首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The amphibian fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), poses a great threat to global amphibian biodiversity. In Peruvian cloud forests of the Kosñipata Valley of Manu National Park where chytrid infection is highly prevalent, we have monitored species-rich amphibian communities since 1996. An epizootic of chytridiomycosis is thought to have caused the disappearance of 35% of species richness in the early 2000s. We investigated the post-epizootic Bd prevalence and infection intensity within the remnant amphibian community from 2008 to 2015, and modeled Bd dynamics as a function of species, season, reproductive mode, life stage, and elevation. Prevalence was higher in 2012–2015 than in 2008–2009, but overall prevalence has remained fairly constant (~50%) post-epizootic. We also found that while prevalence decreased with elevation during the wet season, it generally increased with elevation during the dry season, potentially due to seasonal changes in temperature and precipitation. In aquatic habitats, Bd is likely maintained through a single, stream-breeding, putative reservoir species (which survived epizootics, in contrast to other aquatic-breeding species). The now-dominant terrestrial-breeding species allow Bd to persist and spread in terrestrial habitats, possibly through individual dispersal into naïve areas. We conclude that Bd prevalence in the Kosñipata Valley has stabilized over time, suggesting that Bd is now enzootic. Long-term monitoring of host infection is important because temporal changes in prevalence and infection intensity can cause changes in host species richness and abundance, which in turn may alter the trajectory of host–pathogen dynamics.  相似文献   

3.
Understanding transmission is a critical prerequisite for predicting disease dynamics and impacts on host populations. It is well established that Batrachochytrium dendrobatidis (Bd), the amphibian fungal pathogen responsible for chytridiomycosis, can be transmitted directly, through physical contact with an infected host. However, indirect pathways of transmission remain poorly investigated. We conducted a five‐week long field infection experiment at a high altitude mountain lake in the French Pyrenees to investigate Bd transmission pathways in larval midwife toads Alytes obstetricans. Uninfected naïve tadpoles were co‐housed either with infected tadpoles (direct and indirect transmission) or with uninfected ones (indirect transmission only). We found that physical contact with an infected host is not necessary for initial infection with Bd and that all tadpoles became infected after only four weeks. However, physical contact with infected tadpoles led to a faster spread within a tadpole group and resulted in higher Bd loads and subsequently higher mortality. Our findings clearly demonstrate that in A. obstetricans, Bd can quickly spread in a population even without physical contact. Our experiment therefore stresses the importance of indirect transmission of Bd zoospores in infected lakes for disease dynamics, especially when a reservoir species such as A. obstetricans is present.  相似文献   

4.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused the greatest known wildlife pandemic, infecting over 500 amphibian species. It remains unclear why some host species decline from disease‐related mortality whereas others persist. We introduce a conceptual model that predicts that infection risk in ectotherms will decrease as the difference between host and pathogen environmental tolerances (i.e. tolerance mismatch) increases. We test this prediction using both local‐scale data from Costa Rica and global analyses of over 11 000 Bd infection assays. We find that infection prevalence decreases with increasing thermal tolerance mismatch and with increasing host tolerance of habitat modification. The relationship between environmental tolerance mismatches and Bd infection prevalence is generalisable across multiple amphibian families and spatial scales, and the magnitude of the tolerance mismatch effect depends on environmental context. These findings may help explain patterns of amphibian declines driven by a global wildlife pandemic.  相似文献   

5.
Amphibians are experiencing a panzootic of unprecedented proportions caused by the emergence of Batrachochytrium dendrobatidis (Bd). However, all species are not equally at risk of infection, and risk is further modified by environmental variables, specifically temperature. In order to understand how, and when, hosts mount a response to Bd we analysed infection dynamics and patterns of gene expression in the model amphibian species Silurana (Xenopus) tropicalis. Mathematical modelling of infection dynamics demonstrate the existence of a temperature-dependent protective response that is largely independent of the intrinsic growth-rate of Bd. Using temporal expression-profiling by microarrays and qRT-PCR, we characterise this response in the main amphibian lymphoid tissue, the spleen. We demonstrate that clearance of Bd at the host-optimal temperature is not clearly associated with an adaptive immune response, but rather is correlated with the induction of components of host innate immunity including the expression of genes that are associated with the production of the antimicrobial skin peptide preprocareulein (PPCP) as well as inflammatory responses. We find that adaptive immunity appears to be lacking at host-optimal temperatures. This suggests that either Bd does not stimulate, or suppresses, adaptive immunity, or that trade-offs exist between innate and adaptive limbs of the amphibian immune system. At cold temperatures, S. tropicalis loses the ability to mount a PPCP-based innate response, and instead manifests a more pronounced inflammatory reaction that is characterised by the production of proteases and higher pathogen burdens. This study demonstrates the temperature-dependency of the amphibian response to infection by Bd and indicates the influence that changing climates may exert on the ectothermic host response to pathogens.  相似文献   

6.
Environmental factors can limit the distribution of organisms if they are not able to respond through phenotypic plasticity or local adaptation. Batrachochytrium dendrobatidis (Bd) is a broadly distributed pathogen, which shows spatially patterned genotypic and phenotypic variation; however, information on the functional consequences of this variation on disease dynamics in natural hosts is limited. We genotyped and quantified variation in Bd phenotypes across an elevational gradient and quantified host infection dynamics at each site. All Bd strains were members of the global panzootic lineage yet differed in phenotype. We hypothesize that this phenotypic variance results from adaptive processes due to the interaction between pathogen, hosts, and environment. We detected a correlation between zoospore and zoosporangia sizes and a positive association between zoosporangia size and Bd prevalence. Given that Bd phenotype predicted disease status in our wild populations, we developed an index to identify critical environments where the fungus could be more deleterious.  相似文献   

7.
Understanding factors that influence host–pathogen interactions is key to predicting outbreaks in natural systems experiencing environmental change. Many amphibian population declines have been attributed to an amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd). While this fungus is widespread, not all Bd‐positive populations have been associated with declines, which could be attributed to differences in pathogen virulence or host susceptibility. In a laboratory experiment, we examined the effects of Bd isolate origin, two from areas with Bd‐associated amphibian population declines (El Copé, Panama, and California, USA) and two from areas without Bd‐related population declines (Ohio and Maine, USA), on the terrestrial growth and survival of American toad (Anaxyrus americanus) metamorphs reared in larval environments with low or high intraspecific density. We predicted that (1) Bd isolates from areas experiencing declines would have greater negative effects than Bd isolates from areas without declines, and (2) across all isolates, growth and survival of smaller toads from high‐density larval conditions would be reduced by Bd exposure compared to larger toads from low‐density larval conditions. Our results showed that terrestrial survival was reduced for smaller toads exposed to Bd with variation in the response to different isolates, suggesting that smaller size increased susceptibility to Bd. Toads exposed to Bd gained less mass, which varied by isolate. Bd isolates from areas with population declines, however, did not have more negative effects than isolates from areas without recorded declines. Most strikingly, our study supports that host condition, measured by size, can be indicative of the negative effects of Bd exposure. Further, Bd isolates’ impact may vary in ways not predictable from place of origin or occurrence of disease‐related population declines. This research suggests that amphibian populations outside of areas experiencing Bd‐associated declines could be impacted by this pathogen and that the size of individuals could influence the magnitude of Bd's impact.  相似文献   

8.
Understanding how pathogens respond to changing environmental conditions is a central challenge in disease ecology. The environmentally sensitive fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the amphibian disease chytridiomycosis, has spread globally causing amphibian extirpations in a wide variety of climatic regions. To gain an in‐depth understanding of Bd's responses to temperature, we used an integrative approach, combining empirical laboratory experiments with mathematical modeling. First, we selected a single Bd isolate and serially propagated two lineages of the isolate for multiple generations in two stable thermal conditions: 4°C (cold‐adapted lineage) and 23°C (warm‐adapted lineage). We quantified the production of infectious zoospores (fecundity), the timing of zoospore release, and zoospore activity in reciprocal temperature transplant experiments in which both Bd lineages were grown in either high or low temperature conditions. We then developed population growth models for the Bd lineages under each set of temperature conditions. We found that Bd had lower population growth rates, but longer periods of zoospore activity in the low temperature treatment (4°C) compared to the high temperature treatment (23°C). This effect was more pronounced in Bd lineages that were propagated in the low temperature treatment (4°C), suggesting a shift in Bd's response to low temperature conditions. Our results provide novel insights into the mechanisms by which Bd can thrive in a wide variety of temperature conditions, potentially altering the dynamics of chytridiomycosis and thus, the propensity for Bd to cause amphibian population collapse. We also suggest that the adaptive responses of Bd to thermal conditions warrant further investigation, especially in the face of global climate change.  相似文献   

9.
Chytridiomycosis, an amphibian disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an ideal system for studying the influence of temperature on host–pathogen relationships because both host and pathogen are ectothermic. Studies of Bd in culture suggest that optimal growth occurs between 17 and 23°C, and death of the fungus occurs above 29 or below 0°C. Amphibian immune systems, however, are also temperature dependent and often more effective at higher temperatures. We therefore hypothesized that pathogen load, probability of infection and mortality in Bd-exposed frogs would peak at a lower temperature than that at which Bd grows best in vitro. To test this, we conducted a study where Bd- and sham-exposed Northern cricket frogs (Acris crepitans) were incubated at six temperatures between 11 and 26°C. While probability of infection did not differ across temperatures, pathogen load and mortality were inversely related to temperature. Survival of infected hosts was greatest between 20 and 26°C, temperatures where Bd grows well in culture. These results demonstrate that the conditions under which a pathogen grows best in culture do not necessarily reflect patterns of pathogenicity, an important consideration for predicting the threat of this and other wildlife pathogens.  相似文献   

10.
Raffel TR  Michel PJ  Sites EW  Rohr JR 《EcoHealth》2010,7(4):526-536
The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) is considered responsible for the population declines and extinctions of hundreds of amphibian species worldwide. The panzootic was likely triggered by human-assisted spread, but once the pathogen becomes established in a given region, its distribution is probably determined by local drivers. To assess the relative importance of potential drivers of infection in red-spotted newts (Notophthalmus viridescens), we measured Bd levels in 16 populations throughout central Pennsylvania. Infected individuals were detected in all but four populations, indicating that Bd is widespread in this region. We quantified local factors hypothesized to influence Bd, and found that infection levels were best predicted by the proportion of the pond substrate consisting of leaf litter or vegetation, along with a significant effect of water temperature. Bd infection in amphibians is temperature-dependent, and one possible explanation of the apparent substrate effect is that tree cover and vegetation provide shade, reducing the availability of shallow, warm-water patches in which newts might reduce or clear Bd infections. Alternatively, leaf litter and emergent vegetation might increase Bd infection more directly, perhaps by providing substrates for environmental growth of the fungus. We also observed a curvilinear relationship between Bd load and snout-vent length (a proxy for age), hinting that newts might develop acquired resistance to Bd infection. Though correlational, these results add to a growing body of evidence suggesting that environmental temperature is an important driver of Bd infection dynamics.  相似文献   

11.
12.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) infects hundreds of amphibian species and is implicated in global amphibian declines. Bd is comprised of several lineages that differ in pathogenicity, thus, identifying which Bd strains are present in a given amphibian community is essential for understanding host–pathogen dynamics. The presence of Bd has been confirmed in Central Africa, yet vast expanses of this region have not yet been surveyed for Bd prevalence, and the genetic diversity of Bd is largely unknown in this part of the world. Using retrospective surveys of museum specimens and contemporary field surveys, we estimated the prevalence of Bd in Central African island and continental amphibian assemblages, and genotyped strains of Bd present in each community. Our sampling of museum specimens included just a few individuals collected in the Gulf of Guinea archipelago prior to 1998, yet one of these individuals was Bd‐positive indicating that the pathogen has been on Bioko Island since 1966. We detected Bd across all subsequent sample years in our study and found modest support for a relationship between host life history and Bd prevalence, a positive relationship between prevalence and host community species richness, and no significant relationship between elevation and prevalence. The Global Panzootic Lineage (BdGPL) was present in all the island and continental amphibian communities we surveyed. Our results are consistent with a long‐term and widespread distribution of Bd in amphibian communities of Gabon and the Gulf of Guinea archipelago.  相似文献   

13.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) infects the skin of amphibians and has caused severe declines and extinctions of amphibians globally. In this study, we investigate the interaction between Bd and the bacterial skin microbiome of the endangered Sierra Nevada yellow‐legged frog, Rana sierrae, using both culture‐dependent and culture‐independent methods. Samples were collected from two populations of R. sierrae that likely underwent Bd epizootics in the past, but that continue to persist with Bd in an enzootic disease state, and we address the hypothesis that such “persistent” populations are aided by mutualistic skin microbes. Our 16S rRNA metabarcoding data reveal that the skin microbiome of highly infected juvenile frogs is characterized by significantly reduced species richness and evenness, and by strikingly lower variation between individuals, compared to juveniles and adults with lower infection levels. Over 90% of DNA sequences from the skin microbiome of highly infected frogs were derived from bacteria in a single order, Burkholderiales, compared to just 54% in frogs with lower infection levels. In a culture‐dependent Bd inhibition assay, the bacterial metabolites we evaluated all inhibited the growth of Bd. Together, these results illustrate the disruptive effects of Bd infection on host skin microbial community structure and dynamics, and suggest possible avenues for the development of anti‐Bd probiotic treatments.  相似文献   

14.
Host behavior can interact with environmental context to influence outcomes of pathogen exposure and the impact of disease on species and populations. Determining whether the thermal behaviors of individual species influence susceptibility to disease can help enhance our ability to explain and predict how and when disease outbreaks are likely to occur. The widespread disease chytridiomycosis (caused by the fungal pathogen Batrachochytrium dendrobatidis, Bd) often has species‐specific impacts on amphibian communities; some host species are asymptomatic, whereas others experience mass mortalities and population extirpation. We determined whether the average natural thermal regimes experienced by sympatric frog species in nature, in and of themselves, can account for differences in vulnerability to disease. We did this by growing Bd under temperatures mimicking those experienced by frogs in the wild. At low and high elevations, the rainforest frogs Litoria nannotis, L. rheocola, and L. serrata maintained mean thermal regimes within the optimal range for pathogen growth (15–25°C). Thermal regimes for L. serrata, which has recovered from Bd‐related declines, resulted in slower pathogen growth than the cooler and less variable thermal regimes for the other two species, which have experienced more long‐lasting declines. For L. rheocola and L. serrata, pathogen growth was faster in thermal regimes corresponding to high elevations than in those corresponding to low elevations, where temperatures were warmer. For L. nannotis, which prefers moist and thermally stable microenvironments, pathogen growth was fastest for low‐elevation thermal regimes. All of the thermal regimes we tested resulted in pathogen growth rates equivalent to, or significantly faster than, rates expected from constant‐temperature experiments. The effects of host body temperature on Bd can explain many of the broad ecological patterns of population declines in our focal species, via direct effects on pathogen fitness. Understanding the functional response of pathogens to conditions experienced by the host is important for determining the ecological drivers of disease outbreaks.  相似文献   

15.
Aim Amphibian chytridiomycosis, an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), is associated with global amphibian population declines and species extinctions. Current evidence indicates that the pathogen has recently spread globally from an enzootic focus, with Xenopus spp. (family Pipidae) in South Africa having been identified as a likely source. The aim of this study was to investigate further the likelihood of African Xenopus spp. as the original source of Bd. Location We examined 665 museum specimens of 20 species of African and South American pipid frogs collected between 1844 and 1994 and held in the collection of the Natural History Museum, London. Methods Skin brushings taken from adult amphibians and brushings from the mouthparts, lips and developing hind limbs of larval pipid frogs were examined for the presence of Bd using real‐time PCR. Results We found six cases of Bd infection in three Xenopus spp. (from Africa), but none of the South American pipids was positive, although only 45 South American frogs were available for examination. The earliest case of Bd infection was in a specimen of Xenopus fraseri collected from Cameroon in 1933. A consistently low prevalence of infection over time indicates that a historical equilibrium existed between Xenopus spp. and Bd infection in Africa. Main conclusions Our results suggest that Bd infection was present in Xenopus spp. across sub‐Saharan Africa by the 1930s, providing additional support for the ‘out of Africa’ hypothesis. If this hypothesis is correct, it strengthens the argument for stringent control of human‐assisted movements of amphibians and other wildlife world‐wide to minimize the likelihood of pathogen introduction and disease emergence that can threaten species globally. Our findings help inform species selection for conservation in the face of the current Bd pandemic and also guide future research directions for selecting Bd isolates for sequencing and virulence testing.  相似文献   

16.
Global amphibian declines have been attributed to several factors including the chytrid fungal pathogen, Batrachochytrium dendrobatidis (Bd), that infects hosts’ skin and causes death by inhibiting immune response and impairing osmoregulatory function. Here, we integrate extensive new field data with previously published locality records of Bd in Colombia, a megadiverse and environmentally heterogeneous country in northwestern South America, to determine the relative importance of environmental variables and reproductive mode for predicting the risk of Bd infection in amphibians. We surveyed 81 localities across Colombia and sampled 2876 individual amphibians belonging to 14 taxonomic families. Through a combination of end‐point PCR and real‐time PCR analyses, Bd was detected in 338 individuals (12%) representing 43 localities (53%) distributed from sea level to 3200 m. We found that annual mean temperature and variables related with seasonality in precipitation and temperature appeared to define the most suitable areas for the establishment of the pathogen. In addition, prevalence of infection appeared to be higher in species with a terrestrial reproductive mode. Our study provides the first large‐scale study of the current and potential distribution of Bd in the biodiversity hotspot centered on Colombia. We hope the newly provided information on the extent of the distribution of the pathogen and the potential areas where Bd may impact the amphibian fauna will inform decision making by environmental authorities and future conservation action.  相似文献   

17.
Environmental conditions are rarely constant, but instead vary spatially and temporally. This variation influences ecological interactions and epidemiological dynamics, yet most experimental studies examine interactions under constant conditions. We examined the effects of variability in temperature on the host–pathogen relationship between an aquatic zooplankton host (Daphnia laevis) and an environmentally transmitted fungal pathogen (Metschnikowia bicuspidata). We manipulated temperature variability by exposing all populations to mean temperatures of 20°C for the length of the experiments, but introducing periods of 1, 2, and 4 hr each day where the populations were exposed to 28°C followed by periods of the same length (1, 2, and 4 hr, respectively) where the populations were exposed to 12°C. Three experiments were performed to assess the role of thermal variability on Daphnia–pathogen interactions, specifically with respect to: (1) host infection prevalence and intensity; (2) free‐living pathogen survival; and (3) host foraging ecology. We found that temperature variability affected host filtering rate, which is closely related to pathogen transmission in this system. Further, infection prevalence was reduced as a function of temperature variability, while infection intensity was not influenced, suggesting that pathogen transmission was influenced by temperature variability, but the growth of pathogen within infected hosts was not. Host survival was reduced by temperature variability, but environmental pathogen survival was unaffected, suggesting that zooplankton hosts were more sensitive than the fungal pathogen to variable temperatures. Together, these experiments suggest that temperature variability may influence host demography and host–pathogen interactions, providing a link between host foraging ecology and pathogen transmission.  相似文献   

18.
《Fungal biology》2020,124(1):34-43
While much research focus is paid to hypervirulent fungal lineages during emerging infectious disease outbreaks, examining enzootic pathogen isolates can be equally fruitful in delineating infection dynamics and determining pathogenesis. The fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd), exhibits markedly different patterns of disease in natural populations, where it has caused massive amphibian declines in some regions, yet persists enzootically in others. Here we compare in vitro gene expression profiles of a panel of Bd isolates representing both the enzootic Bd-Brazil lineage, and the more recently diverged, panzootic lineage, Bd-GPL. We document significantly different lineage-specific and intralineage gene expression patterns, with Bd-Brazil upregulating genes with aspartic-type peptidase activity, and Bd-GPL upregulating CBM18 chitin-binding genes, among others. We also find pronounced intralineage variation in membrane integrity and transmembrane transport ability within our Bd-GPL isolates. Finally, we highlight unexpectedly divergent expression profiles in sympatric panzootic isolates, underscoring microgeographic functional variation in a largely clonal lineage. This variation in gene expression likely plays an important role in the relative pathogenesis and host range of Bd-Brazil and Bd-GPL isolates. Together, our results demonstrate that functional genomics approaches can provide information relevant to studies of virulence evolution within the Bd clade.  相似文献   

19.
The ‘dilution effect’ (DE) hypothesis predicts that diverse host communities will show reduced disease. The underlying causes of pathogen dilution are complex, because they involve non-additive (driven by host interactions and differential habitat use) and additive (controlled by host species composition) mechanisms. Here, we used measures of complementarity and selection traditionally employed in the field of biodiversity–ecosystem function (BEF) to quantify the net effect of host diversity on disease dynamics of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd). Complementarity occurs when average infection load in diverse host assemblages departs from that of each component species in uniform populations. Selection measures the disproportionate impact of a particular species in diverse assemblages compared with its performance in uniform populations, and therefore has strong additive and non-additive properties. We experimentally infected tropical amphibian species of varying life histories, in single- and multi-host treatments, and measured individual Bd infection loads. Host diversity reduced Bd infection in amphibians through a mechanism analogous to complementarity (sensu BEF), potentially by reducing shared habitat use and transmission among hosts. Additionally, the selection component indicated that one particular terrestrial species showed reduced infection loads in diverse assemblages at the expense of neighbouring aquatic hosts becoming heavily infected. By partitioning components of diversity, our findings underscore the importance of additive and non-additive mechanisms underlying the DE.  相似文献   

20.
The recent global spread of the amphibian‐killing fungus [Batrachochytrium dendrobatidis (Bd)] has been closely tied to anthropogenic activities; however, regional patterns of spread are not completely understood. Using historical samples, we can test whether Bd was a spreading or endemic pathogen in a region within a particular time frame, because those two disease states provide different predictions for the regional demographic dynamics and population genetics of Bd. Testing historical patterns of pathogen prevalence and population genetics under these predictions is key to understanding the evolution and origin of Bd. Focusing on the Atlantic Forest (AF) of Brazil, we used qPCR assays to determine the presence or absence of Bd on 2799 preserved postmetamorphic anurans collected between 1894 and 2010 and used semi‐nested PCRs to determine the frequency of rRNA ITS1 haplotypes from 52 samples. Our earliest date of detection was 1894. A mean prevalence of 23.9% over time and spatiotemporal patterns of Bd clusters indicate that Bd has been enzootic in the Brazilian AF with no evidence of regional spread within the last 116 years. ITS1 haplotypes confirm the long‐term presence of two divergent strains of Bd (BdGPL and Bd‐Brazil) and three spatiotemporally broad genetic demes within BdGPL, indicating that Bd was not introduced into southeast Brazil by the bullfrog trade. Our data show that the evolutionary history and pathogen dynamics of Bd in Brazil is better explained by the endemic pathogen hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号