首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequences flanking microsatellites isolated from the butterfly Bicyclus anynana display high levels of similarity among different loci. We examined sequence data for evidence of the two mechanisms most likely to generate these similarities, namely recombination mediated events, such as unequal crossing over or gene conversion and through transposition of mobile elements (MEs). Many sequences contained tandemly arranged microsatellites, lending support to recombination as the multiplication mechanism. There is, however, also support for ME-mediated multiplication of microsatellites and their flanking sequences. Homology with a known Lepidopteran ME was found in B. anynana microsatellite regions, and polymorphic microsatellite markers with partial similarities in their flanking sequences were passed on to the next generation independently, indicating that they are not linked. Therefore, the rise of these similarities appears to be mediated through both processes, either as an interaction between the two, or by each being responsible for part of the observations. A large proportion of microsatellites embedded in repetitive DNA is representative for most studied butterflies and moths, and a BLAST survey of the B. anynana sequences revealed four short microsatellite-associated sequences that were present in many species of Lepidoptera. The similarities usually start to deviate beyond these sequences, which suggests that they define the extremes of a repeated unit. Further study of these conserved sequences may help to understand the mechanism underlying the multiplication events, and answer the question of why these redundancies are predominantly found in this insect group.  相似文献   

2.
Conservation and evolution of microsatellite loci in primate taxa   总被引:7,自引:0,他引:7  
Microsatellites are promising genetic markers for the study of demographic structure and phylogenetic history in populations. However, little information exists on the molecular nature of the repeats and their flanking sequences of a same microsatellite in a large range of species. In this study, we report polymorphism and consensus sequences of eight microsatellite loci using human primers in 20 primate species. The results show size polymorphism in almost all species and microsatellites. These loci are therefore useful markers for population genetic studies between populations of the same species. Insertion/deletion events are frequent in the flanking regions, the majority concerning several contiguous bases. This is in contrast with the more usual single base pair events in non-coding regions. The ranges of allele lengths in non-human primates often show no overlap with that of human, usually due to the deletion/insertion events in the flanking sequences, producing smaller allele lengths rather than smaller numbers of repeats. The use of length of PCR product will bias the inter-species interpretation reducing the number of observable alleles and treating as the same allele very divergent molecular sequences. Caution should be used when employing microsatellites in cross-species comparisons in which the species under study are separated by significant amounts of evolutionary time: in such cases allele comparison cannot be based on lengths alone.  相似文献   

3.
Although microsatellite markers have become exceedingly popular in molecular studies of wild organisms, their development in some taxonomic groups is challenging. This is partly because of repetitive flanking sequences, which lead to the simultaneous amplification of alleles from multiple loci. Until now, these microsatellite DNA families have been considered unsuitable for population genetics studies, but here we describe our development of these repetitive flanking sequences (ReFS) as novel molecular markers. We illustrate the utility of these markers by using them to address an outstanding taxonomic question in the moth genus Schrankia.  相似文献   

4.
Microsatellites are valuable markers for the analysis of genetic diversity, linkage mapping or genotyping. The limited availability of microsatellites for the genus Potentilla (Rosaceae) stipulated the isolation of markers from a representative (Potentilla pusilla Host) of the Potentilla core group that constitutes the most species‐rich evolutionary lineage within the genus. Thousand four hundred and seventy‐six simple sequence repeat (SSR) containing candidate sequences were isolated from a single‐type line using 454 sequencing. Seventy‐four functional microsatellite markers were developed from 200 sequences selected for suitable priming sites flanking microsatellite repeats referring to a 37% primer‐to‐marker conversion ratio. Seventy‐two markers were polymorphic. These numbers confirm the increased efficiency of pyrosequencing over traditional isolation techniques in the development of microsatellites. Amplification primer sequences and the sequences of corresponding target fragments are provided for all functional markers, and molecular polymorphisms estimated for four accessions of P. pusilla and among seven core group species represented by 14 individuals are reported. Cross‐species transferability ranged between 86.4% and 97.3% among the studied taxa, and 57, 11 and six of the selected primer pairs amplified fragments of expected size and number in seven, six and five of the species, respectively. Reproducibility of the molecular phenotypes was 97.0%, which was inferred using a replicate sample of P. pusilla.  相似文献   

5.
M L Hale  A M Borland  K Wolff 《Génome》2005,48(5):946-950
In plants, microsatellites and their flanking DNA are rarely conserved across a whole genus, let alone other genera in the same family. Therefore, the possibility of using microsatellite primers developed for a species across a large number of plant species in the same genus is often limited. Remarkably, dinucleotide nuclear microsatellites developed for Clusia minor and for Clusia nemorosa amplified homologous microsatellites in species across the whole genus Clusia. In this present study, we report on the DNA sequence variation across the genus of 3 microsatellite loci with varying levels of variation. Compared over the species, there was a correlation between the lengths of the microsatellite loci. Interrupts occurred multiple times and did not seem to lead to the death of the microsatellite. These highly conserved markers will be useful for studying the variable reproductive systems in the genus Clusia.  相似文献   

6.
Conservation of microsatellite loci within the genus Vitis   总被引:7,自引:0,他引:7  
Eleven microsatellites isolated from grapevine (Vitis vinifera) were used to study the degree of conservation of these sequences across different Vitis species. Nine microsatellites were newly isolated, the remaining two (VVS2 and VVS5) came from the literature. A preliminary assay on the conservation of priming sites was carried out on 14 non-V. vinifera species, including relevant taxa for breeding. Parthenocissus quinquefolia was added as representative of a related genus. Cross-species amplification was obtained in 94% of the 176 genotype×locus tested combinations. Three microsatellite loci were then cloned and sequenced in ten species. The microsatellite repeat was found present in all cases. The repeat region was often longer in V. vinifera than in the other species. Furthermore the non-source species showed interruptions in the repeat. In spite of these constraints, which could reduce the polymorphism of microsatellites in non-source species, the results demonstrate the possibility of extending the use of microsatellite markers to wild germplasm and inter-specific hybrids. Point mutations have been found in microsatellite flanking regions and these variations have been used to investigate the genetic relationship among taxa. The Neighbor-joining tree that was obtained on the basis of ten nucleotide variations, showed that there is not a clear cut difference between American, Asian and European species and that the actual taxonomy which reflects the geographical distribution of species must most likely be revised. Moreover, in general, nucleotide variations which occur in microsatellite flanking regions provide new molecular tools for investigating the evolution of species. Received: 24 October 1999 / Accepted: 11 November 1999  相似文献   

7.
Microsatellites are popular genetic markers in molecular ecology, genetic mapping and forensics. Unfortunately, despite recent advances, the isolation of de novo polymorphic microsatellite loci often requires expensive and intensive groundwork. Primers developed for a focal species are commonly tested in a related, non-focal species of interest for the amplification of orthologous polymorphic loci; when successful, this approach significantly reduces cost and time of microsatellite development. However, transferability of polymorphic microsatellite loci decreases rapidly with increasing evolutionary distance, and this approach has shown its limits. Whole genome sequences represent an under-exploited resource to develop cross-species primers for microsatellites. Here we describe a three-step method that combines a novel in silico pipeline that we use to (1) identify conserved microsatellite loci from a multiple genome alignments, (2) design degenerate primer pairs, with (3) a simple PCR protocol used to implement these primers across species. Using this approach we developed a set of primers for the mammalian clade. We found 126,306 human microsatellites conserved in mammalian aligned sequences, and isolated 5,596 loci using criteria based on wide conservation. From a random subset of ~1000 dinucleotide repeats, we designed degenerate primer pairs for 19 loci, of which five produced polymorphic fragments in up to 18 mammalian species, including the distinctly related marsupials and monotremes, groups that diverged from other mammals 120-160 million years ago. Using our method, many more cross-clade microsatellite loci can be harvested from the currently available genomic data, and this ability is set to improve exponentially as further genomes are sequenced.  相似文献   

8.
鳞翅目昆虫基因组中微卫星DNA的特征以及对其分离的影响   总被引:9,自引:0,他引:9  
吉亚杰  张德兴 《动物学报》2004,50(4):608-614
本文根据我们对鳞翅目昆虫棉铃虫和松毛虫以及其它动物 (筏蜘蛛、朱、鳕鱼和飞蝗 )的微卫星富集性基因组DNA文库的筛选和分析结果 ,结合其它实验室已发表的资料 ,对鳞翅目昆虫基因组中微卫星DNA的丰度和结构特点进行了较为系统的分析。结果表明 :与其它类群相比 ,尽管鳞翅目昆虫物种间存在差异 ,但其基因组中存在明显偏多的侧翼序列重复的、以多拷贝形式存在的微卫星位点 ,且其中相当一部分以基因家族的形式存在。微卫星DNA家族通常可以在序列分析阶段被识别出来 ,但很多多拷贝位点只有通过一系列后续分析才能被检查出来。这应是鳞翅目昆虫中微卫星位点的优化率相对偏低的主要原因。棉铃虫和松毛虫基因组中三相重复微卫星丰度相对较高 ,从而从某种程度上补偿了这些物种微卫星分离过程中因丰度低、多拷贝位点比例高所带来的困难。棉铃虫微卫星DNA家族侧翼序列中多聚T/A序列的存在表明 ,逆转录转座或逆转录侵染可能是在基因组中形成多拷贝微卫星位点和微卫星DNA家族的重要机制之一  相似文献   

9.
Microsatellites, as the tracts of repetitive DNA, are an essential constituent of the plant genome that holds important evolutionary significance, and have been extensively used to develop molecular makers for genetic analysis. To understand the microsatellite dynamics of quinoa genome and its relatives, in this study we performed a genome‐wide analysis of microsatellites in five Amaranthaceae species using available genome sequences. The results demonstrated that the microsatellites of the five Amaranthaceae species were characterised by relatively high proportions of mono‐, di‐ and trinucleotide repeats with A/T rich motifs, implying conservative organisation and composition of microsatellites in this family. Furthermore, a significant negative correlation between microsatellite frequencies and GC contents (r = ?.87) were observed. In total, 533,961 (89.57%) and 542,601 (89.86%) microsatellite loci could be used to develop simple sequence repeat (SSR) molecular markers, of which 7,178 were found to be polymorphic between the two sequenced quinoa cultivars, QQ74 and Real Blanca, through in silico PCR analysis. Finally, 15 SSR markers were randomly selected to validate their polymorphism across 12 quinoa accessions by wet‐lab PCR amplification. The newly developed genome‐wide SSR markers provide a useful resource for population genetics, gene mapping and molecular breeding studies in quinoa and beyond.  相似文献   

10.
The development of microsatellite DNA markers for use with butterflies and moths is extremely difficult for no apparent reason. New findings demonstrate that many lepidopteran microsatellite sequences exist in multiple copies in the genome, and have similar or almost identical flanking regions. These findings provide a compelling explanation for the low efficiency of microsatellite isolation in Lepidoptera, and might also shed light on the evolutionary dynamics of microsatellite sequences in these insects and other organisms.  相似文献   

11.
Five microsatellite markers were analysed and their alleles were sequenced for the three sturgeon species that lived in western Europe: the European sturgeon Acipenser sturio, the Atlantic sturgeon Acipenser oxyrinchus and the Adriatic sturgeon Acipenser naccarii. A total of 94 different allele sequences were obtained. Fixed mutations in the flanking regions or in the core repeat of microsatellites provided a clear distinction between the different species. Comparison of allele sequences also provided some insights into microsatellites and the evolution of Acipenser species. These nuclear markers can be used to solve species determination problems, and combined with mitochondrial markers, will be useful to identify introgression and hybridization among the three species. Moreover, because they are short and with a limited allele size range, they are particularly suited for analysis of museum specimens or archaeological remains.  相似文献   

12.
Microsatellites, also known as simple sequence repeats (SSRs), are among the most commonly used marker types in evolutionary and ecological studies. Next Generation Sequencing techniques such as 454 pyrosequencing allow the rapid development of microsatellite markers in nonmodel organisms. 454 pyrosequencing is a straightforward approach to develop a high number of microsatellite markers. Therefore, developing microsatellites using 454 pyrosequencing has become the method of choice for marker development. Here, we describe a user friendly way of microsatellite development from 454 pyrosequencing data and analyse data sets of 17 nonmodel species (plants, fungi, invertebrates, birds and a mammal) for microsatellite repeats and flanking regions suitable for primer development. We then compare the numbers of successfully lab‐tested microsatellite markers for the various species and furthermore describe diverse challenges that might arise in different study species, for example, large genome size or nonpure extraction of genomic DNA. Successful primer identification was feasible for all species. We found that in species for which large repeat numbers are uncommon, such as fungi, polymorphic markers can nevertheless be developed from 454 pyrosequencing reads containing small repeat numbers (five to six repeats). Furthermore, the development of microsatellite markers for species with large genomes was also with Next Generation Sequencing techniques more cost and time‐consuming than for species with smaller genomes. In this study, we showed that depending on the species, a different amount of 454 pyrosequencing data might be required for successful identification of a sufficient number of microsatellite markers for ecological genetic studies.  相似文献   

13.
Single nucleotide polymorphisms or SNPs are the most abundant form of genetic variation in the genome of plants and animals. Microsatellites are hypervariable regions of genome, while their flanking regions are assumed to be as conserved as the average of the genome. In the present study, flanking sequences of 10 microsatellite loci were compared in different cultivars of Vitis to determine the existing polymorphism. For every microsatellite, about 8 homozygous cultivars (regarding the microsatellite genotype) were chosen for sequencing. A total of 45 different varieties of Vitis and 91 sequences were analysed. Sequence polymorphisms were detected for all the microsatellite flanking regions studied, including single nucleotide polymorphisms (SNPs), insertions and deletions. The number of identified changes varied considerably among the loci with a frequency of one polymorphism every 41 nucleotides, being VVMD5 the most polymorphic one. A number of SNPs were used to design SNP markers, which were scored by dideoxy single base primer extension and capillary electrophoresis methodology. These SNP markers were employed to genotype 21 cultivars of Vitis vinifera and 4 varieties of other Vitis species. The utility of the markers developed as well as their utility for varietal identification and pedigree studies is discussed, using a similar study carried out with the 10 microsatellites as a reference.  相似文献   

14.
Online sequence databases can provide valuable resources for the development of cross-species genetic markers. In particular, mining expressed tag sequences (EST) for microsatellites and developing conserved cross-species microsatellite markers can provide a rapid and relatively inexpensive method to develop new markers for a range of species. Here, we adopt this approach to develop cross-species microsatellite markers in Anolis lizards, which is a model genus in evolutionary biology and ecology. Using EST sequences from Anolis carolinensis, we identified 127 microsatellites that satisfied our criteria, and tested 49 of these in five species of Anolis (carolinensis, distichus, apletophallus, porcatus and sagrei). We identified between 8 and 25 new variable genetic markers for five Anolis species. These markers will be a valuable resource for studies of population genetics, comparative mapping, mating systems, behavioural ecology and adaptive radiations in this diverse lineage.  相似文献   

15.
Exploiting dinucleotide microsatellites conserved among mammalian species   总被引:3,自引:0,他引:3  
Dinucleotide microsatellites are useful for gene mapping projects. Depending upon definition of conservation, published estimates of dinucleotide microsatellite conservation levels vary dramatically (30% to 100%). This study focused on well-characterized genes that contain microsatellites in the human genome. The objective was to examine the feasibility of developing microsatellite markers within genes on the basis of the assumption of microsatellite conservation across distantly related species. Eight genes (Gamma-actin, carcinoembryonic antigen, apolipoprotein A-II, cardiac beta myosin heavy chain, laminin B2 chain, MHC class I CD8 alpha chain, c-reactive protein, and retinoblastoma susceptibility protein) containing large dinucleotide repeat units (N ≥ 15), complete genomic structure information, and homologous gene sequences in a second species were selected. Heterologous primers were designed from conserved exon sequences flanking a microsatellite motif. PCR products from bovine and porcine genomic DNA were tested for the presence of microsatellite sequences by Southern blot hybridization with biotin-labeled (CA)12 oligonucleotides. Fragments containing microsatellites were cloned and sequenced. Homology was verified by sequence comparisons between human and corresponding bovine or porcine fragments. Four of sixteen (25%) cross-amplified PCR products contained dinucleotide repetitive sequences with repeat unit lengths of 5 to 23. Two dinucleotide repetitive sequences showed microsatellite length polymorphism, and an additional sequence displayed single-strand conformational polymorphism. Results from this study suggest that exploitation of conserved microsatellite sequences is a useful approach for developing specific genetic markers for comparative mapping purposes. Received: 7 July 1995 / Accepted: 28 September 1995  相似文献   

16.
The advantage of the cross transferability of heterologous chloroplast and nuclear microsatellite primers was taken to detect polymorphism among 24 tea (Camellia sinensis (L.) O. Kuntze) genotypes, including both the assamica and the sinensis varieties. Primer information was obtained from the closely related Camellia japonica species for four nuclear microsatellites, and from Nicotiana tabaccum for seven universal chloroplast microsatellites. All of the nuclear microsatellite loci tested generated an expected DNA fragment in tea, revealing between three and five alleles per locus. Four out of the seven chloroplast microsatellites primers amplified positively, and of these only one was polymorphic with three alleles, which is in agreement with the conserved nature of chloroplast microsatellites at the intraspecific level. A factorial correspondence analysis carried out on all genotypes and nuclear microsatellite alleles separated the assamica and sinensis genotypes into two groups, thus demonstrating the value of these markers in establishing the genetic relationship between tea varieties. Genetic diversity measured with nuclear microsatellites was higher than that measured with other types of molecular markers, offering prospects for their use in fingerprinting, mapping, and population genetic studies, whereas polymorphisms detected at a cpSSR locus will allow the determination of plastid inheritance in the species.  相似文献   

17.
Sequence tagged microsatellite profiling (STMP) enables the rapid development of large numbers of co-dominant DNA markers, known as sequence tagged microsatellites (STMs). Each STM is amplified by PCR using a single primer specific to the conserved DNA sequence flanking the microsatellite repeat in combination with a universal primer that anchors to the 5′-ends of the microsatellites. It is also possible to convert STMs into conventional microsatellite, or simple sequence repeat (SSR), markers that are amplified using a pair of primers flanking the repeat sequence. Here, we describe a modification of the STMP procedure to significantly improve the capacity to convert STMs into conventional SSRs and, therefore, facilitate the development of highly specific DNA markers for purposes such as marker-assisted breeding. The usefulness of this technique was demonstrated in bread wheat.  相似文献   

18.
Simple sequence repeats (SSR), also known as microsatellites, have been extensively used as molecular markers due to their abundance and high degree of polymorphism. We have developed a simple to use web software, called WebSat, for microsatellite molecular marker prediction and development. WebSat is accessible through the Internet, requiring no program installation. Although a web solution, it makes use of Ajax techniques, providing a rich, responsive user interface. WebSat allows the submission of sequences, visualization of microsatellites and the design of primers suitable for their amplification. The program allows full control of parameters and the easy export of the resulting data, thus facilitating the development of microsatellite markers.  相似文献   

19.
High-resolution analysis for population genetic and functional studies requires the use of large numbers of polymorphic markers. The recent increase of available genetic tools is facilitated by the use of publicly available expressed sequence tag (EST) sequence databases that are a valuable resource for identifying gene-linked markers. In the present study, we applied bioinformatics analyses to identify microsatellite markers present in EST sequences from a zebra finch (Taeniopgia guttata) EST database and we explore the success of cross-species amplification of EST-linked microsatellite markers in 7 passerine and 1 nonpasserine species. Eighty-six zebra finch EST-linked microsatellite loci were screened for polymorphism revealing a high amplification success rate and adequate levels of polymorphism (33.3-51%) for relatively closely related species, whereas success decreased in the most distantly related species to zebra finch. EST-linked microsatellites appear to be more highly transferable between taxa than anonymous microsatellites as they revealed higher amplification and polymorphism success between different families indicating that they will be a useful source of gene-linked polymorphic markers in a broad range of avian species.  相似文献   

20.
Recombinant microsatellite (simple sequence repeat; SSR) amplification is a technique by which DNA sequences flanking microsatellites can be isolated rapidly on a large scale. The approach selectively amplifies microsatellite-containing sequences and recombines the amplicons by redigestion and ligation, in order to increase the yield of microsatellite flanks per clone two-fold and to further increase selectivity of amplification. Since this method does not require prior knowledge of the genomic sequence, it is especially useful for species for which abundant genomic sequences are not available. The feasibility of this approach was demonstrated by developing SSR markers in cultivated oats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号