favoured over reproduction, assuming size‐related fecundity or survival. Hence, increase body condition represents an increase in reproductive potential. Simultaneous hermaphrodites should adjust their resource allocation to each sex function in response to current conditions but, recently, it has been suggested that, in hermaphrodites, gender allocation should be considered as a three‐way trade‐off, including the investment in somatic growth. Due to the higher costs involved, the female function is affected to a greater extent by environmentally stressful conditions rather than the male function. To examine this, we induced stress in the hermaphroditic earthworm Eisenia fetida (Savigny, 1826) and looked for changes in resource allocation in nonreproductive and reproductive individuals. Experimental stress was induced by using tweezers to elicit contractile escape movements. We predicted that stressed earthworms would preferentially allocate resources to growth. In nonreproductive individuals, however, stress had a negative effect on growth, although weight recovery was rapid once manipulation ceased, indicating the importance of body condition, as well as the existence of mechanisms of compensatory growth for growth trajectories in this earthworm species. The response of reproductive individuals was consistent with our expectation: (1) stressed worms maintained their growth rate at the expense of current reproduction and (2) stressed earthworms laid 25% fewer cocoons, which were 30% lighter than cocoons laid by control earthworms. The present results suggest that E. fetida regulates its reproductive effort and that future reproduction has more impact on its fitness than current reproduction. The trade‐off between current and future reproduction should be taken into consideration in models of sex allocation in simultaneous hermaphrodites. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91 , 593–600.  相似文献   

12.
Maternal investment in reproduction by oviparous non-avian reptiles is usually limited to pre-ovipositional allocations to the number and size of eggs and clutches, thus making these species good subjects for testing hypotheses of reproductive optimality models. Because leatherback turtles (Dermochelys coriacea) stand out among oviparous amniotes by having the highest clutch frequency and producing the largest mass of eggs per reproductive season, we quantified maternal investment of 146 female leatherbacks over four nesting seasons (2001–2004) and found high inter- and intra-female variation in several reproductive characteristics. Estimated clutch frequency [coefficient of variation (CV) = 31%] and clutch size (CV = 26%) varied more among females than did egg mass (CV = 9%) and hatchling mass (CV = 7%). Moreover, clutch size had an approximately threefold higher effect on clutch mass than did egg mass. These results generally support predictions of reproductive optimality models in which species that lay several, large clutches per reproductive season should exhibit low variation in egg size and instead maximize egg number (clutch frequency and/or size). The number of hatchlings emerging per nest was positively correlated with clutch size, but fraction of eggs in a clutch yielding hatchlings (emergence success) was not correlated with clutch size and varied highly among females. In addition, seasonal fecundity and seasonal hatchling production increased with the frequency and the size of clutches (in order of effect size). Our results demonstrate that female leatherbacks exhibit high phenotypic variation in reproductive traits, possibly in response to environmental variability and/or resulting from genotypic variability within the population. Furthermore, high seasonal and lifetime fecundity of leatherbacks probably reflect compensation for high and unpredictable mortality during early life history stages in this species.  相似文献   

13.
A central tenet of life‐history theory is that investment in reproduction compromises survival. We tested for costs of reproduction in wild brown anoles (Anolis sagrei) by eliminating reproductive investment via surgical ovariectomy and/or removal of oviductal eggs. Anoles are unusual among lizards in that females lay single‐egg clutches at frequent intervals throughout a lengthy reproductive season. This evolutionary reduction in clutch size is thought to decrease the physical burden of reproduction, but our results show that even a single egg significantly impairs stamina and sprint speed. Reproductive females also suffered a reduction in growth, suggesting that the cumulative energetic cost of successive clutches constrains the allocation of energy to other important functions. Finally, in each of two separate years, elimination of reproductive investment increased breeding‐season survival by 56%, overwinter survival by 96%, and interannual survival by 200% relative to reproductive controls. This extreme fitness cost of reproduction may reflect a combination of intrinsic (i.e., reduced allocation of energy to maintenance) and extrinsic (i.e., increased susceptibility to predators) sources of mortality. Our results provide clear experimental support for a central tenet of life‐history theory and show that costs of reproduction persist in anoles despite the evolution of a single‐egg clutch.  相似文献   

14.
As a result of increased habitat fragmentation in anthropogenic landscapes, flying insects may be required to travel over larger distances in search of resources such as suitable host plants for oviposition. The oögenesis–flight syndrome hypothesis predicts that physiological constraints caused by an overlap in the resources used by thoracic muscles during flight and during oögenesis (e.g. carbohydrates, lipids and water) result in a resource trade‐off, with any resources used during flight no longer available for reproduction. Increased flight costs could therefore potentially result in a decrease in maternal provisioning of eggs. In the present study, the speckled wood butterfly Pararge aegeria (L.) is used to investigate whether increased flight during oviposition results in changes in maternal investment in eggs and whether this contributes to variation in the development of offspring in subsequent life stages. Forcing females to fly during oviposition directly influences egg size and embryonic development time, and indirectly influences (through changes in egg size) egg hatching success and larval development time. These effects are mediated through ‘selfish maternal effects’, with mothers forced to fly maximizing their fecundity at the expense of investment to individual egg size. The present study demonstrates that a change in maternal provisioning as a result of increased flight during oviposition has the potential to exert nongenetic cross‐generational fitness effects in P. aegeria. This could have important consequences for population dynamics, particularly in fragmented anthropogenic landscapes.  相似文献   

15.
During egg laying, females face a trade‐off between self‐maintenance and investment into current reproduction, since providing eggs with resources is energetically demanding, in particular if females lay one egg per day. However, the costs of egg laying not only relate to energetic requirements, but also depend on the availability of specific resources that are vital for egg production and embryonic development. One of these compounds are carotenoids, pigments with immuno‐stimulatory properties, which are crucial during embryonic development. In this study, we explore how carotenoid availability alleviates this trade‐off and facilitates egg laying in a small bird species, the blue tit (Cyanistes caeruleus). Blue tits have among the largest clutch size of all European passerines and they usually lay one egg per day, although laying interruptions are frequent. We performed a lutein supplementation experiment and measured potential consequences for egg laying capacity and egg quality. We found that lutein‐supplemented females had less laying interruptions and thus completed their clutch faster than control females. No effects of treatment were found on the onset of egg laying or clutch size. Experimentally enhanced carotenoid availability did not elevate yolk carotenoid levels or egg mass, but negatively affected eggshell thickness. Our results provide hence evidence on the limiting role of carotenoids during egg laying. However, the benefits of laying faster following lutein supplementation were counterbalanced by a lower accumulation of calcium in the eggshell. Thus, even though single components may constrain egg laying, it is the combined availability of a range of different resources which ultimately determines egg quality and thus embryonic development.  相似文献   

16.
Wei-Guo Du 《Oikos》2006,112(2):363-369
Understanding the proximate determinants of phenotypic variations in life-history traits can provide powerful insights into a species' life-history strategies. I experimentally manipulated availability of food (high vs low) to examine plasticity in the reproductive traits of northern grass lizards, Takydromus septentrionalis (Lacertidae), from eastern China. Food availability significantly affected reproductive frequency and thereby seasonal reproductive output, but had little effect on reproductive output per clutch. Low-food females postponed reproduction and produced less clutches in the reproductive season than did high-food females. After producing their second clutches, low-food females were in lower body condition than the high-food counterparts. By the end of the experiment, however, all females exhibited similar body condition. Clutch size and clutch mass differed between the first and second clutches but not between the treatments. Egg size and phenotypic traits of hatchlings (body size, morphology and locomotor performance) in T. septentrionalis did not vary significantly from first to second clutches nor between the two treatments. These results support optimal egg size (offspring) theory. Female T. septentrionali s "decide" whether or not to reproduce largely based on current energy intake; lowered feeding rates thus delay oviposition and reduce reproductive frequency. In contrast, clutch size, egg size and relative clutch mass remain unchanged.  相似文献   

17.
1. Evolutionary increases in dispersal‐related traits are frequently documented during range expansions. Investment in flight‐related traits is energetically costly and a trade‐off with fecundity may be expected during range expansion. 2. However, in contrast to wing‐dimorphic species, this trade‐off is not general in wing‐monomorphic species. In the absence of a dispersal‐‐fecundity trade‐off, an increased investment in clutch size at the expansion front is expected possibly at a cost of reduced offspring size. 3. The study evaluated investment in female flight morphology and fecundity‐related traits (clutch size, hatchling size) and potential trade‐offs among these traits in replicated populations of the poleward range‐expanding damselfly Coenagrion scitulum. 4. Females at the expansion front had a higher relative thorax length, indicating an increased investment in flight; this can be explained by spatial sorting of dispersal ability or in situ natural selection at the expansion front. Edge females produced larger hatchlings, however, this pattern was totally driven by the population‐specific thermal larval regimes and could not be attributed to the range expansion per se. By contrast, clutch sizes did not differ between core and edge populations. There was no signal of a dispersal–fecundity trade‐off either for a trade‐off between clutch size and hatchling size. 5. These results indicate that evolution of a higher dispersal ability at the expansion front of C. scitulum does not trade off with investment in fecundity, hence a dispersal–fecundity trade‐off is unlikely to slow down range expansion of this species.  相似文献   

18.
阐明五种游蛇科动物雌体大小、窝卵数和卵大小之间的关系和雌性繁殖特征的种间差异。5种蛇均产单窝卵,产卵高峰期为6月下旬至7月,窝卵数与雌体大小(SVL)呈显著的正相关,相对窝卵重与雌体SVL无关,卵理与窝卵数无关。灰鼠蛇卵重与雌体SVL呈正相关,赤链蛇、王锦蛇、黑眉锦蛇和乌梢蛇的卵重与雌体SVL无关,黑眉锦蛇卵长径与窝卵娄呈负相关,其余4种蛇卵长径与窝卵数无关。5种蛇卵长径与短径无关。黑眉锦蛇卵短径  相似文献   

19.
Abstract Data from a 12‐year field study have allowed us to quantify ‘costs of reproduction’ in a natural population of water pythons (Liasis fuscus) in tropical Australia. Both sexes of pythons cease feeding during the reproductive season. For males, this involves fasting for a 6 week period. Adult males lose weight rapidly over this period (approximately 17% of their body mass) but regain condition in the following months, and do not experience reduced survival. In contrast, reproductive adult females cease feeding for 3 months, lose an average of 44% of their body mass over this period, and experience increased mortality. A causal link between reproductive output and reduced female survival is supported by (i) a decrease in survival rates at female maturation; (ii) a correlation between survival rates and frequency of reproduction, in a comparison among different size classes of adult pythons; and (iii) a lowered survival rate for females that allocated more energy to reproduction. Hence, both sexes experience substantial energy costs of reproduction, but a relatively higher energy cost translates into a survival cost only in females. Such non‐linearities in the relationship between energy costs and survival costs may be widespread, and challenge the value of simple energy‐based measures of 'reproductive effort’.  相似文献   

20.
Parasites may cause fecundity reduction in their hosts via life‐history strategies involving simple nutrient theft or manipulation of host energy allocation. Simple theft of nutrients incidentally reduces host energy allocation to reproduction, whereas manipulation is a parasite‐driven diversion of energy away from host reproduction. We aimed to determine whether the diphyllobothriidean cestode parasite Schistocephalus solidus causes loss of fecundity in the threespine stickleback fish (Gasterosteus aculeatus) through simple nutrient theft or the manipulation of host energy allocation. In one stickleback population (Walby Lake, Matanuska‐Susitna Valley, Alaska), there was no difference in the sizes and ages of infected and uninfected reproducing females. Lightly‐ and heavily‐infected females produced clutches of eggs, but increasingly smaller percentages of infected females produced clutches as the parasite‐to‐host biomass ratio (PI) increased. Infected, clutch‐bearing sticklebacks showed reductions in clutch size, egg mass, and clutch mass, which were related to increases in PI and reflected a reduction in reproductive parameters as growth in parasite mass occurs. The findings obtained for this population are consistent with the hypothesis of simple nutrient theft; however, populations of S. solidus in other regions may manipulate host energy allocation. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 835–846.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号