首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four‐gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa. The tribe appears to have diversified during the Cenozoic, beginning c. 50–32 Ma, with most extant African lineages originating in the Miocene or later, well after the breakup of the Gondwanan landmass. Biogeographical analysis suggests an African origin for the tribe and a single dispersal event founding the Asian platypleurines, although additional taxon sampling and genetic data will be needed to confirm this pattern because key nodes in the tree are still weakly supported. Two Platypleurini genera from Madagascar (Pycna Amyot & Audinet‐Serville, Yanga Distant) are found to have originated by late Miocene dispersal of a single lineage from Africa. The genus Platypleura is recovered as polyphyletic, with Platypleura signifera Walker from South Africa and many Asian/Indian species apparently requiring assignment to different genera, and a new Platypleura concept is proposed with the synonymization of Azanicada Villet syn.n. The genera Orapa Distant and Hamza Distant, currently listed within separate tribes but suspected of platypleurine affinity, are nested deeply within the Platypleurini radiation. The tribe Orapini syn.n . is here synonymized while the tribe Hamzini is pending a decision of the ICZN to preserve nomenclatorial stability.  相似文献   

2.
Aim Continental disjunctions in pantropical taxa have been explained by vicariance or long‐distance dispersal. The relative importance of these explanations in shaping current distributions may vary, depending on historical backgrounds or biological characteristics of particular taxa. We aimed to determine the geographical origin of the pantropical subfamily Chrysophylloideae (Sapotaceae) and the roles vicariance and dispersal have played in shaping its modern distribution. Location Tropical areas of Africa, Australasia and South America. Methods We utilized a recently published, comprehensive data set including 66 species and nine molecular markers. Bayesian phylogenetic trees were generated and dated using five fossils and the penalized likelihood approach. Distributional ranges of nodes were estimated using maximum likelihood and parsimony analyses. In both biogeographical and molecular dating analyses, phylogenetic and branch length uncertainty was taken into account by averaging the results over 2000 trees extracted from the Bayesian stationary sample. Results Our results indicate that the earliest diversification of Chrysophylloideae was in the Campanian of Africa c. 73–83 Ma. A narrow time interval for colonization from Africa to the Neotropics (one to three dispersals) and Australasia (a single migration) indicates a relatively rapid radiation of this subfamily in the latest Cretaceous to the earliest Palaeocene (c. 62–72 Ma). A single dispersal event from the Neotropics back to Africa during the Neogene was inferred. Long‐distance dispersal between Australia and New Caledonia occurred at least four times, and between Africa and Madagascar on multiple occasions. Main conclusions Long‐distance dispersal has been the dominant mechanism for range expansion in the subfamily Chrysophylloideae. Vicariance could explain South American–Australian disjunction via Antarctica, but not the exchanges between Africa and South America and between New Caledonia and Australia, or the presence of the subfamily in Madagascar. We find low support for the hypothesis that the North Atlantic land bridge facilitated range expansions at the Palaeocene/Eocene boundary.  相似文献   

3.
Aim and location New Zealand began to separate from Gondwana c. 85 Ma, and has been isolated from the nearest large landmass, Australia, by some 2000 km of the Tasman Sea since c. 60 Ma. Given New Zealand's long geographical isolation, there has been considerable interest in explaining the origins of its different biotic elements. Here we investigate the biogeography of the fern genus Polystichum from temperate Australasia. Six species are found in New Zealand, four in Australia, and two on Lord Howe Island. Methods The evolutionary relationships between the twelve Polystichum species found in temperate Australasia were inferred from phylogenetic analyses of two molecular data sets: DNA sequence from the chloroplast rps4–trnS spacer locus; and AFLP DNA‐fingerprinting. The timing of the separation between Australian and New Zealand Polystichum was estimated by using the fossil record to temporally calibrate the rbcL sequence differentiation between representative species from these regions. Results Species of Polystichum from New Zealand appear to comprise a monophyletic group. This suggests that Polystichum crossed the Tasman only once. Temporal calibration of the rbcL sequence differentiation between Australian and New Zealand Polystichum indicates that a vicariant explanation for their separation can be rejected in favour of trans‐oceanic dispersal. Main conclusions The extant diversity within New Zealand Polystichum appears to have been derived from a single, trans‐oceanic dispersal event (within the last c. 20 Myr), followed by a relatively extensive in situ ecological radiation.  相似文献   

4.
Previous phylogenetic studies of the bee tribe Allodapini suggested a puzzling biogeographic problem: one of the key basal divergences involved separation of the southern African and southern Australian clades at a very early stage in allodapine evolution, but no taxa occur in the Palaearctic or Asian regions that might suggest a Laurasian dispersal route. However, these studies lacked sufficient sequence data and appropriate maximum likelihood partition models to provide reliable phylogenetic estimates and enable alternative biogeographic hypotheses to be distinguished. Using Bayesian and penalized likelihood approaches and an expanded sequence and taxon set we examine phylogenetic relationships between the Australian, African, and Malagasy groups and estimate divergence times for key nodes. We show that divergence of the three basal Australian clades (known as the exoneurines) occurred at least 25 Mya following a single colonization event, and that this group diverged from the African + Madagascan clade at least 30 Mya, but actual divergence dates are likely to be much older than these very conservative limits. The bifurcation order of the exoneurine clades was not resolved and analyses could not rule out the existence of a hard polytomy, suggesting rapid radiation after colonization of Australia. Their divergence involved major transitions in life history traits and these placed constraints on the kinds of social organization that subsequently evolved in each lineage. Early divergence between the African, Malagasy, and Australian clades presents a major puzzle for historical biogeography: node ages are too recent for Gondwanan vicariance hypotheses, but too early for Laurasian dispersal scenarios. We suggest a scenario involving island hopping across the Indian Ocean via a series of now largely submerged elements of the Kergulen Plateau and Broken Ridge provinces, both of which are known to have had subaerial formations during the Cenozoic. [Bayesian; biogeography; dispersal; Gondwana; Kerguelen Plateau; penalized likelihood.].  相似文献   

5.
Water beetles of the tribe Hydrobiusini are globally distributed in the northern hemisphere and all austral continents except Antarctica. A remarkable clade also occurs in the Hawaiian Islands. The phylogenetic relationships among genera were recently investigated using a combination of molecules and morphology. Here, we use this phylogenetic framework to address the biogeographic evolution of this group using Bayesian fossil‐based divergence times, and model‐based maximum likelihood ancestral range estimations. We recover an origin of the tribe in the Cretaceous ca. 100 Ma. Our biogeographic analyses support an origin of the tribe in Laurasia followed by the colonization of Australia. However, a Gondwanan origin of the group cannot be ruled out when considering the fossil record. The timeframe of the tribe's evolution as well as the model‐based approach of ancestral range estimation favour a scenario invoking multiple transoceanic dispersal events over a Gondwana vicariance hypothesis. The Hawaiian radiation originated from long‐distance dispersal to now‐submerged islands, paired with dispersal to new islands as they formed.  相似文献   

6.
Aim The distribution of Onychophora across the southern continents has long been considered the result of vicariance events. However, it has recently been hypothesized that New Zealand was completely inundated during the late Oligocene (25–22 Ma) and therefore that the entire biota is the result of long-distance dispersal. We tested this assumption using phylogenetic and molecular dating of DNA sequence data from Onychophora. Location New Zealand, Australia, South Africa, Chile (South America). Methods We obtained DNA sequence data from the nuclear genes 28S and 18S rRNA to reconstruct relationships among species of Peripatopsidae (Onychophora). We performed molecular dating under a Bayesian relaxed clock model with a range of prior distributions using the rifting of South America and South Africa as a calibration. Results Our phylogenetic trees revealed that the New Zealand genera Ooperipatellus and Peripatoides, together with selected Australian genera (Euperipatoides, Phallocephale and an undescribed genus from Tasmania), form a monophyletic group that is the sister group to genera from Chile (Metaperipatus) and South Africa (Peripatopsis and Opisthopatus). The relaxed clock dating analyses yielded mean divergence times from 71.3 to 78.9 Ma for the split of the New Zealand Peripatoides from their Australian sister taxa. The 0.95 Bayesian posterior intervals were very broad and ranged from 24.5 to 137.6 Ma depending on the prior assumptions. The mean divergence of the New Zealand species of Ooperipatellus from the Australian species Ooperipatellus insignis was estimated at between 39.9 and 46.2 Ma, with posterior intervals ranging from 9.5 to 91.6 Ma. Main conclusions The age of Peripatoides is consistent with long-term survival in New Zealand and implies that New Zealand was not completely submerged during the Oligocene. Ooperipatellus is less informative on the question of continuous land in the New Zealand region because we cannot exclude a post-Oligocene divergence. The great age of Peripatoides is consistent with a vicariant origin of this genus resulting from the rifting of New Zealand from the eastern margin of Gondwana and supports the assumptions of previous authors who considered the Onychophora to be a relict component of the New Zealand biota.  相似文献   

7.
The first empirically supported phylogenetic hypothesis of relationships for the southern African endemic butterfly tribe Dirini is presented. Data derived from the morphology and ecology of the adults and immature stages (33 characters), and portions of the mitochondrial gene cytochrome oxidase I (COI) and the nuclear genes elongation factor 1α (EF1α) and wingless (WG) (totalling 1734 bp) were used to infer the relationships of the in‐group genera. An expanded molecular dataset using four genera from the Nymphalini and Satyrini to root the tree, and three genera from the Melanitini to test the monophyly of the tribe, was analysed using parsimony and Bayesian methods. Estimates of divergence times were calculated using two fossil calibrations under a relaxed molecular clock model. The monophyly of the tribe and each in‐group genus were strongly supported. Key findings are the sister‐taxon relationship of Aeropetes and Tarsocera, the apparent simultaneous or nearly simultaneous radiation of four lineages, the polyphyly of the species within Torynesis, and the apparent trans‐Atlantic dispersal of the ancestors of Manataria about 40 Ma. Estimates of divergence times indicate that the tribe has undergone two major radiations since its origin: the first when they left forest habitats in the mid–late Oligocene, shortly after the radiation of the grasses (Poaceae), and the second in the early‐middle Pliocene, coinciding with the aridification of southern Africa and the spread of conditions that favoured C4 grasses over the C3 grasses that dirine larvae prefer to eat. The high species diversity within the tribe appears to be partly a taxonomic artefact that may have resulted from the misinterpretation of climate‐related phenotypic variation within extant species. Relocation and breeding experiments should test this hypothesis.  相似文献   

8.
Allodapine bees are most diverse in Africa but are distributed throughout the Old World tropical and Austral regions. They are considered useful for studies into the evolution of social behaviour since they exhibit the full range of social organisation from solitary to highly eusocial (sensu; ). Five genera are found in Australia, namely Braunsapis, Exoneurella, Exoneura, Brevineura, and Inquilina. Sociality and life histories are well documented for the exoneurine genera (review in ) and Inquilina is an obligate social parasite of species of Exoneura (). In this paper, maximum parsimony and maximum likelihood methods using molecular sequence data from two mitochondrial gene regions (cyt b and COI) and a single nuclear gene region (EF-1alpha) are used to reconstruct phylogenetic relationships of the Australian allodapine genera. Results suggest that the exoneurine group (Brevineura, Exoneurella, and Exoneura+Inquilina) diverged very rapidly and are monophyletic to the exclusion of other (primarily African) allodapine genera. A clade containing Australian species of Braunsapis is also monophyletic to the exclusion of African congeners. Braunsapis is not phylogenetically close to, and is a more derived group than the exoneurine group and probably came to occupy the Australian plate via a later dispersal through the southern Asian region. It is unclear at this point how the exoneurine group came to occupy the Australian plate and possible scenarios are discussed.  相似文献   

9.
Aim Gondwanan lineages are a prominent component of the Australian terrestrial biota. However, most squamate (lizard and snake) lineages in Australia appear to be derived from relatively recent dispersal from Asia (< 30 Ma) and in situ diversification, subsequent to the isolation of Australia from other Gondwanan landmasses. We test the hypothesis that the Australian radiation of diplodactyloid geckos (families Carphodactylidae, Diplodactylidae and Pygopodidae), in contrast to other endemic squamate groups, has a Gondwanan origin and comprises multiple lineages that originated before the separation of Australia from Antarctica. Location Australasia. Methods Bayesian (beast ) and penalized likelihood rate smoothing (PLRS) (r 8s ) molecular dating methods and two long nuclear DNA sequences (RAG‐1 and c‐mos) were used to estimate a timeframe for divergence events among 18 genera and 30 species of Australian diplodactyloids. Results At least five lineages of Australian diplodactyloid geckos are estimated to have originated > 34 Ma (pre‐Oligocene) and basal splits among the Australian diplodactyloids occurred c. 70 Ma. However, most extant generic and intergeneric diversity within diplodactyloid lineages appears to post‐date the late Oligocene (< 30 Ma). Main conclusions Basal divergences within the diplodactyloids significantly pre‐date the final break‐up of East Gondwana, indicating that the group is one of the most ancient extant endemic vertebrate radiations east of Wallace’s Line. At least five Australian lineages of diplodactyloid gecko are each as old or older than other well‐dated Australian squamate radiations (e.g. elapid snakes and agamids). The limbless Pygopodidae (morphologically the most aberrant living geckos) appears to have radiated before Australia was occupied by potential ecological analogues. However, in spite of the great age of the diplodactyloid radiation, most extant diversity appears to be of relatively recent origin, a pattern that is shared with other Australian squamate lineages.  相似文献   

10.
The genus Apsilochorema Ulmer, 1907 is unique in the family Hydrobiosidae Ulmer, being widely distributed in the Palaearctic, Oriental and Australian Regions. All other 49 genera in the family, except the New World Atopsyche Banks, 1905, are confined to a single biogeographical Region. This unique distribution has independently stimulated researchers to formulate competing hypotheses about the biogeographical history of the genus. Molecular sequence data from mitochondrial cytochrome oxidase I (COI) and nuclear cadherin (CAD) genes of Apsilochorema species from the Oriental and Australian areas were analysed phylogenetically. The results retain a monophyletic Apsilochorema, which forms the sistergroup to the other genera in the subfamily Apsilochorematinae. The results from the biogeographical analyses dispute the earlier assumptions of an Oriental or northern Gondwana origin for the genus, revealing unambiguously an initial Australian radiation of the ancestral Apsilochorema with a subsequent dispersal into the Oriental Region. All but one of the Apsilochorema species occurring on the Pacific islands had an Oriental ancestor. The exception is the sistergroup to the New Caledonian species, which is found in both Australia and Oriental Regions. The molecular dating analysis, using a relaxed clock model, indicates that the genus Apsilochorema is about 36.4 MY old and that it dispersed from Australia into the Oriental Region about 28.3 Ma. It also gives an estimate of the approximate ages of the dispersals into New Caledonia to about 15.3 Ma; to the Solomon Islands at about 16.2 Ma; to the Fiji Islands at about 16.1 Ma; and to the Vanuatu Islands at about 5.4 Ma.  相似文献   

11.
Aim  To infer the most plausible explanations for the presence of 14 species of the Neotropical cucurbit genus Sicyos on the Hawaiian Islands, two on the Galápagos Islands, two in Australia, and one in New Zealand. Location  Neotropics, the Hawaiian and Galápagos archipelagos, Australia and New Zealand. Methods  We tested long‐problematic generic boundaries in the tribe Sicyoeae and reconstructed the history of Sicyos using plastid and nuclear DNA sequences from 87 species (many with multiple accessions) representing the group’s generic and geographic diversity. Maximum likelihood and Bayesian approaches were used to infer relationships, divergence times, biogeographic history and ancestral traits. Results  Thirteen smaller genera, including Sechium, are embedded in Sicyos, which when re‐circumscribed as a monophyletic group comprises 75 species. The 14 Hawaiian species of Sicyos descended from a single ancestor that arrived c. 3 million years ago (Ma), Galápagos was reached twice at c. 4.5 and 1 Ma, the species in Australia descended from a Neotropical ancestor (c. 2 Ma), and New Zealand was reached from Australia. Time since arrival thus does not correlate with Sicyos species numbers on the two archipelagos. Main conclusions  A plausible mechanism for the four trans‐Pacific dispersal events is adherence to birds of the tiny hard fruit with retrorsely barbed spines found in those lineages that underwent long‐distance migrations. The Hawaiian clade has lost these spines, resulting in a lower dispersal ability compared with the Galápagos and Australian lineages, and perhaps favouring allopatric speciation.  相似文献   

12.
Aim Rain forest‐restricted plant families show disjunct distributions between the three major tropical regions: South America, Africa and Asia. Explaining these disjunctions has become an important challenge in biogeography. The pantropical plant family Annonaceae is used to test hypotheses that might explain diversification and distribution patterns in tropical biota: the museum hypothesis (low extinction leading to steady accumulation of species); and dispersal between Africa and Asia via Indian rafting versus boreotropical geodispersal. Location Tropics and boreotropics. Methods Molecular age estimates were calculated using a Bayesian approach based on 83% generic sampling representing all major lineages within the family, seven chloroplast markers and two fossil calibrations. An analysis of diversification was carried out, which included lineage‐through‐time (LTT) plots and the calculation of diversification rates for genera and major clades. Ancestral areas were reconstructed using a maximum likelihood approach that implements the dispersal–extinction–cladogenesis model. Results The LTT plots indicated a constant overall rate of diversification with low extinction rates for the family during the first 80 Ma of its existence. The highest diversification rates were inferred for several young genera such as Desmopsis, Uvariopsis and Unonopsis. A boreotropical migration route was supported over Indian rafting as the best fitting hypothesis to explain present‐day distribution patterns within the family. Main conclusions Early diversification within Annonaceae fits the hypothesis of a museum model of tropical diversification, with an overall steady increase in lineages possibly due to low extinction rates. The present‐day distribution of species within the two largest clades of Annonaceae is the result of two contrasting biogeographic histories. The ‘long‐branch clade’ has been diversifying since the beginning of the Cenozoic and underwent numerous geodispersals via the boreotropics and several more recent long‐distance dispersal events. In contrast, the ‘short‐branch clade’ dispersed once into Asia via the boreotropics during the Early Miocene and further dispersal was limited.  相似文献   

13.
Aim To analyse the historical biogeography of the lichen genus Chroodiscus using a phenotype‐based phylogeny in the context of continental drift and evolution of tropical rain forest vegetation. Location All tropical regions (Central and South America, Africa, India, Southeast Asia, north‐east Australia). Methods We performed a phenotype‐based phylogenetic analysis and ancestral character state reconstruction of 14 species of the lichen genus Chroodiscus, using paup * and mesquite ; dispersal–vicariance analysis (DIVA) and dispersal–extinction–cladogenesis (DEC) modelling to trace the geographical origin of individual clades; and ordination and clustering by means of pc‐ord , based on a novel similarity index, to visualize the biogeographical relationships of floristic regions in which Chroodiscus occurs. Results The 14 species of Chroodiscus show distinctive distribution patterns, with one pantropical and one amphi‐Pacific taxon and 12 species each restricted to a single continent. The genus comprises four clades. DIVA and DEC modelling suggest a South American origin of Chroodiscus in the mid to late Cretaceous (120–100 Ma), with subsequent expansion through a South American–African–Indian–Southeast Asian–Australian dispersal route and late diversification of the argillaceus clade in Southeast Asia. Based on the abundance of extant taxa, the probability of speciation events in Chroodiscus is shown to be extremely low. Slow dispersal of foliicolous rain forest understorey lichens is consistent with estimated phylogenetic ages of individual species and with average lengths of biological species intervals in fungi (10–20 Myr). Main conclusions The present‐day distribution of Chroodiscus can be explained by vicariance and mid‐distance dispersal through the interconnection or proximity of continental shelves, without the need for recent, trans‐oceanic long‐distance dispersal. Phylogenetic reconstruction and age estimation for Chroodiscus are consistent with the ‘biotic ferry’ hypothesis: a South American origin and subsequent eastward expansion through Africa towards Southeast Asia and north‐eastern Australia via the Indian subcontinent. The present‐day pantropical distributions of many clades and species of foliicolous lichens might thus be explained by eastward expansion through continental drift, along with the evolution of modern rain forests starting 120 Ma, rather than by the existence of a hypothetical continuous area of pre‐modern rain forest spanning South America, Africa and Southeast Asia during the mid and late Cretaceous.  相似文献   

14.
Aim The sequential break‐up of Gondwana is thought to be a dominant process in the establishment of shared biota across landmasses of the Southern Hemisphere. Yet similar distributions are shared by taxa whose radiations clearly post‐date the Gondwanan break‐up. Thus, determining the contribution of vicariance versus dispersal to seemingly Gondwanan biota is complex. The southern freshwater crayfishes (family Parastacidae) are distributed on Australia and New Guinea, South America, Madagascar and New Zealand and are unlikely to have dispersed via oceans, owing to strict freshwater limitations. We test the hypotheses that the break‐up of Gondwana has led to (1) a predominately east–west (((Australia, New Zealand: 80 Ma) Madagascar: 160–121 Ma) South America: 165–140 Ma), or (2) a southern (((Australia, South America: 52–35 Ma) New Zealand: 80 Ma) Madagascar: 160–121 Ma) pattern for parastacid crayfish. Further, we examine the evidence for a complete drowning of New Zealand and subsequent colonization by freshwater crayfish. Location Southern Hemisphere. Methods The evolutionary relationships among the 15 genera of Parastacidae were reconstructed using mitochondrial [16S, cytochrome c oxidase subunit I (COI)] and nuclear (18S, 28S) sequence data and maximum likelihood and Bayesian methods of phylogenetic reconstruction. A Bayesian (multidivtime ) molecular dating method using six fossil calibrations and phylogenetic inference was used to estimate divergence time among crayfish clades on Gondwanan landmasses. Results The South American crayfish are monophyletic and a sister group to all other southern crayfish. Australian crayfish are not monophyletic, with two Tasmanian genera, Spinastacoides and Ombrastacoides, forming a clade with New Zealand and Malagasy crayfish (both monophyletic). Divergence of crayfish among southern landmasses is estimated to have occurred around the Late Jurassic to Early Cretaceous (109–178 Ma). Main conclusions The estimated phylogenetic relationships and time of divergence among the Southern Hemisphere crayfishes were consistent with an east–west pattern of Gondwanan divergence. The divergence between Australia and New Zealand (109–160 Ma) pre‐dated the rifting at around 80 Ma, suggesting that these lineages were established prior to the break‐up. Owing to the age of the New Zealand crayfish, we reject the hypothesis that there was a complete drowning of New Zealand crayfish habitat.  相似文献   

15.
Aim Cuckoo‐shrikes and allies (Campephagidae) form a radiation of birds widely distributed in the Indo‐Pacific and Africa. Recent studies on the group have been hampered by poor taxon sampling, causing inferences about systematics and biogeography to be rather speculative. With improved taxon sampling and analyses within an explicit spatiotemporal framework, we elucidate biogeographical patterns of dispersal and diversification within this diverse clade of passerine birds. Location Africa, Asia, Australo‐Papua, the Pacific, the Philippines and Wallacea. Methods We use model‐based phylogenetic methods (Mr Bayes and garli ) to construct a phylogenetic hypothesis of the core Campephagidae (Campephagidae with the exclusion of Pericrocotus). The phylogeny is used to assess the biogeographical history of the group with a newly developed Bayesian approach to dispersal–vicariance analysis (Bayes‐diva) . We also made use of a partitioned beast analysis, with several calibration points taken from island ages, passerine mitochondrial substitution rates and secondary calibration points for passerine birds, to assess the timing of diversification and dispersal. Results We present a robust molecular phylogeny that includes all genera and 84% of the species within the core Campephagidae. Furthermore, we estimate divergence dates and ancestral area relationships. We demonstrate that Campephagidae originated in Australo‐Papua with a single lineage (Pericrocotus) dispersing to Asia early. Later, there was further extensive transoceanic dispersal from Australo‐Papua to Africa involving lineages within the core Campephagidae radiation. Main conclusions The phylogenetic relationships, along with the results of the ancestral area analysis and the timing of dispersal events, support a transoceanic dispersal scenario from Australo‐Papua to Africa by the core Campephagidae. The sister group to core Campephagidae, Pericrocotus, dispersed to mainland Asia in the late Oligocene. Asia remained uncolonized by the core Campephagidae until the Pliocene. Transoceanic dispersal is by no means an unknown phenomenon, but our results represent a convincing case of colonization over a significant water gap of thousands of kilometres from Australo‐Papua to Africa.  相似文献   

16.
Aim A previous study of the allodapine bee genus Braunsapis suggested an African origin, with dispersal events into Madagascar and Asia, and from Asia into Australia. We re‐examine the phylogeny of this genus, using an expanded set of taxa from Madagascar and Malawi and additional sequence data, in order to determine the number of dispersals and the timeframe over which they occurred. Location Africa, Madagascar, Malawi, Asia and Australia. Methods One nuclear (EF‐1α F2) and two mitochondrial (CO1 and Cyt b) gene regions were sequenced for 36 allodapine bee species (including members of the genera Braunsapis, Nasutapis, Allodape, Allodapula, and Macrogalea) and one ceratinine species (Ceratina japonica). We used Bayesian analyses to examine phylogenetic structure and a penalized likelihood approach to estimate approximate ages for key divergences in our phylogeny. Results Our analyses indicate a tropical African origin for Braunsapis in the early Miocene followed by very early dispersal into Asia and then a subsequent dispersal, following Asian diversification, into Australia during the late Miocene. There have also been two dispersals of Braunsapis from Africa to Madagascar and this result, when combined with phylogenetic and biogeographical data for other allodapines, suggests that these bees have the ability to cross moderately large ocean expanses. These dispersals may have been aided by the West Wind Drift, but rafting across the Mozambique Channel is also possible, and could be aided by the existence of developmental stages that require minimal or no feeding and by tolerance to sea water and spume. Accumulating evidence suggests that many biogeographical patterns in the southern hemisphere may be better explained by dispersal than by Gondwanan vicariance hypotheses. Our results add to this growing body of data and raise the possibility that some puzzling trans‐Indian Ocean distributions may also be explained by historical dispersal events across oceanic barriers that now seem insuperable.  相似文献   

17.
Aim To compare the phylogeny of the eucalypt and melaleuca groups with geological events and ages of fossils to discover the time frame of clade divergences. Location Australia, New Caledonia, New Guinea, Indonesian Archipelago. Methods We compare published molecular phylogenies of the eucalypt and melaleuca groups of the plant family Myrtaceae with geological history and known fossil records from the Cretaceous and Cenozoic. Results The Australasian eucalypt group includes seven genera, of which some are relictual rain forest taxa of restricted distribution and others are species‐rich and widespread in drier environments. Based on molecular and morphological data, phylogenetic analyses of the eucalypt group have identified two major clades. The monotypic Arillastrum endemic to New Caledonia is related in one clade to the more species‐rich Angophora, Corymbia and Eucalyptus that dominate the sclerophyll vegetation of Australia. Based on the time of rifting of New Caledonia from eastern Gondwana and the age of fossil eucalypt pollen, we argue that this clade extends back to the Late Cretaceous. The second clade includes three relictual rain forest taxa, with Allosyncarpia from Arnhem Land the sister taxon to Eucalyptopsis of New Guinea and the eastern Indonesian archipelago, and Stockwellia from the Atherton Tableland in north‐east Queensland. As monsoonal, drier conditions evolved in northern Australia, Arnhem Land was isolated from the wet tropics to the east and north during the Oligocene, segregating ancestral rain forest biota. It is argued also that the distribution of species in Eucalyptopsis and Eucalyptus subgenus Symphyomyrtus endemic in areas north of the stable edge of the Australian continent, as far as Sulawesi and the southern Philippines, is related to the geological history of south‐east Asia‐Australasia. Colonization (dispersal) may have been aided by rafting on micro‐continental fragments, by accretion of arc terranes onto New Guinea and by land brought into closer proximity during periods of low sea‐level, from the Late Miocene and Pliocene. The phylogenetic position of the few northern, non‐Australian species of Eucalyptus subgenus Symphyomyrtus suggests rapid radiation in the large Australian sister group(s) during this time frame. A similar pattern, connecting Australia and New Caledonia, is emerging from phylogenetic analysis of the Melaleuca group (Beaufortia suballiance) within Myrtaceae, with Melaleuca being polyphyletic. Main conclusion The eucalypt group is an old lineage extending back to the Late Cretaceous. Differentiation of clades is related to major geological and climatic events, including rifting of New Caledonia from eastern Gondwana, development of monsoonal and drier climates, collision of the northern edge of the Australian craton with island arcs and periods of low sea level. Vicariance events involve dispersal of biota.  相似文献   

18.
Aim Four genera of the plant family Apiaceae subfamily Apioideae –Apium, Chaerophyllum, Daucus and Lilaeopsis– are characterized by amphitropic and amphiantarctic distribution patterns, and in Australasia the subfamily is also represented by the tribe Aciphylleae. We infer the molecular ages of achieving amphitropic distribution for these lineages, reconstruct the biogeographical histories of Apium, Chaerophyllum, Daucus and Lilaeopsis, and identify the sister group of Aciphylleae. Location Worldwide, with an emphasis on South America and Australasia. Methods Divergence times were estimated employing a Bayesian approach (beast ) with fossil pollen of basal apioids as calibration points and using a data set of nuclear ribosomal DNA internal transcribed spacer (nrDNA ITS) sequences from 284 accessions of Apioideae. Additionally, maximum‐likelihood analyses were performed for data subsets comprising Apium, Daucus and Lilaeopsis. For Chaerophyllum, maximum‐likelihood and beast analyses were carried out using combined chloroplast DNA and ITS data. Biogeographical scenarios were inferred using diva and lagrange . Results The sister group to Aciphylleae is the Sino‐Himalayan Acronema clade and the divergence between these two lineages is dated at 34.8 Ma, whereas the radiation of Aciphylleae started 11.0 Ma. A Northern Hemispheric origin was inferred for Apium, Chaerophyllum and Daucus, whereas Lilaeopsis probably originated in South America following a dispersal of its ancestor from North America. Chaerophyllum, Daucus and Lilaeopsis dispersed to the Southern Hemisphere at 5.3, 7.0 and 27.9 Ma, respectively. For Apium, two dispersals from Europe were inferred: to South America at 6.3 Ma, and to southern Africa at 3.9 Ma. The taxa migrated along the land masses of North and South America (Daucus, Lilaeopsis) and Africa (Apium) or by direct transoceanic dispersals through the Atlantic (Apium) or the Pacific (Chaerophyllum). Within the Southern Hemisphere they dispersed both westwards (Apium, Daucus, Lilaeopsis) and eastwards (Chaerophyllum, Lilaeopsis). For Chaerophyllum and Lilaeopsis, subsequent dispersal events to the Northern Hemisphere were also inferred. Main conclusions Similar timing, contrasted with the diversity of migration routes, suggests that the dispersal events of these umbellifer taxa (and many other amphitropic amphiantarctic genera) were facilitated by favourable ecological conditions in the Southern Hemisphere (climatic cooling of the late Palaeogene/early Neogene) rather than by increased dispersal opportunities.  相似文献   

19.
Aim The biogeography of the tropical plant family Monimiaceae has long been thought to reflect the break‐up of West and East Gondwana, followed by limited transoceanic dispersal. Location Southern Hemisphere, with fossils in East and West Gondwana. Methods We use phylogenetic analysis of DNA sequences from 67 of the c. 200 species, representing 26 of the 28 genera of Monimiaceae, and a Bayesian relaxed clock model with fossil prior constraints to estimate species relationships and divergence times. Likelihood optimization is used to infer switches between biogeographical regions on the highest likelihood tree. Results Peumus from Chile, Monimia from the Mascarenes and Palmeria from eastern Australia/New Guinea form a clade that is sister to all other Monimiaceae. The next‐deepest split is between the Sri Lankan Hortonia and the remaining genera. The African Monimiaceae, Xymalos monospora, then forms the sister clade to a polytomy of five clades: (I) Mollinedia and allies from South America; (II) Tambourissa and allies from Madagascar and the Mascarenes; (III) Hedycarya, Kibariopsis and Leviera from New Zealand, New Caledonia and Australia; (IV) Wilkiea, Kibara, Kairoa; and (V) Steganthera and allies, all from tropical Australasia. Main conclusions Tree topology, fossils, inferred divergence times and ances‐tral area reconstruction fit with the break‐up of East Gondwana having left a still discernible signature consisting of sister clades in Chile and Australia. There is no support for previous hypotheses that the break‐up of West Gondwana (Africa/South America) explains disjunctions in the Monimiaceae. The South American Mollinedia clade is only 28–16 Myr old, and appears to have arrived via trans‐Pacific dispersal from Australasia. The clade apparently spread in southern South America prior to the Andean orogeny, fitting with its first‐diverging lineage (Hennecartia) having a southern‐temperate range. The crown ages of the other major clades (II–V) range from 20 to 29 Ma, implying over‐water dispersal between Australia, New Caledonia, New Zealand, and across the Indian Ocean to Madagascar and the Mascarenes. The endemic genus Monimia on the Mascarenes provides an interesting example of an island lineage being much older than the islands on which it presently occurs.  相似文献   

20.
《Systematic Entomology》2018,43(4):798-809
The origins, evolutionary history and diversification of the Australian butterfly fauna are poorly known and uncertain. Two competing hypotheses have been proposed to explain the occurrence of butterflies on this isolated continental landmass. The common view is that all Australian butterflies entered the continent relatively recently from the northern hemisphere via Southeast Asia and/or mainland New Guinea (i.e. northern dispersal origin hypothesis). The alternative view is that part or all of the Australian butterfly fauna ultimately evolved in remnant or Southern Gondwana when Australia was connected to South America through Antarctica (i.e. Southern Gondwanan origin hypothesis). However, robust phylogenies with strong support for monophyly are lacking for the majority of Australian endemic butterfly lineages, thereby precluding determination of their systematic relationships and hence their geographic origins. Here, we use molecular data to reconstruct phylogenetic relationships of the globally distributed butterfly subtribe Coenonymphina (Satyrinae: Satyrini). This group represents a major component of the butterfly fauna of the wider Australasian region, with 19 genera and 71 species endemic to the region. Dating estimates extrapolated from secondary calibration sources indicate that the subtribe arose c . 48 Ma (95% credibility interval, 52–42 Ma), and the crown group first diverged in the Eocene (c . 44 Ma, 95% credibility interval 51–37 Ma). Rapid speciation events subsequently followed around the Eocence–Oligocene boundary, resulting in a near‐hard polytomy comprising short basal branches with nodes that are difficult to resolve. Based on strongly supported phylogenetic relationships and estimates of divergence times, we conclude that the group probably had its origin in the fragment of Southern Gondwana consisting of Australia, Antarctica and South America. However, we are unable to rule out the northern dispersal scenario, particularly as Coenonymphina are closely related to a set of predominantly Asian lineages. Dispersal and extinction events following the final break‐up of Gondwana have played a pivotal role in shaping the extant distributions of the group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号